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Preface

Porous polymers are materials that are having pores in their design. Porous 
polymers are important for various fields of application, as described 
below. They are used with pores of different sized, i.e. from macropores to 
micropores.

This book focuses on the issues of porous polymers as well as low 
molecu lar compounds that can be introduced in porous polymers.

The book begins with a chapter about polymers that are used for porous 
materials. Here, among others, microporous polymer net works, hyper- 
crosslinked polymers, and rigid ladder-type porous polymers are detailed. 
Related issues will also be detailed in the sub sequent chapters. In the next 
chapter, the major synthesis methods for porous polymers are described.

Then, the properties and material testing methods, such as stan dards, 
are described in a chapter.

In the following chapters, special fields of applications of porous poly-
mers are described in detail, such as:

Chapter 4: Medical uses,
Chapter 5: Thermal insulation,
Chapter 6: Membranes,
Chapter 7: Separation methods, and
Chapter 8: Other fields of use.

The text focuses on the literature of the past decade. Beyond education, 
this book will serve the needs of industry engineers and specialists who 
have only a passing knowledge of the plastics and composites industries 
but need to know more.

How to Use This Book

Utmost care has been taken to present reliable data. Because of the vast 
variety of material presented herein, however, the text cannot be complete 
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in all aspects, and it is recommended that the reader study the original 
literature for more complete information.

The reader should be aware that mostly US patents have been cited where 
available, but not the corresponding equivalent patents in other countries. 
For this reason, the author cannot assume re sponsibility for the complete-
ness, validity or consequences of the use of the material presented herein. 
Every attempt has been made to identify trademarks; however, there were 
some that the author was unable to locate.

Index

There are four indices: an index of trademarks, an index of acronyms, an 
index of chemicals, and a general index.

In the index of chemicals, compounds that occur extensively, e.g., “ace-
tone,” are not included at every occurrence, but rather when they appear in 
an important context.
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1
Materials

Porous materials are typically categorized into three classes that
have different pore sizes (1):

1. Macroporous with pore diameter larger than 50 nm,
2. Mesoporous (pore diameter between 2 nm and 50 nm), and
3. Microporous materials (pore diameter smaller than 2 nm).

While conventional polymer networks undergo pore collapse up-
on solvent removal as polymer strands can adopt many conforma-
tions in order to pack space efficiently, recent research efforts have
popularized several classes of polymer networks that possess per-
manent porosity based on the use of rigid components.

1.1 Styropor

Otis Ray McIntire (1918-1996), a chemical engineer at Dow
Chemical, rediscovered a process first patented by Swedish inventor
Carl Munters (2).

According to the Science History Institute, "Dow bought the rights
to the Munters method and began producing a lightweight, wa-
ter-resistant, and buoyant material that seemed perfectly suited for
building docks and watercraft and for insulating homes, offices, and
chicken sheds (3). In 1944, Styrofoam was patented.

Before 1949, chemical engineer Fritz Stastny (1908-1985) devel-
oped pre-expanded poly(styrene) beads by incorporating aliphatic
hydrocarbons such as pentane. These beads are the raw material
for molding parts or extruding sheets. BASF and Stastny applied

1
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for a patent that was issued in 1949. The molding process was
demonstrated at the KunststoffMesse in Düsseldorf in 1952. These
products were named Styropor (3).

The crystal structure of isotactic poly(styrene) was reported by
Giulio Natta (4). In 1954, the Koppers company in Pittsburgh,
Pennsylvania, developed expanded poly(styrene) foam under the
trade name Dylite (5).

1.2 Porous Coordination Polymers

The design, analysis and applications of coordination polymers have
been descried in a monograph (6).

A coordination polymer is an inorganic or organometallic poly-
mer structure containing metal cation centers linked by ligands.
More formally, a coordination polymer is a coordination compound
with repeating coordination entities extending in 1, 2, or 3 dimen-
sions (7, 8)

Examples of coordination polymers are lanthanoid coordination
polymers, organometallic networks, and organic-inorganic hybrids
(6).

1.2.1 Multifunctional Pillared-Layer Material

A multifunctional pillared-layer porous coordination polymer,
has been constructed based on a flexible viologen derivative,
1,1’-bis(4-carboxybenzyl)-4,4’-bipyridinium dichloride, and an ox-
alate co-ligand. 1,1’-Bis(4-carboxybenzyl)-4,4’-bipyridinium dichlo-
ride is shown in Figure 1.1.

N+N+

OH
OOH

O

Cl- Cl-

Figure 1.1 1,1’-Bis(4-carboxybenzyl)-4,4’-bipyridinium dichloride.
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Single-crystal X-ray analysis showed that the compound possess-
es multichannels with dimensions of about 6.1×6.6 Å along the [110]
and [-110] directions and 4.2×7.6 Å along [100], and a void space of
about 41.4%.

Hydrogen adsorption measurements at 77 K and 1 atm indicated
that the compound exhibits a hydrogen uptake of 0.71%. Owing
to the incorporation of bipyridinium acceptor units, the compound
can selectively accommodate aromatic donors into its nano-sized
pores based on charge-transfer interactions in an elastic way, and
afford a specific color to different guests.

Furthermore, the effect of perturbation exerted by the guest
molecules on its magnetic properties has been investigated. The
results indicated that the donor inclusion has little effect on its an-
tiferromagnetic behavior, whereas dehydration of the compound
decreases the strength of the magnetic exchange couplings and re-
sults in a change of the antiferromagnetic transition temperature
from 14.7 K to 9.8 K (9).

1.2.2 Porous Coordination Polymer-Ionic Liquid Composite

A porous coordination polymer-ionic liquid composite has been de-
scribed that includes an insulating structure composed of a porous
coordination polymer, and an ionic liquid retained inside pores of
the porous coordination polymer. The porous coordination polymer
preferably has a main chain containing a typical metal element (10).

It has been proposed to apply an ionic liquid owing to high ionic
conductivity thereof to an electrochemical device as an electrolyte
for a battery or an electrical double-layer capacitor. The ionic liquid
has extremely high flame retardance, and hence when used as the
electrolyte for the electrochemical device, there is no need for a com-
bustible organic solvent, thus ensuring the electrochemical device
with high safety (10).

A schematic diagram that shows that an ionic liquid is filled with
particles of the porous coordination polymer to form particles after
filling is shown in Figure 1.2.

Here a a plurality of particles 111 composed of a porous coordi-
nation polymer are filled with a ionic liquid 12. The composite 131
obtained by a molding process. The structure 11, which is used as
an electrolyte for a battery or an electrical double-layer capacitor,
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Figure 1.2 Synthesis of a porous coordination polymer-ionic liquid com-
posite (10).
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has a dense structure, thus making it easier for ion conduction path-
ways between the particles to be connected to each other. Hence, the
composite 131 is a satisfactory ion conductor. In the case of using
the structure 11 obtained by subjecting a plurality of the particles
111 composed of the porous coordination polymer to compression
molding, a plurality of voids are respectively formed between the
particles 111 of the porous coordination polymer (10).

Examples of the porous coordination polymer are collected in
Table 1.1.

Table 1.1 Porous coordination polymers (10).

Compound Shortcut

Zn(MeIM)2 ZIF-8
Al(OH)[BDC] MIL-53(A1)
Cr(OH)[BDC] MIL-53(Cr)
Fe(OH) [BDC] MIL-53(Fe)
Zn2 (DOBDC) MOF-74(Zn)
Mg2 (DOBDC) MOF-74(Mg)
Al(OH)(1,4-NDC)
Cr3F(H2O)2O(BDC)3 MIL-101(Cr)
Al8(OH)12(OH)3(H2O)3 [BTC]3 MIL-110(Al)

Abbreviation Compound

HMeIM 2-Methylimidazole
H2BDC 1,4-Benzenedicarboxylic acid
H4DOBDC 2,5-Dihydroxyterephthalic acid
H2NDC 1,4-Naphthalenedicarboxylic acid
H3BTC 1,3,5-Benzenetricarboxylic acid
H2BPDC 4,4’-Biphenyldicarboxylic acid
H2TPDC 4,4”-p-Terphenyldicarboxylic acid

The acids in Table 1.1 are shown in Figure 1.3.

Examples of hard acids, hard bases, soft acids, soft bases, in-
termediate acids, and intermediate bases are described in a mono-
graph (11).
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CH3N

NH OH

O

OH

O

2-Methylimidazole 1,4-Benzenedicarboxylic acid

OH
O

OH

OH

O
OH O

OH O

OH

O OH

2,5-Dihydroxyterephthalic acid 1,4-Naphthalenedicarboxylic acid

O

OH O

OH

O OH

OH
O

O
OH

1,3,5-Benzenetricarboxylic acid 4,4’-Biphenyldicarboxylic acid

OH

OH O

O

4,4”-p-Terphenyldicarboxylic acid

Figure 1.3 Acids in Table 1.1.
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1.3 Networks

1.3.1 Microporous Polymer Networks

Microporous materials are defined as materials containing intercon-
nected pores of less than 2 nm in diameter (12)

Due to their large surface area, many conventional microporous
materials, such as zeolites and activated carbons, are widely used
as catalysts, sorbents, and separation membranes. Recently, the
field has evolved rapidly with the development of several novel
types of microporous polymer networks. These materials not only
benefit fundamental research by introducing modular approaches
to accessing numerous sophisticated structures, but also provide
new opportunities for various emerging applications (1).

The central design principle for introducing permanent micro-
porosity into polymer networks involves the use of rigid building
blocks. Such rigidity precludes the network strands from behaving
effectively as entropic molecular springs and prevents the collapse
of microporous structures upon solvent removal; consequently, the
mechanical properties of these materials are stiff yet brittle.

Furthermore, the rigidity of the monomers prevents small loop
formation and allows for establishing long-range order in the pres-
ence of self-error-correcting mechanisms, e.g., a reversible bond for-
mation (1).

So, microporous polymer networks can be either amorphous or
crystalline. Aside from the general use of very rigid components, the
basic concepts of microporous polymer network synthesis are simi-
lar to those discussed above for either covalent or physical polymer
networks.

1.3.2 Amorphous Microporous Polymer Networks

Amorphous microporous polymer networks of different types have
been denoted by various names, such as:

1. Polymers with intrinsic microporosity (PIMs) (13),
2. Porous organic polymers (POPs) (14),
3. Conjugated microporous polymers (CMPs) (15), and
4. Hyper-crosslinked polymers (16).
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It has been suggested to divide these materials into two categories,
based on whether or not the strands are covalently crosslinked (1).

1.3.2.1 Conjugated Microporous Polymers

Conjugated microporous polymers (CMPs) are a class of organic
porous polymers that combine p-conjugated skeletons with perma-
nent nanopores, in sharp contrast to other porous materials that
are not p-conjugated and with conventional conjugated polymers
that are nonporous. As an emerging material platform, CMPs offer
a high flexibility for the molecular design of conjugated skeletons
and nanopores.

A lot of chemical reactions, building blocks and synthetic meth-
ods have been developed and a broad variety of CMPs with different
structures and specific properties have been synthesized, driving the
rapid growth of the field. CMPs are unique in that they allow the
complementary utilization of p-conjugated skeletons and nanopores
for functional exploration; they have shown great potential for chal-
lenging energy and environmental issues, as exemplified by their
excellent performance in gas adsorption, heterogeneous catalysis,
light emitting, light harvesting and electrical energy storage. This
review describes the molecular design principles of CMPs, advance-
ments in synthetic and structural studies and the frontiers of func-
tional exploration and potential applications.

Building blocks with different geometries are listed in Table 1.2.

The structures of some building blocks with different geometries,
sizes and reactive groups for the synthesis of CMPs are shown in
Figure 1.4.

To construct a conjugated skeleton, the synthetic reaction must
covalently link the building blocks with a p-conjugated bond.

The chemical reactions utilized for the preparation of linear con-
jugated polymers can also be employed for the synthesis of CMPs.
The special reactions are listed in Table 1.3 and are shown in Figure
1.5.

Because building blocks can have different geometries, reactive
groups, and P systems, this structural diversity significantly en-
hances the flexibility of the design of both skeletons and pores.
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Table 1.2 Building blocks with different ge-
ometries (15).

C2 Compounds

1,4-Dibromobenzene
1,2-Dibromobenzene
1,4-Dibromo-2-methyl-benzene
1,4-Dibromo-2-trifluoromethyl-benzene
2,5-Dibromofluorobenzene
1,4-Dibromo-2-nitro-benzene
4,7-Dibromo-2,1,3-benzothiadiazole
2,5-Dibromo pyridine
2,5-Dibromobenzoic acid
2,5-Dibromonitrobenzene
1,4-Dibromo-2,5-difluorobenzene
1,4-Dibromo-2,5-dimethylbenzene
1,4-Dibromo-2,5-dihydroxybenzene
1,4-Dibromo-2,5-dimethoxybenzene
1,3-Dibromobenzene
2,6-Dibromophenol
2,4-Dibromoaniline
2,6-Dibromoaniline
3,5-Dibromo pyridine
3,5-Dibromo-N,N-dimethyl-4-pyridinamine
2,7-Dibrom-9H-carbazol
1,6-Dibromo-2-naphthol
2,6-Dibromonaphthalene
9,10-Dibromoanthracene
4,4’-Dibromobiphenyl
5-Bromo-2-(4-bromophenyl)pyridine
5,5’-Dibromo-2,2’-bipyridine
4,4’-Dibromooctafluorobiphenyl
1,4-Diiodobenzene
4,4’-Diiodobiphenyl
1,4-Diaminobenzene
4,4’-Diaminobiphenyl 1,2-Dicyanobenzene
1,3-Dicyanobenzene
1,4-Dicyanobenzene
4,4’-Diacyanobiphenyl
1,1’:4’,1”-Terphenyl-4,4”-dicarbonitrile
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Table 1.2 (cont) Building blocks with different geometries
(15).

C3 Compounds

1,3,5-Tribromobenzene
1,3,5-Tris(3-bromophenyl)benzene
1,3,5-Tris(4-bromophenyl)benzene
2,4,6-Tris(p-bromophenyl)-s-triazine
1,3,5-Tris(4-bromophenylethynyl)benzene
1,3,5-Tris(4-aminophenyl)benzene

C4 Compounds

1,2,4,5-Tetrabromobenzene
1,3,6,8-Tetrabromopyrene
1,3,6,8-Pyrenetetracarbaldehyde
1,2,4,5-Tetraaminobenzene
2,2’,7,7’-Tetrabromo-9,9’-spirobifluorene
2,2’,7,7’-Tetraamino-9,9’-spirobifluorene
1,1’,1”,1”’-(1,1,2,2-Ethenetetrayl)tetrakis (4-bromobenzene)

C6 Compounds

1,2,3,4,5,6-Hexabromobenzene
1,2,3,4,5,6-Hexakis(4-bromophenyl)benzene

Table 1.3 Reactions for preparation of conjugat-
ed polymers.

Reaction name References

Suzuki cross coupling reaction (17, 18)
Yamamoto reaction (19, 20)
Sonogashira-Hagihara reaction (21, 22)
Oxidative coupling reaction (23–25)
Schiff base reaction (26–28)
Friedel-Crafts reaction (29)
Phenazine ring fusion reaction (30)
Cyclotrimerization (31, 32)
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Br

Br

Br

Br

1,4-Dibromobenzene 1,2-Dibromobenzene

Br

Br

CH3

F

Br

Br

1,4-Dibromo-2-trifluoromethyl- 2,5-Dibromofluorobenzene
benzene

O

N+

O-

Br

Br

Br

N
S

N

Br

1,4-Dibromo-2-nitro-benzene 4,7-Dibromo-2,1,3-benzothiadiazole

BrN

Br OH
O

Br

Br

2,5-Dibromo pyridine 2,5-Dibromobenzoic acid

O

N+

O-

Br

Br

F

BrF

Br

2,5-Dibromonitrobenzene 1,4-Dibromo-2,5-difluorobenzene

Figure 1.4 Building blocks (15).
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Figure 1.4 (cont) Building blocks (15).
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