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Foreword

There are dozens of books about Markov processes, some of them very good, but
none match the depth and broad coverage of Kazuaki Taira’s books. Let me try to
put this into context.

Sometimes a massive study is done and leads to a major volume or volumes that
redefine a field of study. For instance, the three-volume work of Nelson Dunford
and Jack Schwartz did this for abstract mathematical analysis. The famed Charles
Misner, Kip Thorne and John Wheeler book did this for general relativity.

Taira’s work does this for Markov processes from a broad perspective. A simple
view of Markov processes is that they deal with classes of dependent random variables
that have both a nice theory and useful applications. But the general theory of Markov
processes turns out to be extremely complicated. It is essential for applications to
fields including mathematical biology, ecology, diffusion, statistical physics, etc.
The mathematics needed for the hard parts of Markov processes require up-to-date
versions of functional analysis, probability theory, partial and pseudo-differential
equations, differential geometry, Fourier analysis, and more.

Taira’s books bring these topics all together. They are not easy to explain in their
general forms, but Taira does this carefully and quite nicely. These topics are usually
hard to follow, but Taira explains things in a more easily readable way than one
normally expects. The scope of his work is vast; it has been and continues to be a
major influence in stochastic analysis and related fields.

This book is a revised and expanded edition of the previous book [191] published
in 1988. But is a new edition needed? In June 2019, Taira and I were both at a meeting
in Cesena, Italy. His lecture was wonderful; it was on new, deep results. The topics he
covered are among the new results in his new edition. In particular, the new material
on the theory of pseudo-differential operators widens the scope of the book (which
has a huge scope to begin with). This is nicely explained in Chap. 1 (Introduction and
Summary) and Chap. 13 (L? Approach to the Construction of Feller Semigroups) of
this edition.

vii



viii Foreword

This wonderful book will be a major influence in a very broad field of study
for a long time. I thank both Taira and Springer for their great contribution to the
mathematical research community in publishing this book.

November 2021 Jerome Arthur Goldstein
University of Memphis
Memphis, Tennessee, USA



Preface

This book is devoted to the functional analytic approach to the problem of construc-
tion of diffusion processes in probability theory. It is well known that, by virtue
of the Hille—Yosida theory of semigroups, the problem of construction of Markov
processes can be reduced to the study of boundary value problems for degenerate
elliptic integro-differential operators of second order. Several recent developments
in the theory of partial differential equations have made possible further progress in
the study of boundary value problems and hence of the problem of construction of
Markov processes. The presentation of these new results is the main purpose of the
present book. Unlike many other books on Markov processes, this book focuses on the
relationship between Markov processes and elliptic boundary value problems with
emphasis on the study of maximum principles. Our approach here is distinguished
by the extensive use of the theory of partial differential equations.

Our functional analytic approach to diffusion processes is inspired by the
following bird’s-eye view of mathematical studies of Brownian motion (see
Tables 1.1, 1.2 ans Figure 1.1 in Chap. 1):

Markov Processes Brownian Motion Diffusion Equations

(Probability) (Physics) (Partial Differential Equations)

Semigroups

(Functional Analysis)




< Preface

This book grew out of lecture notes for graduate courses given by the author
at Sophia University, Waseda University, Hokkaido University, Tohoku University,
Tokyo Metropolitan University, Tokyo Institute of Technology, Hiroshima University
and University of Tsukuba. It is addressed to advanced undergraduates, graduate
students and mathematicians with interest in probability, functional analysis and
partial differential equations.

This book may be considered as the second edition of the book [191] published
in 1988, which was found useful by a number of people, but it went out of print after
several years. This augmented edition has been revised to streamline some of the
analysis and to give better coverage of important examples and applications. I have
endeavored to present it in such a way as to make it accessible to undergraduates
as well. Moreover, in order to make the book more up-to-date, additional references
have been included in the bibliography. This book is amply illustrated; 14 tables and
141 figures are provided.

The contents of the book are divided into five principal parts.

(1) The first part (Chaps. 2 through 6) provides the elements of the Lebesgue
theory of measure and integration, probability theory, manifold theory, func-
tional analysis and distribution theory which are used throughout the book. The
material in these preparatory chapters is given for completeness, to minimize
the necessity of consulting too many outside references. This makes the book
fairly self-contained.

(2) Inthe second part (Chaps. 7-9), the basic definitions and results about Sobolev
spaces are summarized and the calculus of pseudo-differential operators—a
modern version of classical potentials—is developed. The theory of pseudo-
differential operators forms a most convenient tool in the study of elliptic
boundary value problems in Chap. 11. It should be emphasized that pseudo-
differential operators provide a constructive tool to deal with existence and
smoothness of solutions of partial differential equations. The full power of this
very refined theory is yet to be exploited. Our approach is not far removed from
the classical potential approach.

(3) Our subject proper starts with the third part (Chap. 10), where various
maximum principles for degenerate elliptic differential operators of second
order are studied. In particular, the underlying analytical mechanism of propa-
gation of maxima is revealed here. This plays an important role in the interpre-
tation and study of Markov processes in terms of partial differential equations
in Chap. 12.

(4) The fourth part (Chap. 11) is devoted to general boundary value problems for
second order elliptic differential operators. The basic questions of existence,
uniqueness and regularity of solutions of general boundary value problems
with a spectral parameter are studied in the framework of Sobolev spaces,
using the calculus of pseudo-differential operators. A fundamental existence
and uniqueness theorem is proved here. The importance of such a theorem is
visible in constructing Markov processes in Chaps. 12 and 13.
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(5) The fifth and final part (Chaps. 12 and 13) is devoted to the functional analytic
approach to the problem of construction of Markov processes. This part is the
heart of the subject. General existence theorems for Markov processes in terms
of boundary value problems are proved in Chap. 12, and then the construction
of Markov processes is carried out in Chap. 13, by solving general boundary
value problems with a spectral parameter.

To make the material in Chaps. 10 through 13 accessible to a broad spectrum
of readers, I have added an Introduction and Summary (Chap. 1). In this intro-
ductory chapter, I have included ten elementary (but important) examples of diffu-
sion processes, and further I have attempted to state our problems and results in
such a fashion that a broad spectrum of readers could understand, and also to describe
how these problems can be solved, using the mathematics I present in Chaps. 2
through 9.

In the last Chap. 14, as concluding remarks, we give an overview on genera-
tion theorems for Feller semigroups proved by the author using the L” theory of
pseudo-differential operators and the Calder6n—Zygmund theory of singular integral
operators (Table 14.1).

Bibliographical references are discussed primarily in notes at the end of the
chapters. These notes are intended to supplement the text and place it in better
perspective.

In Appendix A, following Gilbarg—Trudinger [74], we present a brief introduction
to the potential theoretic approach to the Dirichlet problem for Poisson’s equation.
The approach here can be traced back to the pioneering work of Schauder, [158] and
[159], on the Dirichlet problem for second order elliptic differential operators. This
appendix is included for the sake of completeness.

This book may be considered as an elementary introduction to the more advanced
book Boundary Value Problems and Markov Processes (the third edition) which was
published in the Lecture Notes in Mathematics series in 2020. In fact, we confined
ourselves to the case when the differential operator A is elliptic on D. The reason is
that when A is not elliptic on D we do not know whether the operator T (o) = L P (),
which plays a fundamental role in the proof, is a pseudo-differential operator or not.
This book provides a powerful method for the analysis of elliptic boundary value
problems in the framework of L? Sobolev spaces.

For advanced undergraduates working in functional analysis, partial differential
equations and probability, this book may serve as an effective introduction to these
three interrelated fields of analysis. For beginning graduate students about to major
in the subject and mathematicians in the field looking for a coherent overview, I hope
that the readers will find this book a useful entrée to the subject.

The presentation on some results of this book was given in “Mathematisch-
Physikalisches Kolloquium” which was held on November 3rd, 2015 at Leibniz
Universitdt Hannover (Germany) while I was on leave from Waseda University. 1
take this opportunity to express my sincere gratitude to these institutions.

In preparing this book, I am indebted to many friends, colleagues and students. It is
my great pleasure to thank all of them. In particular, I would like to express my hearty
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thanks to Kenji Asada, Sunao Ouchi, Bernard Helffer, J acques Camus, Charles Rock-
land, Junjiro Noguchi, Yuji Kasahara, Masao Tanikawa, Yasushi Ishikawa, Elmar
Schrohe, Seiichiro Wakabayashi, Silvia Romanelli and Angelo Favini. Kasahara,
Tanikawa and Wakabayashi helped me to learn the material that was presented
in the previous book [191]. Schrohe and Ishikawa have read and commented on
portions of various preliminary drafts. I am deeply indebted to Professors Kdichi
Uchiyama, Jean-Michel Bony, Minoru Motoo, Tadashi Ueno, Shinzo Watanabe,
Francesco Altomare and Jerome Arthur Goldstein for their constant interest in my
work. I am grateful to my students—especially Hideo Deguchi, Nobuyuki Sugino,
Takayasu Ito and Yusuke Yoshida—for many comments and corrigenda concerning
my original lecture notes.

Furthermore, I am very happy to acknowledge the influence of two of my teachers:
Prof. Daisuke Fujiwara, from whose lectures I first learned this subject, and Prof.
Hikosaburo Komatsu, who has done much to shape my viewpoint of analysis.

I would like to extend my warmest thanks to the late Prof. Richard Ernest Bellman
(1920-1984) who originally suggested that my work be published in book form.

I am sincerely grateful to the four anonymous referees and a copyeditor for their
many valuable suggestions and comments, which have substantially improved the
presentation of this book. I would like to extend my hearty thanks to the staff of
Springer-Verlag (Tokyo), who have generously complied with all my wishes.

Last but not least, I owe a great debt of gratitude to my family, who gave me moral
support during the preparation of this book.

Tsuchiura, Ibaraki, Japan Kazuaki Taira
November 2021
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Notation and Conventions

The notation for set-theoretic concepts is standard. For example, the following
notation is used for sets of numbers:

(1)  N: positive integers.

(2) Z: integers.

(3) Zy: non-negative integers.

(4) R:real numbers.

(5) C: complex numbers.

(6) [a, b]: the closed interval {x € R:a < x < b}.

(7) [a, b): the semiclosed interval {x € R:a < x < b}.
(8) (a, b): the open interval {x € R:a < x < b}.

The following notation and conventions are used for differentiation:

M a=(ay,...,a,) € Zy.
2 lo=a1+ - +a,fora=(a,...,q,) € Zj.
Q) al=o!. ..ol fora=(ai,...,a,) € Z.

4) a«a=>gifandonlyifo; > g; foralll <i <n.
« al
) (ﬂ) = Bla—p)"

6) x“= xf” cooxpnforx = (x1, ..., x,) €ER"and a = (o, ..., a,) € Zy,.
7 =080 80 for B=(Br.....0) € ZL

®) D :—i% forlgjfn,wherei:«/—_l.

©) DY=DJ).. . D)forB=B.....0)cZ.

(10)  (y) =1+ |yPFfory=(y,...,y) € R"

(11)  (D¢)* = (1 + Z’;ZID;) = 1 — A¢ (minus the usual Laplacian).

XXi
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These conventions greatly simplify many expressions. For example, the Taylor
series for a function f(x) takes the form

1
fa) =3 —0" fOx".

a>0



Chapter 1 ®)
Introduction and Summary s

In this introductory chapter, ten elementary (but important) examples of diffusion
processes are included. Furthermore, our problems and results are stated in such a
fashion that a broad spectrum of readers could understand, and it is also described
how these problems can be solved, using the mathematics presented in Chaps. 2-9.

(D First, Table 1.1 below gives a bird’s-eye view of strong Markov processes, Feller
semigroups and degenerate elliptic Ventcel’ (Wentzell) boundary value problems,
and how these relate to each other.

(II) Secondly, our functional analytic approach to strong Markov processes
through Feller semigroups may be visualized as in Fig. 1.1 below.

(IIT) Thirdly, Table 1.2 below gives a bird’s-eye view of Markov transition func-
tions, Feller semigroups and Green operators (resolvents), and how these relate to
each other.

1.1 Markov Processes and Semigroups

This section is devoted to the functional analytic approach to the problem of con-
struction of Markov processes in probability theory. General existence theorems for
Markov processes are formulated in terms of elliptic boundary value problems with
a spectral parameter.

1.1.1 Brownian Motion

In 1828, the English botanist Robert Brown observed that pollen grains suspended in
water move chaotically, incessantly changing their direction of motion. The physical

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 1
K. Taira, Functional Analytic Techniques for Diffusion Processes, Springer Monographs
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|

|

|right—continuous Markov processl — | X : strong Markov process

Fig. 1.1 A functional analytic approach to strong Markov processes

Table 1.1 A bird’s-eye view of strong Markov processes, Feller semigroups and degenerate elliptic

boundary value problems

Probability (Microscopic
approach)

Functional analysis
(Macroscopic approach)

Elliptic boundary value
problems (Mesoscopic
approach)

Strong Markov process
X = (x;, F, Ft, Py)

Feller semigroup {7;}t > 0

Infinitesimal generator A

Markov transition function
pi(x,dy) = Px{x; € dy}

T f(x) = [ pt(x,dy) f(y)

T, =e'A

Chapman—Kolmogorov
equation pt + s(x,dz) =
Jp pi(x,dy) ps(y, dz)

Semigroup property
T +s=Tt T

Degenerate diffusion operator
A

Absorption, reflection,
viscosity phenomena, drift and
diffusion along the boundary

Function space C (D)

Ventcel’” (Wentzell) boundary
condition L

Table 1.2 A bird’s-eye view of Markov transition functions, Feller semigroups and Green

operators
.. . Dynkin .
Markov transition function Feller semigroup T; = '
pi(x. dy) =
Laplace transform H T, f(x) = f 5 Pt(x,dy) f(y) H Hille— Yosida
—

Green kernel G, (x, y)

Riesz—Markov

Green operator (o — A)~!

explanation of this phenomenon is that a single grain suffers innumerable collisions
with the randomly moving molecules of the surrounding water [27].

A mathematical theory for Brownian motion was put forward by Albert Einstein
in 1905 [50]. Let p(¢, x, y) be the probability density function that a one-dimensional
Brownian particle starting at position x will be found at position y at time ¢. Einstein
derived the following formula from statistical mechanical considerations:
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_ o-—0?
exp 2Dt

1
t,x,y)=
P Y W 2m Dt

Here D is a positive constant determined by the radius of the particle, the interaction
of the particle with surrounding molecules, temperature and the Boltzmann constant.
This gives an accurate method of measuring Avogadro number by observing particles
undergoing Brownian motion. Einstein’s theory was experimentally tested by Jean
Baptiste Perrin between 1906 and 1909 [145].

Brownian motion was put on a firm mathematical foundation for the first time
by Norbert Wiener in 1923 [237]. Let £2 be the space of continuous functions
w: [0, 00) — R with coordinates x,(w) = w(¢) and let F be the smallest o-algebra
in £2 which contains all sets of the form {w € 2 :a < x;(w) < b}, t >0,a < b.
Wiener constructed probability measures P,, x € R, on F for which the following
formula holds true:

we.Q ay < x, (W) <bi,ay <x,(W) < by, ...,a, <x,(w) <b, }

b1 by
/ / / p(ty, x, yD)p(ta — t1, y1, y2) - -

p(tn - tn—lv Yn—1, yn)dyl d)’2 .. d,))na
O<ti<h<...<t, <. (1.1)

This formula expresses the “starting afresh” property of Brownian motion that if a
Brownian particle reaches a position, then it behaves subsequently as though that
position had been its initial position. The measure P, is called the Wiener measure
starting at x.

Paul Lévy found another construction of Brownian motion in stochastic analysis,
and gave a profound description of qualitative properties of the individual Brownian
path in his book [114]: Processus stochastiques et mouvement brownien.

1.1.2 Markov Processes

Markov processes are an abstraction of the idea of Brownian motion. Let K be a
locally compact, separable metric space and B the o-algebra of all Borel sets in K,
that is, the smallest o-algebra containing all open sets in K. (The reader may content
himself with thinking of R while reading about K.) Let (£2, F, P) be a probability
space. A function X defined on 2 taking values in K is called a random variable if
it satisfies the condition

(XeE}=XYE)eF forall E € B.

We express this by saying that X is F/B-measurable. A family {x,};>¢ of random
variables is called a stochastic process, and may be thought of as the motion in time
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of a physical particle. The space K is called the state space and 2 the sample space.
For a fixed w € £2, the function x;(w), t > 0, defines in the state space K a trajectory
or path of the process corresponding to the sample point w.

In this generality the notion of a stochastic process is of course not so interesting.
The most important class of stochastic processes is the class of Markov processes
which is characterized by the Markov property. Intuitively, the (temporally homo-
geneous) Markov property is that the prediction of subsequent motion of a particle,
knowing its position at time ¢, depends neither on the value of # nor on what has been
observed during the time interval [0, 7]; that is, a particle starts afresh.

Now we introduce a class of Markov processes which we will deal with in this
book (Definition 12.3).

Assume that we are given the following:

(1) A locally compact, separable metric space K and the o-algebra B of all Borel
sets in K. A point 0 is adjoined to K as the point at infinity if K is not compact,
and as an isolated point if K is compact. We let

Ky =K U {0},
By = the o-algebra in Ky generated by 5.

(2) The space £2 of all mappings w: [0, co] — Ky such that w(co) = 0 and that if
w(t) = 0 then w(s) = O for all s > t. We let wy be the constant map wy(t) = 0
for all ¢ € [0, o0].

(3) For each t € [0, oo], the coordinate map x, defined by x,(w) = w(t) for every
w e 2.

(4) For each ¢t € [0, oo], a mapping ¢;: §2 — £2 defined by p,w(s) = w(t + ),
w € £2. Note that p,w = wy and x; o p; = x4, forall ¢, s € [0, co].

(5) A o-algebra F in £2 and an increasing family {F;}o</<c Of sub-o-algebras of
F.

(6) For each x € Ky, a probability measure P, on (£2, F).

We say that these elements define a (temporally homogeneous) Markov process
X = (x,, F, F;, P,) if the following conditions are satisfied:

(i) Foreach 0 <t < oo, the function x; is F, /By-measurable, that is,
{x; e E}Ye F, forall E € Bjy.
(i) Foreach0 <t < oo and E € B, the function
pi(x, E) = P, {x, € E} (1.2)
is a Borel measurable function of x € K.

(iii)) P {w € 2 : xo(w) = x} = 1 foreach x € Kjy.
(iv) Forall ¢, h € [0, o¢0], x € Ky and E € By, we have the formula
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Py {xi4n € EIF} = pn (x1, E) (1.3)

or equivalently

P, (AN{x;4y € E}) = / pr(x:(w), E)dP,(w) forevery A € F;.
A
(1.3)

Here is an intuitive way of thinking about the above definition of a Markov pro-
cess. The sub-o-algebra F; may be interpreted as the collection of events which are
observed during the time interval [0, 7]. The value P, (A), A € F, may be interpreted
as the probability of the event A under the condition that a particle starts at position x;
hence the value p,(x, E) expresses the transition probability that a particle starting
at position x will be found in the set E at time ¢. The function p; is called the tran-
sition function of the process X. The transition function p, specifies the probability
structure of the process. The intuitive meaning of the crucial condition (iv) is that
the future behavior of a particle, knowing its history up to time ¢, is the same as
the behavior of a particle starting at x;(w), that is, a particle starts afresh. A particle
moves in the space K until it “dies” at which time it reaches the point J; hence the
point 0 is called the terminal point.

With this interpretation in mind, we let

((w) =inf{r € [0, 00] : x;(w) = 0} .

The random variable ( is called the lifetime of the process X
Using the Markov property (1.3") repeatedly, we easily obtain the following for-
mula, analogous to formula (1.1):

P, {w €82 :x,(w) €A xp(w) €Ay, ..., x (W) € An}

=/ / / P (x, dy) pry—t, (Y1, dy2) - -+ Pry—t,_, Yn=1, dYn),
A JA, A

O<ti<h<...<tb<o00, A, Ay...,A, €B.

1.1.3 Transition Functions

From the viewpoint of analysis, the transition function is something more conve-
nient than the Markov process itself. In fact, it can be shown that the transition
functions of Markov processes generate solutions of certain parabolic partial dif-
ferential equations such as the classical diffusion equation; and, conversely, these
differential equations can be used to construct and study the transition functions and
the Markov processes themselves.

First, we give the precise definition of a transition function which is adapted to
analysis (Definition 12.4):
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Let K be a locally compact, separable metric space and B the o-algebra of all
Borel sets in K. A function p,(x, E), defined for all t > 0, x € K and E € B, is
called a (temporally homogeneous) Markov transition function on K if it satisfies
the following four conditions:

(a) p:(x,-)isameasure on Band p,(x, K) < 1foreacht >0andx € K.
(b) p;(-, E) is a Borel measurable function for eacht > O and E € B.

(©) po(x,{x}) =1foreachx € K.

(d) Foranyt,s > 0and E € 3, we have the formula

Prys(x, E) =/ pi(x.dy) ps(y. E). (1.4)
K

Equation (1.4), called the Chapman—Kolmogorov equation [34, 103], expresses
the idea that a transition from the position x to the set E in time ¢ + s is composed
of a transition from x to some position y in time 7, followed by a transition from y to
the set E in the remaining time s; the latter transition has probability p,(y, E) which
depends only on y. Thus it is just condition (d) which reflects the Markov property
that a particle starts afresh.

The Chapman—Kolmogorov equation (1.4) asserts that the transition function
p:(x, K) is monotonically increasing as ¢ |, 0, so that the limit

p+o(x, K) = lim p,(x, K)
140

exists.
A transition function p; is said to be normal if it satisfies the condition

p+o(x, K) =1 forall x € K.

The next theorem justifies our definition of a transition function, and hence it will be
fundamental for our further study of Markov processes:

Theorem 1.1 (Dynkin) For every Markov process, the function p,, defined by (1.2),
is a transition function. Conversely, every normal transition function corresponds to
some Markov process.

Here are some important examples of normal transition functions on R.

Example 1.2 (uniform motion) Ift > 0, x € Rand E € B, we let

pl(va)ZXE(-x+vt)5 (15)

where v is a constant, and

1 ify e E,

XED) =00 ) 4 E.
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This process, starting at x, moves deterministically with constant velocity v.

Example 1.3 (Poisson process) Ift > 0, x € Rand E € B, we let

(o] A n
pt(-va)Ze_M Z(nt') XE(x+n)v (16)

n=0

where ) is a positive constant.

This process, starting at x, advances one unit by jumps, and the probability of n
jumps in time ¢ is equal to e~ (\t)"/n!.

Example 1.4 (Brownian motion) If t > 0, x € Rand E € B, we let

e o —x?

and
po(x, E) = xg(x).

This is a mathematical model of one-dimensional Brownian motion.

Example 1.5 (Brownian motion with constant drift) If t > 0, x € R and E € B,
we let

By = — [ ex [ (y_mt_x)z]d (1.8)
f.x, = -_— ) .
P V2rt JE P 2t Y

and
po(x, E) = xg(x),

where m is a constant.

This represents Brownian motion with constant drift m: the process can be repre-
sented as {x; + mt}, where {x,} is Brownian motion.

Example 1.6 (Cauchy process) If t > 0,x € Rand E € B, we let

1 t
pi(x, E) = ;/Etz—i-(y——x)zdy’ (1.9)

and
po(x, E) = xg(x).

This process can be thought of as the “trace” on the real line of trajectories of
two-dimensional Brownian motion, and it moves by jumps.
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1.1.4 Kolmogorov’s Equations

Among the first works devoted to Markov processes, the most fundamental was
A. N. Kolmogorov’s work (1931) where the general concept of a Markov transition
function was introduced for the first time and an analytic method of describing
Markov transition functions was proposed [103].

We now take a close look at Kolmogorov’s work. Let p, be a transition function
on R, and assume that the following two conditions are satisfied:

(i) For each € > 0, we have the assertion
o1
lim —sup p;(x, R\ (x —¢,x +¢)) =0.
10 I xer

(i1) The three limits

) 1 x+e
lim — f pi(x, dy)(y —x)* == a(x),

t}0 t
xX+e
1,%1 ) pi(x, dy)(y — x) == b(x),

lim }(mx, R) — 1) = c(r)

exist for each x € R.

Physically, the limit a(x) may be thought of as variance (over w € £2) instanta-
neous (with respect to ¢) velocity when the process is at position x (see Sect. 1.1.2),
and the limit b(x) has a similar interpretation as a mean. The transition functions
(1.5), (1.7) and (1.8) satisfy conditions (i) and (ii) witha(x) = 0,b(x) = v, c(x) = 0;
a(x)=1,b(x)=c(x) =0; a(x) =1, b(x) =m, c(x) = 0, respectively, whereas
the transition functions (1.6) and (1.9) do not satisfy condition (i).

Furthermore, we assume that the transition function p, has a density p(¢, x, y)
with respect to the Lebesgue measure dy. Intuitively, the density p(¢, x, y) represents
the state of the process at position y at time 7, starting from the initial state that a
unit mass is at position x. Under certain regularity conditions, Kolmogorov showed
that the density p(¢, x, y) is, for fixed y, the fundamental solution of the Cauchy
problem: "

dp ax)0°p
5_78—4‘ b(x )—+c(x)p, t>0. (1.10)
lim, o p(¢, x,y) = 0(x — )’),

and is, for fixed x, the fundamental solution of the Cauchy problem:



