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Preface

This edited book, “Lecture Notes in Electrical Engineering”, is an outcome of the
International Conference on Applied Analysis, Computation and Mathemat-
ical Modelling in Engineering (AACMME-2021). The contents of this book are
intended to present an overall idea about the recent advances in latest developments
and researches in the field of Mathematical Science and its applications.

This book focuses on the comparative study of some wavelet based numerical
methods to solve initial value problems. It also investigates the enhancement of
natural convection heat transfer using hybrid nanofluids over a moving vehicle plate.
This book addresses the provoked flow pattern due to an impulsive motion of porous
wavy wall with no slip suction velocity under the influence of magnetic field.

In this book, a linear stability analysis is applied to study the onset of bio-
convection in a suspension of negatively geotactic swimmers saturated with a non-
Darcy porous fluid layer under the effect of high frequency and Small-amplitude
vertical vibrations. This book also studies the impact of two temperatures on a
generalized thermoelastic plate with thermal loading.

Baffle spacing has a decisive effect on heat transfer and pumping power. The
development of baffle spacing significantly dominates the turbulence created inside
the shell and tube heat exchanger and heat transfer. This book studies the impact of
baffle spacing in both global and local thermohydraulic characteristics.

In this book, Kudryashov and modified Kudryashov techniques have been imple-
mented to acquire new exact solutions of the time fractional (2+1)-dimensional CBS
equation. This book also explores the impact of double dispersion effects on the
nonlinear convective flow of power-law fluid along an inclined plate.

This book emphasizes the Soret and viscous dissipation effects on mixed convec-
tive flow of an incompressible micropolar fluid over a vertical frustum of a cone
embedded in a non-Darcy porous medium subject to convective boundary condition.
It proposes convergence and comparison theorems for three-step alternating itera-
tion method for rectangular linear system. This book also studied thermal hydraulic
performance of helical baffle shell and tube heat exchanger using RSM Method.

This book investigates a newly proposed dual-mode Kawahara equation. It finds
out the soliton and periodic solutions of the Kawahara equation. In this book, the

v



vi Preface

Lie transformation method has been used to find out the group invariant solutions of
(2+1)-dimensional modified Calogero-Bogoyavlenskii-Schiff (mCBS) equation.

This book addresses the estimation and classification of two logistic distribu-
tions with a common scale and different location parameters. Bayes estimates are
computed using Metropolis-Hastings method using gamma and normal prior distri-
butions. The Bayes estimates are compared with some of the existing estimates with
respect to the bias and mean squared error. Utilizing these estimates some classifi-
cation rules are proposed to classify a single observation into one of the two logistic
populations under the same model.

The book considers the problem of testing of hypothesis for the quantile when
independent random samples are drawn from two normal populationswith a common
mean and order restricted variances. Several test procedures are proposed and are
evaluated through their sizes and powers using a simulation procedure.

In this book, various geometrical parameters of the planted roof are studied to opti-
mize the dimensional parameters by means of independent and dependent variables
using an exact mathematical model. Using experiment, the factors influencing the
performance of the planted roof activity are identified to optimize the performance
of the heat flow through planted roof.

This book deals with the modal analysis of a Jeffcott functionally graded (FG)
rotor system, consisting of an FG shaft mounted on linear bearings at the ends.
The material gradation is applied following the exponential gradation law, whereas
the thermal gradients across the radius of the FG shaft are achieved through the
exponential temperature distribution method 3D finite element modelling and the
modal analysis of the FG rotor system are carried out using ANSYS software. The
influence of the material gradation and temperature gradients on the rotor-bearing
system’s natural and whirl frequencies are studied.

This book presents five-point finite difference method to solve the two-
dimensionalLaplace andPoisson equations on regular and irregular regions.Dirichlet
and Robin boundary conditions are considered for solving the system of equations in
each iteration. The obtained numerical results are comparedwith analytical solutions.

This book also focuses on the selection of the best ultra-sound machine using
ELECTRE method based on the user’s criteria. This study considers six criteria to
select best one from five alternatives.

This book examines the processes included for initiation along with expansion of
a crack on the web of the rail weldment in order to anticipate the direction of fracture
crack and secondary, the intervals of weld inspections. The finite element study for
the expected cracking is performed to measure the brief history of stress intensity
factors. Computational simulations and experimental findings made by RDSO on
three-dimensional growth of fatigue crack are compared.

This book deals with a higher-order wave equation with delay term and variable
exponents. Under suitable conditions, they prove the nonexistence of solutions in a
finite time. There is no research related to higher-order wave equations with delay
term and variable exponents.



Preface vii

In this book, the existence result of a solution to continuous nonlinear, initial
value problem is studied. A special type of problem representing the time evolu-
tion of particle number density due to the coagulation, multi-fragmentation events
among the particles present in a system has been considered. The proof of the main
theorem is based on the contraction mapping principle. Initially the local existence
of nonnegative solutions for these compactly supported kernels has been also proved
in this book. The study is completed by examining the mass conservation law of the
existing solution.

This book also introduces a new sequence of Szasz—Kantorovich type operators
based on Boas - Buck type polynomials which include Brenke type polynomials,
Sheffer polynomials and Appell polynomials. The error is estimated in the approxi-
mation by these operators in terms of the Lipschitz type maximal function, Peetre’s
K-functional and Ditzian–Totik modulus of smoothness. The order of convergence
is also studied of these operators for unbounded functions by using the weighted
modulus of continuity. This study also covers quantitative-Voronovoskaya-type
theorem and Gruss Voronovskaya-type theorem.

A study on the numerical modeling and simulation of heat distribution inside the
skin tissue for cancer treatment with external exponential heating is also presented
in this book. The two-dimensional Pennes bio-heat model for thermal therapy based
on Fourier’s law of heat conduction is considered in this study. The mathemat-
ical model’s numerical solution is obtained using Crank Nicolson finite difference
approximation and radial basis function approximation for time and space. The
effects of thermophysical properties of the skin on the temperature profile in the
tissue are also explained.

Overall, the chapters create new avenues and present intriguing information to
comprehend the difficulties and provide answers for various challenges, whichwould
assist readers grasp and implement for the new development and mathematically
analyse physical problems.

The editors would like to express their appreciation to Springer, the Springer
Editor, for publishing these chapters in “Lecture Notes in Electrical Engineering.”
We are also grateful to the anonymous reviewers who provided worthwhile review
reports that resulted in significant modifications and enhancements to these chapters.

Rourkela, India
Pretoria, South Africa
Kharagpur, India
Rourkela, India

Santanu Saha Ray
H. Jafari

T. Raja Sekhar
Suchandan Kayal
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Comparative Study of Some
Wavelet-Based Numerical Methods
to Solve Initial Value Problems

Kshama Sagar Sahu and Mahendra Kumar Jena

Abstract Ordinary differential equations, in particular initial value problems, play
a vital role in applied mathematics. There are many methods available to solve
these initial value problems. The operational matrix method based on wavelet is
a recent one. In this paper, we briefly review some operational matrix methods.
The operational matrix method from the Haar wavelet, the frame, and the Legendre
wavelet is considered. We give a comparison of the solution by providing several
numerical examples.

Keywords Frame · Haar wavelet · Legendre wavelet · Operational matrices

1 Introduction

Many mathematical models in real-life problems involve ordinary differential equa-
tions (ODEs). The solution of these ODE plays a vital role in solving real-life prob-
lems. Sometimes, it is not easy to find an analytical solution to the ODE. In such
cases, we depend upon the numerical solution. Several methods exist to solve ODE
numerically, but the operational matrix method based on wavelet is a recent trend.
Many researchers use the operational matrix in solving differential equations. The
method using an operational matrix to solve ODE is called as operational matrix
method. In this method, the given ODE is converted to an algebraic equation. Solv-
ing the algebraic equation, we get the solution of the given ODE.

Wavelet theory is a wide field in science and engineering. It constitutes a family
of functions constructed from dilation and translation of a single function called the
mother wavelet [14]. Wavelets are used in signal processing, image compression,
and many more. In 1997, Chen and Hsiao [2] introduce the operational matrix of
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integration from Haar wavelet. Many researchers used this operational matrix to find
the solution of differential equations numerically. Thismethod got the popularity as it
is simple and easy. Later, so many operational matrices based on wavelets have been
introduced. Now, this operational matrix method is not limited to solve ODE only.
It is widely used to solve fractional differential equations [8, 16], partial differential
equations [18], integral equations [1], integro-differential equations [17].

Some well-known operational matrix methods are the Haar wavelet operational
matrix (HWOM) method, Legendre’s wavelet operational matrix (LWOM) method,
and the frame operational matrix (FOM) method. All these methods have been
derived using an operational matrix of integration.

Frames first appear in 1952 [3, 7]. These are considered some kinds of alternatives
to wavelets. They are more useful when compactly supported and obtained from a
single prototype function by dilation and translation. Like wavelets, a function in
L2 (IR) can also be expressed as a linear combination of frame elements [3]. In this
paper, we consider the frame constructed from the linear cardinal B-spline. First,
we find out the operational matrices, and then with the help of these operational
matrices, we find the approximate solutions of initial value problems (IVPs).

The remaining part of the paper is organized as follows. In Sect. 2, we review the
Haar wavelet operational matrix method. In Sect. 3, we present the frame operational
matrix method. Legendre wavelet operational matrix method is outlined in Sect. 4.
Some numerical examples are given in Sect. 5. A conclusion is given in Sect. 6.

2 Haar Wavelet Operational Matrix Method

In this section, we first find out the operational matrices from the Haar wavelet for
the different resolutions. These operational matrices are then used to solve the IVPs.
The given IVP is transferred to an algebraic equation which involves the operational
matrices. The algebraic equation is then solved, and as a result, we get an approximate
solution of the IVP.

Definition 1 (Haar Wavelet) Let m = 2 j , j = 0, 1, . . . J , k = 0, 1, . . .m − 1, and
i = m + k + 1. Here, i and j denote wavelet number and the level of wavelet respec-
tively, whereas k is the translation parameter. The maximum level of resolution is
J . The minimum value of i = 2, and the maximum value is 2M . The Haar wavelet
family for t ∈ [A, B] is given as [10, 11]

hi (t) =
⎧
⎨

⎩

1 t ∈ [ξ1 (i) , ξ2 (i)]
−1 t ∈ [ξ2 (i) , ξ3 (i)]
0 otherwise

,
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where

ξ1 (i) = A + 2kμΔx,

ξ2 (i) = A + (2k + 1) μΔx,

ξ3 (i) = A + 2 (k + 1) μΔx,

μ = M

m
, and Δx = (B − A)

2M
.

The scaling function is h1 (t) = 1 for t ∈ [A, B] and 0 elsewhere. The Haar wavelet
are orthogonal to each other:

B∫

A

hi (t) hl (t) = 2− jδi j =
{
2− j , i = l = 2 j + k
0, i �= l.

(1)

Haar wavelets form a good basis for this orthogonal property. Any function y (t)
which is square-integrable in the interval [A, B] can be expanded into a Haar wavelet
expansion

y (t) =
2M∑

i=1

aihi (t) ,

where ai = 2 j
∫ B
A y (t) hi (t) dt.

2.1 Operational Matrix of Integration

Let us define Haar wavelet matrix [2, 10, 11, 13] of order 2M × 2M by

H2M×2M = (hi (tl))
2M×2M
i=1,l=1 =

⎡

⎢
⎢
⎢
⎣

h1 (t1) h1 (t2) · · · h1 (t2M)

h2 (t1) h2 (t2) · · · h2 (t2M)
...

...
...

...

h2M (t1) h2M (t2) · · · h2M (t2M)

⎤

⎥
⎥
⎥
⎦

.

In general,
H2M×2M = [ h2M

(
1
4M

)
h2M

(
3
4M

) · · · h2M
(
4M−1
4M

) ]
.
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The operational matrices are defined as follows:

(PH)il =
tl∫

0

hi (t) dt, (2)

(QH)il =
tl∫

0

dt

t∫

0

hi (t) dt, (3)

where tl are collocation points and tl = l−0.5
2M .

H , P , and Q are matrices of order 2M × 2M . Taking 2M = 2 and 2M = 4,
we have

H2×2 =
[
1 1
1 −1

]

, (PH)2×2 = 1

4

[
1 3
1 1

]

, P2×2 = 1

4

[
2 −1
1 0

]

.

H4×4 =

⎡

⎢
⎢
⎣

1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1

⎤

⎥
⎥
⎦ , (PH)4×4 = 1

8

⎡

⎢
⎢
⎣

1 3 5 7
1 3 3 1
1 1 0 0
0 0 1 1

⎤

⎥
⎥
⎦ ,

P4×4 = 1

16

⎡

⎢
⎢
⎣

8 −4 −2 −2
4 0 −2 2
1 1 0 0
1 −1 0 0

⎤

⎥
⎥
⎦ .

Similarly,

(QH)2×2 = 1

32

[
1 9
1 15

]

, Q2×2 = 1

32

[
5 −4
8 −7

]

, and

(QH)4×4 = 1

128

⎡

⎢
⎢
⎣

1 9 25 49
1 9 23 31
1 7 8 8
0 0 1 7

⎤

⎥
⎥
⎦ , (Q)4×4 = 1

128

⎡

⎢
⎢
⎣

21 −16 −4 −12
16 −11 −4 −4
6 −2 −3 0
2 −2 0 −3

⎤

⎥
⎥
⎦ .

Chen and Hsiao [2] have derived the following formula

P2M×2M = 1

4M

(
4MPM×M −HM×M

H−1
M×M O

)

.
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Notation: We have used the symbols:

H (0)
2M := H2M×2M , H (1)

2M := (PH)2M×2M , P (1)
2M := H (1)

2M

(
H (0)

2M

)−1
.

2.2 Method for First-Order Linear IVP

Consider the first-order linear ordinary differential equation

U
′ = a (t)U + b (t) , t ∈ [0, T ] ,U (0) = U0. (4)

Let us divide the interval [0, T ] into n equal subinterval such that ti+1 − ti = di . Let
introduce the local coordinate τ = t−ti

di
in the interval

[
ti , ti+1

]
. Define the collocation

points in the interval [0, 1] by

τ j =
(
j − 1

2

)

2M
, j = 1, 2, . . . , 2M.

Now, define u (τ ) = U (t) and the given IVP becomes

du

dτ
= di [a (τ ) u (τ ) + b (τ )] , u (0) = Ui . (5)

Introducing the row vector of order 1 × 2M

u = [u (τ1) u (τ2) · · · u (τ2M)
]
,

the equation (2.5), can be written as

du
dτ

= di [uA (τ ) + B (τ )] (6)

where

A (τ ) =

⎡

⎢
⎢
⎢
⎣

a (τ1di + ti ) 0 0 · · · 0
0 a (τ2di + ti ) 0 · · · 0
...

...
... · · · ...

0 0 0 · · · a (τ2Mdi + ti )

⎤

⎥
⎥
⎥
⎦

,

and
B (τ ) = (b (τ1di + ti ) , b (τ2di + ti ) , . . . , b (τ2Mdi + ti )) ,

Following [2, 11], we take
du
dτ

= cH (0)
2M , (7)
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where c = [c (1) , c (2) , . . . c (2M)].
Integrating (2.7) we have

u = cH (1)
2M +Ui E, (8)

where E = [1, 1, 1, . . . , 1] and Ui = U (ti ) .

Comparing (2.6) & (2.7) and putting the value of u from (2.8) to get c.
Now,

c = diUiY S
−1 + di BA−1

(
H (0)

2M

)−1
S−1,

where

S =
(

H (0)
2M A−1

(
H (0)

2M

)−1 − di P
(1)
2M

)

,

and

Y = E
(
H (0)

2M

)−1
.

Taking all τ j = 1, the approximation is

Ui+1 = c (1) +Ui .

2.3 Method for Second-Order Linear IVP

Let us consider the second-order linear differential equation

d2U

dt2
= F

(

t,U,
dU

dt

)

, t ∈ [0, T ] ,U (t0) = U0,U
′
(t0) = V0. (9)

We follow [10] to find the solution of the above equation. Let V = dU
dt . Then the

given differential equation becomes the first-order linear system as follows:

dV

dt
= d2U

dt2
= F (t,U, V ) .

Here also, we divide the interval [0, T ] into n equal subinterval of length di . Let
us consider the interval

[
ti , ti+1

]
and define the collocation points τ j as in previous

section. In this interval, define u (τ ) = U (t) and v (τ) = V (t), where τ is the local
coordinate in

[
ti , ti+1

]
. Let U (ti ) = Ui and V (ti ) = Vi are known approximations.

Now, the converted system of differential equations can be written as

du

dτ
= div and

dv

dτ
= di F (ti + τdi , u, v) .
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Let us introduce the row vectors u and v as given below:

u = [u (τ1) u (τ2) · · · u (τ2M)
]
and v = [ v (τ1) v (τ2) · · · v (τ2M)

]
.

Following Chen & Hsiao [2] and Lepik [11],

du
dτ

= aH (0)
2M and

dv
dτ

= di
(
bH (1)

2M + Vi E
)

,

where a and b are row matrix of order 1 × 2M. The converted system of ODE
becomes

aH (0)
2M = di

(
bH (1)

2M + Vi E
)

, (10)

and
bH (0)

2M = di F
(
ti + τdi , aH

(1)
2M +Ui E, bH (1)

2M + Vi E
)

. (11)

Solving Eqs. (10) and (11) we get a and hence b. Taking all τ j = 1, the approxima-
tions are

Ui+1 = a (1) +Ui , Vi+1 = b (1) + Vi ,

where a (1) and b (1) are first elements of a and b.

3 Frame Operational Matrix Method

The frame of linear cardinal B-spline is considered to construct the operational
matrix. It is an operational matrix of integration.

3.1 A Short Literature Review

Recently, the frame operational matrixmethod has been used to solve the initial value
problems [15]. This operational matrix is obtained from a frame of linear cardinal
B-spline. Frames are considered as some kinds of alternatives to wavelets. They are
useful when they have compact supports and are obtained from a refinable function.

Definition 2 (Refinable Function) [5] A function φ ∈ L2 (IR) is called a refinable
function if there exists scalars pk ∈ IR, k ∈ Z such that

φ (x) = 1

2

∑

k∈Z
pkφ (2x − k) .
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Definition 3 (Multiresolution Analysis) [5] Let φ ∈ L2 (IR) is a refinable function
and Vj = closure

{
φ j,k : k ∈ Z

}
. The collection of subspaces

{
Vj
}

j∈Z of L2 (IR)

generates an multiresolution analysis (MRA) of L2 (IR) if they have the following
properties:

1. · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · ·
2. span

(⋃
j∈Z Vj

)
= L2 (IR)

3.
⋂

j∈Z Vj = {0}
4. Vj+1 = Vj + Wj , j ∈ Z
5. f (x) ∈ Vj ⇔ f (2x) ∈ Vj+1, j ∈ Z

Definition 4 (Tight Frame) [5] A familyΨ = {ψ1, ψ2, . . . , ψN } ⊂ L2 (IR) is called
tight frame of L2 (IR) if it satisfies

N∑

i=1

∑

j,k∈Z

∣
∣
〈
f, ψi; j,k

〉∣
∣2 = ‖ f ‖2, all f ∈ L2 (IR) ,

where ψi; j,k = 2 j/2ψi
(
2 j · −k

)
.

Definition 5 (LinearCardinal B-spline) [5] Let us define the linear cardinal B-spline
by

φ (x) =
{
x, x ∈ [0, 1]
2 − x, x ∈ [1, 2]

.

It is refinable with p0 = 1
2 , p1 = 1, p2 = 1

2 and pk = 0 for k �= 0, 1, 2.

Definition 6 (MRA Tight(wavelet)Frame) [5] A family Ψ = {ψ1, ψ2, . . . , ψN } ⊂
L2 (IR) is called an MRA tight(wavelet) frame if it is a tight frame and is associated
with a refinable function that generates an MRA and Ψ ⊂ V1.

We now consider linear cardinal B-spline φ to construct an operational matrix
method. Define

ψ0 (x) = φ (2x) ,

ψ1 (x) = 1√
2

(ψ0 (2x) − ψ0 (2x − 1)) ,

and ψ2 (x) = 1

2

(

ψ0 (2x) − 2ψ0

(

2x − 1

2

)

+ ψ0 (2x − 1)

)

.

Note that ψ0 generates an MRA. Moreover, Ψ ⊂ V1 and is a tight frame [5] and also
minimum energy(tight)frame [5]. All functionsψ0,ψ1 andψ2 have support in [0, 1].
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3.2 Frame Operational Matrices

The collection Δ = {ψ0, ψl, j,k : l = 1, 2 and j, k ∈ Z}, where ψl, j,k = 2 j/2ψl

(2 j x − k) forms a minimum energy (tight)frame for L2 (IR) [5]. The parameter
j ≥ 0 in Δ is called the resolution level. Let J denotes the maximal resolution.
LetM = 1 + 2(1 + 2 + · · · + 2J ). Suppose the grid points are ti = (i − 1)/M, i =
1, 2, . . . , M + 1 and the collocation points are

τn = tn + tn+1

2
, n = 1, 2, . . . , M.

Following Sahu and Jena [15], we have the frame matrix and the frame operational
matrix as given below:

For fixed J , the frame matrix F0 is a matrix of order M × M , defined by

F0 :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ψ0

Ψ1,0

Ψ1,1
...

Ψ1,J

Ψ2,0

Ψ2,1
...

Ψ2,J

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where Ψ0 = (ψ0(τ1), ψ0(τ2), . . . , ψ0(τM)) and for l = 1, 2 and j = 0, 1, . . . , J ,

Ψl, j =
⎛

⎜
⎝

ψl, j,0(τ1) · · · ψl, j,0(τM)
...

...

ψl, j,2 j−1(τ1) · · · ψl, j,2 j−1(τM)

⎞

⎟
⎠ .

Let us define α-th order integrations ψα
0 and ψα

l; j,k , α ≥ 1 by [11]
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ψα
0 (x) =

x∫

0

x∫

0

· · ·
x∫

0

ψ0(t) dt
α

= 1

(α − 1)!
x∫

0

(x − t)α−1 ψ0(t) dt,

ψα
l; j,k(x) =

x∫

0

x∫

0

· · ·
x∫

0

ψl; j,k(t) dtα

= 1

(α − 1)!
x∫

0

(x − t)α−1 ψl; j,k(t) dt.

The higher-order frame matrices Fα, α ≥ 1 are matrices of order M × M , defined
by

Fα :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ψ α
0

Ψ α
1,0

Ψ α
1,1
...

Ψ α
1,J

Ψ α
2,0

Ψ α
2,1
...

Ψ α
2,J

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where Ψ α
0 = (ψα

0 (τ1), ψ
α
0 (τ2), . . . , ψ

α
0 (τM)

)
and for l = 1, 2 and j = 0, 1, . . . , J ,

Ψ α
l, j =

⎛

⎜
⎝

ψα
l; j,0(τ1) . . . ψα

l; j,0(τM)

...
...

ψα
l; j,2 j−1(τ1) · · · ψα

l; j,2 j−1(τM)

⎞

⎟
⎠ .

The α-th-order frame operational matrix Pα is now defined by

Pα = FαF
−1
0 .

In particular, framematrices F0, F1 and frame operational matrix P1 are given below.
Frame Matrix for J = 1 (M = 7)
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F0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2
7

6
7

10
7 2 10

7
6
7

2
7

− 398
985 − 1194

985 − 796
985 0 796

985
1194
985

398
598

− 796
985 − 398

985
1194
985 0 0 0 0

0 0 0 0 − 1194
985

398
985

796
985

− 2
7 − 6

7
2
7 2 2

7 − 6
7 − 2

7

− 4
7

8
7 − 4

7 0 0 0 0

0 0 0 0 − 4
7

8
7 − 4

7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

F1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
98

9
98

25
98

1
2

73
98

89
98

97
98

− 226
15661 − 253

1948 − 447
1511 − 1189

3363 − 447
1511 − 253

1948 − 226
15661

− 253
4383 − 371

1094 − 393
1757 0 0 0 0

0 0 0 0 − 393
1757 − 371

1094 − 253
4383

− 1
98 − 9

98 − 8
49 0 8

49
9
98

1
98

− 2
49 − 11

98
15
98 0 0 0 0

0 0 0 0 − 15
98

11
98

2
49

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Operational Matrix for J = 1 (M = 7)

P1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2

1121
2378

66
19601

65
152 − 1

4
2
105 − 44

105

− 580
3361 0 − 17

420
17
420 − 165

39202 − 33
19601 − 33

19601

− 336
3713

43
336 − 13

420 0 336
3713 − 83

2293 0

− 336
3713 − 43

336 0 13
420

336
3713 0 − 83

2293

0 529
4834 − 130

2413 − 130
2413 0 1

60 − 1
60

0 0 195
2032 0 0 − 9

140 0

0 0 0 195
2032 0 0 9

40

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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3.3 Method for First-Order Linear IVP

This method is very much similar to the HWOM method. Let us consider the ODE

U
′
(t) = A(t)U (t) + B(t), U (t0) = U0, t ∈ [t0, T ]. (12)

We divide the whole interval of discretization into n equal segments with hi =
ti+1 − ti , i = 0, 1, . . . , n − 1. Let us consider the interval

[
ti , ti+1

]
. Assume that

Ui is a known approximation to U (ti ). The local coordinate τ = t−ti
hi

to the interval
[ti , ti+1]. This is now belongs to [0, 1]. The given Eq. (12) becomes a new IVP with
local coordinate,

u̇(τ ) := du

dτ
= hi (a(τ )u(τ ) + b(τ )), u(0) = Ui . (13)

Introduce

u = [u(τ1), u(τ2), . . . , u(τM)] ,

From (13), we get
du
dτ

= hi [uA + b] , (14)

where

A =

⎛

⎜
⎜
⎜
⎝

a(t∗1 ) 0 · · · 0
0 a(t∗2 ) · · · 0

...

0 0 · · · a(t∗M)

⎞

⎟
⎟
⎟
⎠

,

t∗j = ti + hiτ j

and

b = [b(t∗1 ), b(t∗2 ), . . . , b(t∗M)
]
.

Following Sahu and Jena [15], and simplifying,

c = hi
(
dY + bA−1F−1

0

)
(F0A−1F−1

0 − hi P1)
−1, (15)

where Y = EF−1
0 and P1 = F1F

−1
0 .

The approximation is u(1) = c(1) + u(0) = c(1) +Ui , where c(1) is the first
entry of c.
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3.4 Method for Second Order Linear IVP

Let us consider the differential equation

U ′′ + p∗U ′ + q∗U = f (t), U (t0) = U0, U ′(t0) = V0, (16)

where p∗, q∗, and f (t) are function of t . The equation (16) is reduced to a system
of first-order ODE by taking

dU

dt
= V,

dV

dt
= −p∗V − q∗U + f (t). (17)

Let us consider the interval
[
ti , ti+1

]
. Assume that the knownUi and Vi are approxi-

mation to U (ti ) and V (ti )=U
′
(ti ), respectively. The local coordinate in the interval[

ti , ti+1
]
is τ = (t − ti )/hi , where hi = ti+1 − ti . In terms of this local coordinate,

we have u(τ ) = U (t), v(τ ) = V (t). Introduce

u = [u(τ1), u(τ2), . . . , u(τM)] ,

v = [v(τ1), v(τ2), . . . , v(τM)] .

We have the following relation from (17)

u̇ = hiv, (18)

v̇ = −vp − uq + Φ, (19)

where

p = hi

⎡

⎢
⎢
⎢
⎣

p∗(t∗1 ) 0 0 · · · 0
0 p∗(t∗2 ) 0 · · · 0
...

...
...

...
...

0 0 0 · · · p∗(t∗M)

⎤

⎥
⎥
⎥
⎦

,

q = hi

⎡

⎢
⎢
⎢
⎣

q∗(t∗1 ) 0 0 · · · 0
0 q∗(t∗2 ) 0 · · · 0
...

...
...

...
...

0 0 0 · · · q∗(t∗M)

⎤

⎥
⎥
⎥
⎦

,

and
Φ = hi

[
f (t∗1 ) f (t∗2 ) f (t∗3 ) · · · f (t∗M)

]
.

Here t∗j = τ j hi + ti , j = 1, 2, . . . , M . Following Chen [2], Lepik [11], and sim-
plifying as [15] we have

a = hibP1 + hi ViY (20)
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and

b = −Vi EpF−1
0 S−1 − hi ViY F1qF−1

0 S−1 −Ui EqF−1
0 S−1 + ΦF−1

0 S−1, (21)

where S = I + F1pF−1
0 + hi P1F1qF−1

0 . Here Y = EF−1
0 and P1 = F1F

−1
0 . The

approximation becomes

Ui+1 = a (1) +Ui

Vi+1 = b (1) + Vi .

4 Legendre’s Wavelet Operational Matrix Method

The “Legendre wavelets” ψn,m (t) = ψ (k, n,m.t) is defined as follows: [9, 12, 14]

Definition 7 Legendre Polynomial

ψn,m (t) =
{√

m + 1
22

k
2 Pm

(
2k t − 2n + 1

)
, t ∈ [ξ1, ξ2]

0 otherwise
,

where ξ1 = 2n−2
2k , ξ2 = 2n

2k ,m = 0, 1, . . . , M − 1, n = 1, 2, . . . , 2k−1, and Pm (t) are
Legendre polynomial of degree m. In particular, P0 (t) = 1 and P1 (t) = t .

Any function f (t) can be represented in Legendre wavelet series in [0, 1) by Raz-
zaghi and Yousefi [14]

f (t) =
∞∑

n=1

∞∑

m=1

cn,mψn,m (t) ,

where cn,m = 〈 f (t) , ψn,m (t)〉, in which 〈· · · 〉 is the inner product.

4.1 Function Approximation

Consider the Legendre wavelet as [9, 14]

Ψ = (ψ1,0 · · · ψ2k−1,0 ψ1,1 · · · ψ2k−1,1 · · · ψ1,M−1 · · · ψ2k−1,M−1
)T

Let f be an arbitrary function in L2[0, 1] then there exist unique coefficients cn,m

such that

f (t) �
2k−1
∑

n=1

M−1∑

m=0

cn,mψn,m (t) = CTΨ (t) ,



Comparative Study of Some Wavelet-Based … 15

where cn,m = ∫ 1
0 f (t) ψn,m (t) dt, and

C = ( c1,0 · · · c2k−1,0 c1,1 · · · c2k−1,1 · · · c1,M−1 · · · c2k−1,M−1
)T

,

Collocation points are given by [9]

ti = 2i − 1

2kM
, i = 1, 2, . . . , 2k−1M

Following [9, 14] we get the operational matrices as below:

t∫

0

Ψ (t) dt = PΨ (t) ,

where P is the operational matrix of order 2k−1M × 2k−1M.

In general, the operational matrix P is given by Razzaghi and Yousefi [14]

P = 1

2k

⎡

⎢
⎢
⎢
⎢
⎢
⎣

L F F · · · F
0 L F · · · F
0 0 L · · · F
...

...
...

...
...

0 0 · · · 0 L

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where F and L are square matrix of order M as follows:

F =

⎡

⎢
⎢
⎢
⎣

2 0 · · · 0
0 0 · · · 0
...

...
...

...

0 0 · · · 0

⎤

⎥
⎥
⎥
⎦

,

and

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1√
3

0 0 · · · 0 0 0

−
√
3
3 0

√
3

3
√
5

0 · · · 0 0 0

0 −
√
5

5
√
3

0
√
5

5
√
7

· · · 0 0 0

0 0 −
√
7

7
√
5

0 · · · 0 0 0
...

...
...

... · · · ...
...

...

0 0 0 0 · · · −
√
2M−3

(2M−3)
√
2M−5

0
√
2M−3

(2M−3)
√
2M−1

0 0 0 0 · · · 0 −
√
2M−1

(2M−1)
√
2M−3

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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In particular, the matrices Ψ and P for M = 3 and k = 2 are given in the following:

Ψ6×6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

√
2 −2

3

√
6

√
10
6 0 0 0√

2 0
√
10
2 0 0 0√

2 2
3

√
6

√
10
6 0 0 0

0 0 0
√
2 −2

3

√
6

√
10
6

0 0 0
√
2 0

√
10
2

0 0 0
√
2 2

3

√
6

√
10
6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

P6×6 = 1

4

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
√
2√
6

0 2 0 0

−
√
3
3 0

√
3

3
√
5

0 0 0

0 −
√
5

5
√
3

0 0 0 0

0 0 0 1
√
2√
6

0

0 0 0 −
√
3
3 0

√
3

3
√
5

0 0 0 0 −
√
5

5
√
3

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

5 Results and Discussions

In this section, we consider some numerical examples to compare the solutions obtain
from different operational matrix methods described above.

Example 1 Consider the singular initial value problem [9]

U
′′ + 4

t
U

′ +
(
2

t2
+ t

)

U = 20t + t4, U (0) = U
′
(0) = 0.

The exact solution of the given IVP isU (t) = t3.Numerical comparisons of solutions
obtain from LWOM, HWOM, and FOM are presented in Table1. Comparison of the
solution from HWOM, FOM, and exact solution presented graphically in Fig. 1.

Example 2 Consider the singular initial value problem [9]

U
′′ + 1

t
U

′ =
(

8

8 − t2

)2

, U (0) = 0,U
′
(0) = 0.

The exact solution of the given IVP is U (t) = 2log
(

7
8−t2
)
. Numerical comparison

of solution from LWOM, HWOM, and FOM is presented in the Table2. Comparison
of the solution from HWOM, FOM, and exact solution is presented graphically in
Fig. 2.
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Table 1 L2−norm Comparison of solution of Example 1

t LWOM [9] HWOM FOM Exact

0.1 0.001000 0.0010 0.0010 0.001000

0.2 0.008003 0.0079 0.0080 0.008000

0.3 0.027008 0.0269 0.0269 0.027000

0.4 0.064045 0.0639 0.0639 0.064000

0.5 0.125131 0.1249 0.1249 0.125000

0.6 0.216534 0.2158 0.2158 0.216000

0.7 0.345017 0.3428 0.3428 0.343000

0.8 0.513002 0.5118 0.5118 0.512000

0.9 0.730000 0.7288 0.7288 0.729000

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

HWOM
FOM
Exact

Fig. 1 Comparison of solution Example 1

Table 2 L2−norm comparison of solution of Example 2

t LWOM [9] HWOM FOM Exact

0.1 −0.26456123 −0.2646 −0.2646 −0.26456122

0.2 −0.25703772 −0.2570 −0.2571 −0.25703770

0.3 −0.24443526 −0.2444 −0.2446 −0.24443526

0.4 −0.22665738 −0.2267 −0.2268 −0.22665737

0.5 −0.20356540 −0.2036 −0.2037 −0.20356538

0.6 −0.17497491 −0.1750 −0.1751 −0.17497490


