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Preface to the First Edition
This book emerged from a course on solid state physics for
third‐year students of physics and nanoscience, but it
should also be useful for students of related fields such as
chemistry and engineering. The aim is to provide a
bachelor‐level survey over the whole field without going
into too much detail. With this in mind, a lot of emphasis is
put on a didactic presentation and little on stringent
mathematical derivations or completeness. For a more in‐
depth treatment, the reader is referred to the many
excellent advanced solid state physics books. A few are
listed in the Appendix.
To follow this text, a basic university‐level physics course is
required as well as some working knowledge of chemistry,
quantum mechanics, and statistical physics. A course in
classical electrodynamics is of advantage but not strictly
necessary.
Some remarks on how to use this book: Every chapter is
accompanied by a set of “discussion” questions and
problems. The intention of the questions is to give the
student a tool for testing his/her understanding of the
subject. Some of the questions can only be answered with
knowledge of later chapters. These are marked by an
asterisk. Some of the problems are more of a challenge in
that they are more difficult mathematically or conceptually
or both. These problems are also marked by an asterisk.
Not all the information necessary for solving the problems
is given here. For standard data, for example, the density of
gold or the atomic weight of copper, the reader is referred
to the excellent resources available on the World Wide
Web.



Finally, I would like to thank the people who have helped
me with many discussions and suggestions. In particular, I
would like to mention my colleagues Arne Nylandsted
Larsen, Ivan Steensgaard, Maria Fuglsang Jensen, Justin
Wells, and many others involved in teaching the course in
Aarhus.



Preface to the Second Edition
The second edition of this book is slightly enlarged in some
subject areas and improved throughout. The enlargement
comprises subjects that turned out to be too essential to be
missing, even in a basic introduction such as this one. One
example is the tight‐binding model for electronic states in
solids, which is now added in its simplest form. Other
enlargements reflect recent developments in the field that
should at least be mentioned in the text and explained on a
very basic level, such as graphene and topological
insulators.
I decided to support the first edition by online material for
subjects that were either crucial for the understanding of
this text but not familiar to all readers, or not central
enough to be included in the book but still of interest. This
turned out to be a good concept, and the new edition is
therefore supported by an extended number of such notes;
they are referred to in the text. The notes can be found on
my website www.philiphofmann.net.
The didactic presentation has been improved, based on the
experience of many people with the first edition. The most
severe changes have been made in the chapter on
magnetism but minor adjustments have been made
throughout the book. In these changes, didactic
presentation was given a higher priority than elegance or
conformity to standard notation, for example, in the figures
on Pauli paramagnetism or band ferromagnetism.
Every chapter now contains a “Further Reading” section at
the end. Since these sections are supposed to be
independent of each other, you will find that the same
books are mentioned several times.

https://www.philiphofmann.net/


I thank the many students and instructors who participated
in the last few years' Solid State Physics course at Aarhus
University, as well as many colleagues for their criticism
and suggestions. Special thanks go to NL architects for
permitting me to use the flipper‐bridge picture in
Figure 11.3, to Justin Wells for suggesting the analogy to
the topological insulators, to James Kermode for Figure 3.7,
and to Arne Nylandsted Larsen and Antonija Grubišić Čabo
for advice on the sections on solar cells and magnetism,
respectively.



Preface to the Third Edition
The third edition of this book introduces numerous
improvements throughout the text, in particular in the
description of covalent bonding in Chapter 2 and in the
discussion of the Bloch theorem and the nearly‐free
electron model in Chapter 6.
The most significant changes are related to the problem
sections in each chapter. In addition to the “traditional”
type of problems that require an analytical solution, I have
now included a number of problems that need to be solved
numerically. Their complexity varies from plotting a simple
function to calculating the carrier densities in a
semiconductor. By introducing this new type of problems I
hope to strengthen the students' computational skills, to
overcome the restriction of being able to calculate solely
what can be approximated using a simple model, and to
impart upon students the capability to “play” with model
parameters in order to explore what might happen in
different physical situations. Moreover, exercises such as
4.4 and 6.10 are intended to help students understand the
way phonon dispersions or electronic states are plotted as
one‐dimensional cuts through a multi‐dimensional Brillouin
zone. For instructors, Python scripts for individual
problems are provided as part of the instructor resources
that are available from the publisher.
Another major change in the problem sections is the
addition of a “basic concepts” section in addition to the
“discussion questions” and the more complex “problems”
from the second edition. Many (but not all) of the new
“basic concepts” questions are of the multiple‐choice type
and the solutions to all of them are given in Appendix B. As
in the first two editions, the “discussion questions” can



serve as an inspiration to think about the central new
concepts of each chapter or for discussing them in class,
whereas the “problems” serve for a more in‐depth
exploration of the subjects. As in the previous editions,
problems marked by an asterisk * are particularly
challenging. The “basic concepts” section can be used in
self‐studies to test one's understanding of the most
important ideas. Most of the questions do not require any
calculations but they still go beyond a simple repetition of
the chapter's content and involve some thinking. The
number of “basic concepts” questions in a given chapter
depends on the number and complexity of new concepts
introduced in this chapter. Chapter 1, for instance,
introduces difficult and very important ideas such as the
reciprocal lattice, and therefore it contains a large number
of “basic concepts” questions. Chapter 3, on the other
hand, is conceptually less difficult and contains only a few
of them. Many more of this type of questions along with
their solutions can be found on my website at
www.philiphofmann.net.
The multiple‐choice questions have only one correct
answer, or, if several correct answers exist, there is an
explicit option to choose this, e. g., “C. Both A. and B. are
correct.” In some cases, there is an overlap between a
“basic concepts” question testing a conceptual
understanding of a subject and a “problem” with a more in‐
depth treatment of the same question.
My thanks go to the 2021 class of the Statistical Physics
and Solid State Physics course at Aarhus University for
testing much of the new content, as well as to the teaching
instructors Paulina Majchrzak, Alfred Jones, Michael
Iversen and Nikolaj Rønne. I also thank Davide Curcio for
introducing me to a new set of advanced writing tools and
Charlotte E. Sanders for many helpful comments on the
manuscript.

https://www.philiphofmann.net/


Physical Constants and Energy
Equivalents
Planck constant  J  s

 eV  s
Boltzmann constant  J  K

 eV  K
Proton charge  C
Bohr radius  m
Bohr magneton  J  T
Avogadro constant  mol
Speed of light  m  s
Rest mass of the
electron

 kg

Rest mass of the proton  kg
Rest mass of the
neutron

 kg

Atomic mass unit u  kg
Permeability of vacuum  V  s  A m
Permittivity of vacuum    J   m

1 eV  =   J
1 K  =   eV



1
Crystal Structures
Our general objective in this book is to understand the
macroscopic properties of solids on a microscopic level. In
view of the many particles in solids, coming up with any
microscopic description appears to be a daunting task. It is
clearly impossible to solve the equations of motion
(classical or quantum‐mechanical) of the particles.
Fortunately, it turns out that solids are often crystalline,
with the atoms arranged on a regular lattice, and this
symmetry permits us to solve microscopic models despite
the vast number of particles involved. In a way, this
situation is similar to atomic physics where the key to a
quantum‐mechanical description is the spherical symmetry
of the atom. We will often imagine a macroscopic solid as
one single crystal, a perfect lattice of atoms without any
defects whatsoever. While it may seem that such perfect
crystals are not particularly relevant for real materials, this
is in fact not the case. Many solids are actually composed
of small crystalline grains. Such solids are called
polycrystalline, in contrast to a macroscopic single
crystal, but the number of atoms within a perfect
crystalline environment in them is still very large compared
to the number of atoms on the grain boundary. For
instance, for a grain size on the order of  atomic
distances, only about 0.1% of all atoms are at the grain
boundaries.
There are, however, also solids that are not crystalline.
These are called amorphous. The amorphous state is
characterized by the absence of any long‐range order.
There may exist, however, a degree of short‐range order
between the atoms.



(1.1)

(1.2)

This chapter is divided into three parts. In the first part, we
define some basic mathematical concepts needed to
describe crystals. We keep things simple and mostly use
two‐dimensional examples to illustrate the ideas. In the
second part, we discuss common crystal structures. For the
moment, we will not ask why the atoms bind together in
the way they do – this topic will be discussed in Chapter 2.
Finally, we delve into a more detailed discussion of X‐ray
diffraction, the experimental technique that can be used to
determine the microscopic structure of crystals. X‐ray
diffraction is used not only in solid state physics but also
for a wide range of problems in nanotechnology and
structural biology.

1.1 General Description of Crystal
Structures
Our description of crystals starts with the mathematical
definition of the lattice. A lattice is a set of regularly
spaced points with positions defined as multiples of
generating vectors. In two dimensions, a lattice can be
defined as all the points that can be reached by the vectors 

, created from two non‐collinear vectors  and  as

where  and  are integers. In three dimensions, the
corresponding definition is

Such a lattice of points is also called a Bravais lattice. The
number of possible Bravais lattices with different
symmetries is limited to 5 in two dimensions and to 14 in
three dimensions. An example of a two‐dimensional Bravais



lattice is given in Figure 1.1. The lengths of the vectors 
and  are often called the lattice constants.
Having defined the Bravais lattice, we move on to the
definition of the primitive unit cell. By this we denote any
volume of space that, when translated through all the
vectors of the Bravais lattice, will fill space without overlap
and without leaving any voids. The primitive unit cell of a
lattice contains only one lattice point. It is also possible to
define nonprimitive unit cells containing several lattice
points. These fill space without leaving voids when
translated through a subset of the Bravais lattice vectors.
Possible choices of a unit cell for a two‐dimensional
rectangular Bravais lattice are illustrated in Figure 1.2. It
is evident from the figure that a nonprimitive unit cell has
to be translated by a multiple of one (or two) lattice vectors
to fill space without voids and overlap. A special choice of
the primitive unit cell is the Wigner–Seitz cell, which is
also shown in Figure 1.2. It is the region of space that is
closer to one given lattice point than to any other.
The last definition we need in order to describe an actual
crystal is that of a basis. The basis describes the items we
“put” on the lattice points, that is, the building blocks for
the real crystal. The basis can consist of one or several
atoms, or even of complex molecules as in the case of
protein crystals. Different cases are illustrated in
Figure 1.3.



Figure 1.1 A two‐dimensional Bravais lattice.

Figure 1.2 Illustration of (primitive and nonprimitive) unit
cells and of the Wigner–Seitz cell for a rectangular two‐
dimensional lattice.



Figure 1.3 A two‐dimensional Bravais lattice with different
choices for the basis.
Finally, we add a remark about symmetry. So far, we
discussed only translational symmetry. However, a real



crystal may also exhibit point symmetry. Compare the
structures in the middle and the bottom of Figure 1.3. The
former structure possesses a number of symmetry elements
that are missing in the latter – for example, mirror lines, a
rotational axis, and inversion symmetry. The knowledge of
such symmetries can be very useful for the description of
crystal properties.

1.2 Some Important Crystal
Structures
After this rather formal treatment, we look at a number of
common crystal structures for different types of solids,
such as metals, ionic solids, or covalently bonded solids. In
Chapter 2, we will take a closer look at the details of the
bonding in these types of solids.

Figure 1.4 (a)  Simple cubic structure; (b)  body‐centered
cubic structure; and (c) face‐centered cubic structure. Note
that the spheres are depicted much smaller than in the
situation of most dense packing and not all of the spheres
on the faces of the cube are shown in (c).

1.2.1 Cubic Structures


