

MEDICAL IMAGING AND HEALTH INFORMATICS

Edited By

Tushar H. Jaware
K. Sarat Kumar
Ravindra D. Badgujar
Svetlin Antonov

Table of Contents

[Cover](#)

[Title Page](#)

[Copyright](#)

[Preface](#)

[1 Machine Learning Approach for Medical Diagnosis Based on Prediction Model](#)

[1.1 Introduction](#)

[1.2 Machine Learning Approach and Prediction](#)

[1.3 Material and Experimentation](#)

[1.4 Performance Metrics and Evaluation of Classifiers](#)

[1.5 Discussion and Conclusion](#)

[References](#)

[2 Applications of Machine Learning Techniques in Disease Detection](#)

[2.1 Introduction](#)

[2.2 Types of Machine Learning Techniques](#)

[2.3 Future Research Directions](#)

[References](#)

[3 Dengue Incidence Rate Prediction Using Nonlinear Autoregressive Neural Network Time Series Model](#)

[3.1 Introduction](#)

[3.2 Related Literature Study](#)

[3.3 Methods and Materials](#)

[3.4 Result Discussions](#)

[3.5 Conclusion and Future Work](#)

Acknowledgment

References

4 Early Detection of Breast Cancer Using Machine Learning

4.1 Introduction

4.2 Methodology

4.3 Segmentation

4.4 Feature Extraction

4.5 Classification

4.6 Performance Evaluation Methods

4.7 Output

4.8 Results and Discussion

4.9 Conclusion and Future Scope

References

5 Machine Learning Approach for Prediction of Lung Cancer

5.1 Introduction

5.2 Feature Extraction and Lung Cancer Analysis

5.3 Methodology

5.4 Proposed System and Implementation

5.5 Conclusion

References

6 Segmentation of Liver Tumor Using ANN

6.1 Introduction

6.2 Liver Tumor

6.3 Benefits of CT to Diagnose Liver Cancer

6.4 Literature Review

6.5 Interactive Liver Tumor Segmentation by Deep Learning

6.6 Existing System

6.7 Proposed System

6.8 Result and Discussion

6.9 Future Enhancements

6.10 Conclusion

References

7 DMSAN: Deep Multi-Scale Attention Network for Automatic Liver Segmentation From Abdomen CT Images

7.1 Introduction

7.2 Related Work

7.3 Methodology

7.4 Experimental Analysis

7.5 Results

7.6 Result Comparison With Other Methods

7.7 Discussion

7.8 Conclusion

Acknowledgement

References

8 AI-Based Identification and Prediction of Cardiac Disorders

8.1 Introduction

8.2 Related Work

8.3 Classifiers and Methodology

8.4 Result Analysis

8.5 Conclusions and Future Scope

References

9 An Implementation of Image Processing Technique for Bone Fracture Detection Including Classification

9.1 Introduction
9.2 Existing Technology
9.3 Image Processing
9.4 Overview of System and Steps
9.5 Results
9.6 Conclusion
References

10 Improved Otsu Algorithm for Segmentation of Malaria Parasite Images

10.1 Introduction
10.2 Literature Review
10.3 Related Works
10.4 Proposed Algorithm
10.5 Experimental Results
10.6 Conclusion
References

11 A Reliable and Fully Automated Diagnosis of COVID-19 Based on Computed Tomography

11.1 Introduction
11.2 Background
11.3 Methodology
11.4 Results
11.5 Conclusion
References

12 Multimodality Medical Images for Healthcare Disease Analysis

12.1 Introduction
12.2 Brief Survey of Earlier Works
12.3 Medical Imaging Modalities

12.4 Image Fusion

12.5 Clinical Relevance for Medical Image Fusion

12.6 Data Sets and Softwares Used

12.7 Generalized Image Fusion Scheme

12.8 Medical Image Fusion Methods

12.9 Conclusions

References

13 Health Detection System for COVID-19 Patients Using IoT

13.1 Introduction

13.2 Related Works

13.3 System Design

13.4 Proposed System for Detection of Corona Patients

13.5 Results and Performance Analysis

13.6 Conclusion

References

14 Intelligent Systems in Healthcare

14.1 Introduction

14.2 Brain Computer Interface

14.3 Robotic Systems

14.4 Voice Recognition Systems

14.5 Remote Health Monitoring Systems

14.6 Internet of Things-Based Intelligent Systems

14.7 Intelligent Electronic Healthcare Systems

14.8 Conclusion

References

15 Design of Antennas for Microwave Imaging Techniques

15.1 Introduction

15.2 Literature

15.3 Design and Development of Wideband Antenna

15.4 Results and Inferences

15.5 Conclusion

References

16 COVID-19: A Global Crisis

16.1 Introduction

16.2 Clinical Manifestation and Pathogenesis

16.3 Diagnosis and Control

16.4 Control Measures

16.5 Immunization

16.6 Conclusion

References

17 Smart Healthcare for Pregnant Women in Rural Areas

17.1 Introduction

17.2 National/International Surveys Reviews

17.3 Architecture

17.4 Anganwadi's Collaborative Work

17.5 Schemes Offered by Central/State Governments

17.6 Smart Healthcare System

17.7 Data Collection

17.8 Hardware and Software Features of HCS

17.9 Implementation

17.10 Results and Analysis

17.11 Conclusion

References

18 Computer-Aided Interpretation of ECG Signal—A Challenge

18.1 Introduction

18.2 The Cardiovascular System

18.3 Electrocardiogram Leads

18.4 Artifacts/Noises Affecting the ECG

18.5 The ECG Waveform

18.6 Cardiac Arrhythmias

18.7 Electrocardiogram Databases

18.8 Computer-Aided Interpretation (CAD)

18.9 Computational Techniques

18.10 Conclusion

References

Index

Also of Interest

End User License Agreement

List of Tables

Chapter 1

Table 1.1 Confusion matrix.

Table 1.2 (A) New proposed HRV indices with groups.

Table 1.2 (B) New proposed HRV indices with groups.

Table 1.3 Performance measurement on a standard dataset.

Table 1.4 HRV model and classifier performance.

Table 1.5 Accuracy comparison with fixed set feature model.

Table 1.6 Comparison of proposed methods with traditional methods with RF.

Table 1.7 Training and testing set combinations vs. evaluation parameters.

Chapter 3

Table 3.1 NAR-NNTS model.

Table 3.2 Parameters setup for NAR model structure.

Table 3.3 NAR-NNTS model configuration parameters for the multiple runs.

Table 3.4 Sample dataset.

Table 3.5 Configuration parameter for different training algorithms.

Table 3.6 Performance of Levenberg-Marquardt (LM) training algorithm.

Table 3.7 Performance of Bayesian regularization (BR) training algorithm.

Table 3.8 Performance of scaled conjugate gradient (SCG) training algorithm.

Table 3.9 NAR-NNTS model performance error for training algorithms (H = 10, IW = ...)

Table 3.10 NAR-NNTS model performance error for training algorithms (H = 15, IW ...)

Table 3.11 NAR-NNTS model performance error for training algorithms (H = 20, IW ...)

Table 3.12 Validation of the NAR-NNTS model's performance using three training a...

[Table 3.13 Validation of the NAR-NNTS model's performance using three training a...](#)

[Table 3.14 Validation of the NAR-NNTS model's performance using three Training A...](#)

[Table 3.15 Dengue actual cases vs. predicted cases.](#)

[Table 3.16 Performance of different DIR decision threshold.](#)

Chapter 4

[Table 4.1 Comparison table for Naive bayes and RBFN classifiers.](#)

Chapter 6

[Table 6.1 Different modalities of diagnosing liver cancer.](#)

[Table 6.2 Comparison about the parameter for different segmentations.](#)

[Table 6.3 System parameters.](#)

Chapter 7

[Table 7.1 LiTS, 3DIRCADb, and CHAOS dataset statistics.](#)

[Table 7.2 Performance metrics for liver segmentation quality evaluation.](#)

[Table 7.3 Model performance on 3DIRCADb dataset for the different scaling factor...](#)

[Table 7.4 Performance on CHAOS testing dataset.](#)

[Table 7.5 Liver segmentation quantitative scores on 3DIRCADb dataset.](#)

[Table 7.6 Liver segmentation quantitative scores on CHAOS test set.](#)

Chapter 8

[Table 8.1 Normal ECG values for healthy person.](#)

[Table 8.2 Description of AAMI standard beats as per MIT-BIH heartbeats.](#)

[Table 8.3 Distribution of records of MIT-BIH NSR and arrhythmia database.](#)

[Table 8.4 Performance of neural network for various numbers of hidden neurons.](#)

[Table 8.5 Execution time in seconds for arrhythmia detection.](#)

[Table 8.6 Average accuracy and average execution time for arrhythmia detection.](#)

[Table 8.7 Performances of feedforward neural network for different training func...](#)

[Table 8.8 Performance of feedforward neural network for different error function...](#)

Chapter 9

[Table 9.1 Numeric data of possible outcomes.](#)

[Table 9.2 Matrix for possible outcomes.](#)

Chapter 10

[Table 10.1 Comparison of accuracy of different Otsu methods with the proposed al...](#)

[Table 10.2 Comparison of sensitivity of different Otsu methods with the proposed...](#)

[Table 10.3 Comparison of MCC of different Otsu methods with the proposed algorit...](#)

[Table 10.4 Comparison of Dice of different Otsu methods with the proposed algori...](#)

[Table 10.5 Comparison of Jaccard of different Otsu methods with the proposed alg...](#)

[Table 10.6 Comparison of SSIM of different Otsu methods with the proposed algori...](#)

Chapter 11

[Table 11.1 Performance of different models.](#)

[Table 11.2 Different networks and their performance in classification of images.](#)

Chapter 12

[Table 12.1 Performance metrics comparative analysis for different fusion methods...](#)

[Table 12.2 Performance metrics comparative analysis for different fusion methods...](#)

[Table 12.3 Performance metrics comparative analysis for different fusion methods...](#)

Chapter 14

[Table 14.1 Types of biomedical signals in health monitoring system.](#)

[Table 14.2 Pervasive health systems applicable wireless technologies \[40\].](#)

List of Illustrations

Chapter 1

[Figure 1.1 Acquisition system and sources \[source: 14\].](#)

[Figure 1.2 ECG acquisition system with connection \(low cost\).](#)

[Figure 1.3 Cardiac diseases identification model for cardiac diseases \[source: 2...\]](#)

[Figure 1.4 Robust model layers.](#)

[Figure 1.5 HRV model for cardiac prediction.](#)

[Figure 1.6 Performance evaluation of model on standard database.](#)

[Figure 1.7 ISM HRV model.](#)

[Figure 1.8 Classifier performances on flexi set features \(ISM-18\).](#)

Chapter 2

[Figure 2.1 Supervised learning.](#)

[Figure 2.2 Supervised learning model.](#)

[Figure 2.3 Process flow.](#)

[Figure 2.4 Random forest model.](#)

[Figure 2.5 Diagram for support vector machine.](#)

[Figure 2.6 Machine learning architecture.](#)

[Figure 2.7 Deep learning vs. artificial intelligence vs. machine learning.](#)

Chapter 3

[Figure 3.1 Architecture of NAR neural network.](#)

[Figure 3.2 Flow chart for DIR prediction system.](#)

[Figure 3.3 Algorithm for NAR-NTTS using DIR prediction.](#)

[Figure 3.4 Architecture of open and closed loop of NAR network.](#)

[Figure 3.5 An example of IQR calculation.](#)

[Figure 3.6 Historical time series pattern of dengue dataset.](#)

[Figure 3.7 Best validation performance of BR \(H = 20, IW = 4\).](#)

[Figure 3.8 Regression plot.](#)

[Figure 3.9 Time series plot for output and target, and error values.](#)

[Figure 3.10 Autocorrelation of error 1.](#)

[Figure 3.11 Correlation between input 1 and error 1 = target 1 – output 1.](#)

[Figure 3.12 Error histogram with 20 bins.](#)

Chapter 4

[Figure 4.1 Anatomy of breast.](#)

[Figure 4.2 Proposed methodology.](#)

[Figure 4.3 Radial basis function neural network.](#)

[Figure 4.4 Performance evaluation methods.](#)

[Figure 4.5 Database.](#)

[Figure 4.5.1 Region of interest.](#)

[Figure 4.5.2 Luminance.](#)

[Figure 4.5.3 Histogram.](#)

[Figure 4.5.4 Contrast Enhancement.](#)

[Figure 4.5.5 Segmented boundary ROI.](#)

[Figure 4.5.6 Segmentation result.](#)

[Figure 4.6 Database.](#)

[Figure 4.6.1 Database \(benign condition\).](#)

[Figure 4.6.2 Malignant condition.](#)

[Figure 4.6.3 Normal breast.](#)

Chapter 5

[Figure 5.1 Pointcare plot for the image of the lung for feature extraction.](#)

[Figure 5.2 Proposed system block diagram.](#)

[Figure 5.3 Algorithm for LESH feature extraction.](#)

[Figure 5.4 Machine learning phases.](#)

[Figure 5.5 Filter image of lung segments.](#)

[Figure 5.6 House field unit using DICOM metadata.](#)

[Figure 5.7 Tumor classified.](#)

[Figure 5.8 Specificity comparison for AdaBoost and SVM.](#)

[Figure 5.9 Accuracy comparison for AdaBoost and SVM.](#)

[Figure 5.10 Sensitivity comparison for AdaBoost and SVM.](#)

[Figure 5.11 Plot for target class with output class with confusion plot for AdaB...](#)

[Figure 5.12 Plot for confusion plot for SVM plus HTF.](#)

[Figure 5.13 Confusion plot for SVM plus LESH.](#)

[Figure 5.14 Confusion plot for AdaBoost plus LESH.](#)

[Figure 5.15 ROC plot for SVM plus HTF.](#)

[Figure 5.16 ROC plot for SVM plus LESH.](#)

[Figure 5.17 ROC plot for AdaBoost plus LESH.](#)

Chapter 6

Figure 6.1 Structure of liver tumor.
Figure 6.2 Overview of liver cancer cases.
Figure 6.3 Block diagram of the proposed system.
Figure 6.4 Input image.
Figure 6.5 Grayscale image and filter image.
Figure 6.6 Enhancement image.
Figure 6.7 Active contoured segmented image.
Figure 6.8 Structure of ANN.
Figure 6.9 Processed images.
Figure 6.10 Result.
Figure 6.11 Segmented images.
Figure 6.12 Plots showing the gradient values, performance, error histogram, reg...

Chapter 7

Figure 7.1 The proposed DMSAN architecture.
Figure 7.2 Illustration of training and testing pipeline of the DMSAN.
Figure 7.3 Res2Net (R2N) module.
Figure 7.4 Preprocessing steps.
Figure 7.5 Preprocessing effect on input images (Rows 1 and 2, CHAOS dataset; Ro...
Figure 7.6 Results on the 3DIRCADb dataset for different statistical measures.
Figure 7.7 Results on the CHAOS test CT dataset.
Figure 7.8 Segmented results on the 3Dircadb dataset. Column 1, input CT images;...

[Figure 7.9 Segmented results on the CHAOS validation dataset. Column 1, input CT...](#)

Chapter 8

[Figure 8.1 Generation of normal ECG signal.](#)

[Figure 8.2 Types of cardiac arrhythmias.](#)

[Figure 8.3 Block diagram of the arrhythmia detection and classification system.](#)

[Figure 8.4 Steps of detection of arrhythmia.](#)

[Figure 8.5 Heart rate variability.](#)

[Figure 8.6 GUI designed for detection of arrhythmia using ECG.](#)

[Figure 8.7 QRST wave detection.](#)

[Figure 8.8 Accuracy of different neural network architectures for arrhythmia det...](#)

[Figure 8.9 Execution time for arrhythmia detection.](#)

Chapter 9

[Figure 9.1 Bone fracture types \[1\].](#)

[Figure 9.2 \(a\) Normal image. \(b\) Without sobel operator. \(c\) Using sobel operato...](#)

[Figure 9.3 \(a\) Original image. \(b\) Noised image.](#)

[Figure 9.4 \(a\) Original image. \(b\) Noised image.](#)

[Figure 9.5 Sobel operators in “Gx” and Gy.](#)

[Figure 9.6 Workflow of main system.](#)

[Figure 9.7 Various objects.](#)

[Figure 9.8 Hyperplane in SVM.](#)

[Figure 9.9 \(a\) Objects separation. \(b\) Selected best hyperplane.](#)

[Figure 9.10 Final results. \(a\) Raw picture is loaded.](#)
[\(b\) Image conversation. \(c...](#)

Chapter 10

[Figure 10.1 Best threshold value in histogram of all gray levels in an image \[1\]...](#)

[Figure 10.2 \(a\) Original images. Segmentation of Plasmodium images using: \(b\) or...](#)

[Figure 10.3 Comparison of accuracy of different Otsu methods with the proposed a...](#)

[Figure 10.4 Comparison of sensitivity of different Otsu methods with the propose...](#)

[Figure 10.5 Comparison of MCC of different Otsu methods with the proposed algori...](#)

[Figure 10.6 Comparison of Dice of different Otsu methods with the proposed algor...](#)

[Figure 10.7 Comparison of Jaccard of different Otsu methods with the proposed al...](#)

[Figure 10.8 Comparison of SSIM of different Otsu methods with the proposed algor...](#)

Chapter 11

[Figure 11.1 LeNet architecture.](#)

[Figure 11.2 VGG16 architecture.](#)

[Figure 11.3 VGG19 architecture.](#)

[Figure 11.4 CT scan loss graph.](#)

[Figure 11.5 CT scan accuracy graph.](#)

[Figure 11.6 X-ray classification loss graph.](#)

[Figure 11.7 X-ray classification accuracy graph.](#)

[Figure 11.8 Ultrasound classification loss graph.](#)

[Figure 11.9 Ultrasound classification accuracy graph.](#)

Chapter 12

[Figure 12.1 Stages of the medical image fusion.](#)

[Figure 12.2 Multimodal medical image fusion.](#)

[Figure 12.3 \(a\) CT scan machine. \(b\)](#)

[Neurocysticercosis disease-affected CT imag...](#)

[Figure 12.4 \(a\) MRI scan machine. \(b\) Metastatic bronchogenic carcinoma-affected...](#)

[Figure 12.5 \(a\) PET scan machine. \(b\) Astrocytoma disease-affected PET image.](#)

[Figure 12.6 \(a\) SPECT scan machine. \(b\)](#)

[Alzheimer's disease-affected SPECT image...](#)

[Figure 12.7 Different image fusion levels and methods.](#)

[Figure 12.8 Neurocysticercosis disease-affected medical images. \(a\) CT. \(b\) MRI.](#)

[Figure 12.9 Astrocytoma disease-affected medical images. \(a\) MRI T2. \(b\) SPECT T...](#)

[Figure 12.10 Anaplastic astrocytoma disease-affected medical images. \(a\) MRI T2....](#)

[Figure 12.11 Metastatic bronchogenic carcinoma disease-affected medical images.](#)

[Figure 12.12 Alzheimer's disease-affected medical images. \(a\) MRI T2. \(b\) SPECT ...](#)

[Figure 12.13 Mild Alzheimer's disease-affected medical images. \(a\) MRI T2. \(b\) P...](#)

[Figure 12.14 Categories of multimodality medical images. \(a\) CT. \(b\) MRI. \(c\) SP...](#)

[Figure 12.15 General block diagram of medical image fusion system.](#)

[Figure 12.16 Traditional image fusion techniques.](#)

[Figure 12.17 Three level decomposition of DWT.](#)

[Figure 12.18 PCNN applications.](#)

[Figure 12.19 Hybrid image fusion techniques.](#)

[Figure 12.20 Sample screenshot for fuse the neurocysticercosis affected image us...](#)

[Figure 12.21 Sample screenshot for fuse the metastatic bronchogenic carcinoma-aff...](#)

[Figure 12.22 Sample screenshot for fuse the astrocytoma affected image using NSS...](#)

Chapter 13

[Figure 13.1 Region-wise COVID-19 data.](#)

[Figure 13.2 Block diagram of proposed system.](#)

[Figure 13.3 NodeMCU \[8\].](#)

[Figure 13.4 DHT sensor \[8\].](#)

[Figure 13.5 MAX 30100 oxygen sensor \[14\].](#)

[Figure 13.6 ThingSpeak server webpage \[8\].](#)

[Figure 13.7 Channel creation on ThingSpeak server \[8\].](#)

[Figure 13.8 API Key of channel on ThingSpeak \[8\].](#)

[Figure 13.9 Channel settings on ThingSpeak.](#)

[Figure 13.10 Arduino IDE \[8\].](#)

[Figure 13.11 Block diagram of proposed system of “Corona Patient Detection and M...](#)

[Figure 13.12 Graphical representation of temperature.](#)

[Figure 13.13 Interfacing of DHT sensor with NodeMCU \[8, 11\].](#)

[Figure 13.14 Interfacing of Arduino with temperature.](#)

[Figure 13.15 Result of temperature on virtual terminal.](#)

[Figure 13.16 Graphical representation of temperature.](#)

[Figure 13.17 Simulation on Proteus software \(Interfacing of LCD with Arduino\).](#)

Chapter 14

[Figure 14.1 Pictorial representation of the capabilities of an intelligent system...](#)

[Figure 14.2 Representation of BCI components, recording the brain signals using....](#)

[Figure 14.3 Data acquisition methods.](#)

[Figure 14.4 Surgical room setup \[26\]. \(a\) Old traditional setup of surgical room...](#)

[Figure 14.5 Organization of healthcare showing scalability issue \[35\].](#)

[Figure 14.6 Basic components of IoT-based smart healthcare system.](#)

[Figure 14.7 IoT structure in healthcare.](#)

[Figure 14.8 Electromyogram \(EMG\), gyroscope, and accelerometer sensors to monitor...](#)

[Figure 14.9 Wearable sensor devices for medical application.](#)

Chapter 15

[Figure 15.1 Fabricated rectangular microstrip patch in antenna radiating patch.](#)

[Figure 15.2 Fabricated rectangular microstrip patch in antenna ground plane.](#)

[Figure 15.3 Microstrip line feed rectangular microstrip patch in antenna radiati...](#)

[Figure 15.4 Microstrip line feed rectangular microstrip patch in antenna ground ...](#)

[Figure 15.5 Microstrip line feed rectangular microstrip patch antenna in partial...](#)

[Figure 15.6 Microstrip line feed rectangular microstrip patch antenna in partial...](#)

[Figure 15.7 Key shape monopole rectangular microstrip patch antenna with rounded...](#)

[Figure 15.8 Key shape monopole rectangular microstrip patch antenna with rounded...](#)

[Figure 15.9 Fabricated key shape rectangular microstrip patch with rounded corne...](#)

[Figure 15.10 Fabricated key shape rectangular microstrip patch with rounded corn...](#)

[Figure 15.11 Reflection coefficient vs. frequency of rectangular microstrip patc...](#)

[Figure 15.12 VSWR vs. frequency of rectangular microstrip patch antenna.](#)

[Figure 15.13 Surface current distribution on radiating patch at 2.45 GHz of rect...](#)

[Figure 15.14 Reflection coefficient vs. frequency of microstrip line feed rectan...](#)

[Figure 15.15 VSWR vs. frequency of microstrip line feed rectangular microstrip p...](#)

[Figure 15.16 Surface current distribution on radiating patch of microstrip line ...](#)

[Figure 15.17 Reflection coefficient vs. frequency and of key shape monopole rect...](#)

[Figure 15.18 VSWR vs. frequency and of key shape monopole rectangular microstrip...](#)

[Figure 15.19 Surface current distribution on radiating patch key shape monopole ...](#)

[Figure 15.20 Surface current distribution on radiating patch key shape monopole ...](#)

[Figure 15.21 Simulated and measured reflection coefficient vs. frequency of key...](#)

Chapter 17

[Figure 17.1 Block diagram.](#)

[Figure 17.2 Anna Amrutha Hastham.](#)

[Figure 17.3 Arogya Laxmi Program.](#)

[Figure 17.4 Bala Amrutham.](#)

[Figure 17.5 Tracking of group responsibility for services.](#)

[Figure 17.6 Akshaya Patra Foundation.](#)

[Figure 17.7 Mahila Sishu Chaitanyam.](#)

[Figure 17.8 Child Health Nutrition Committee.](#)

[Figure 17.9 APJ Abdul Kalam.](#)

[Figure 17.10 Working procedure.](#)

[Figure 17.11 System architecture.](#)

[Figure 17.12 Block diagram.](#)

[Figure 17.13 User reviews of the home service.](#)

[Figure 17.14 IoT-based smart healthcare system.](#)

[Figure 17.15 Working stage of the app.](#)

[Figure 17.16 Baby is kicking.](#)

Chapter 18

[Figure 18.1 Normal ECG signal
\(File:SinusRhythmLabels.svg 2019\).](#)

[Figure 18.2 The axial spread of activation from the
SA node \(<http://www.cancerin...>](#)

[Figure 18.3 The circulatory system of the heart
\(<https://www.cmsfitnesscourses.c...>](#)

[Figure 18.4 The ECG with its precordial leads \(File:
EKG leads.png 2016\).](#)

[Figure 18.5 Frontal leads of the ECG \(Npatchett
2020\).](#)

[Figure 18.6 The effect of base line wanders noise.](#)

[Figure 18.7 The effect of power line interference
noise.](#)

[Figure 18.8 The typical ECG waveform.](#)

[Figure 18.9 The normal sinus rhythm.](#)

[Figure 18.10 Sinus bradycardia.](#)

[Figure 18.11 Sinus tachycardia.](#)

[Figure 18.12 Atrial flutter.](#)

[Figure 18.13 Atrial fibrillation.](#)

[Figure 18.14 Ventricular tachycardia.](#)

[Figure 18.15 AV block.](#)

[Figure 18.16 Asystole.](#)

Scrivener Publishing

100 Cummings Center, Suite 541J
Beverly, MA 01915-6106

Next-Generation Computing and Communication Engineering

**Series Editors: Dr. G. R. Kanagachidambaresan and
Dr. Kolla Bhanu Prakash**

Developments in artificial intelligence are made more challenging because the involvement of multidomain technology creates new problems for researchers.

Therefore, in order to help meet the challenge, this book series concentrates on next generation computing and communication methodologies involving smart and ambient environment design. It is an effective publishing platform for monographs, handbooks, and edited volumes on Industry 4.0, agriculture, smart city development, new computing and communication paradigms. Although the series mainly focuses on design, it also addresses analytics and investigation of industry-related real-time problems.

Publishers at Scrivener

Martin Scrivener (martin@scrivenerpublishing.com)

Phillip Carmical (pcarmical@scrivenerpublishing.com)

Medical Imaging and Health Informatics

Edited by

Tushar H. Jaware

K. Sarat Kumar

Ravindra D. Badgujar

and

Svetlin Antonov

WILEY

This edition first published 2022 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA

© 2022 Scrivener Publishing LLC

For more information about Scrivener publications please visit
www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at <http://www.wiley.com/go/permissions>.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-119-81913-4

Cover image: Pixabay.Com

Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Preface

There are many aspects to medical imaging and health informatics, including how they can be applied to real-world biomedical and healthcare challenges. Therefore, a collection of cutting-edge artificial intelligence (AI) and other allied approaches for healthcare and biomedical applications are provided in this book. Moreover, a diverse collection of state-of-the-art techniques and recent advancements in AI approaches are given, which are geared toward the challenges that healthcare institutions and hospitals face in terms of early detection of diseases, data processing, healthcare monitoring and prognosis of diseases.

Medical imaging and health informatics is a subfield of science and engineering which applies informatics to medicine and includes the study of design, development, and application of computational innovations to improve healthcare. The health domain has a wide range of challenges that can be addressed using computational approaches; therefore, the use of AI and associated technologies is becoming more common in society and healthcare. Currently, deep learning algorithms are a promising option for automated disease detection with high accuracy. Clinical data analysis employing these deep learning algorithms allows physicians to detect diseases earlier and treat patients more efficiently. Since these technologies have the potential to transform many aspects of patient care, disease detection, disease progression and pharmaceutical organization, approaches such as deep learning algorithms, convolutional neural networks, and image processing techniques are explored in this book.

This book also delves into a wide range of image segmentation, classification, registration, computer-aided analysis applications, methodologies, algorithms, platforms, and tools; and gives a holistic approach to the application of AI in healthcare through case studies and innovative applications. It also shows how image processing, machine learning and deep learning techniques can be applied for medical diagnostics in several specific health scenarios such as COVID-19, lung cancer, cardiovascular diseases, breast cancer, liver tumor, bone fractures, etc. Also highlighted are the significant issues and concerns regarding the use of AI in healthcare together with other allied areas, such as the internet of things (IoT) and medical informatics, to construct a global multidisciplinary forum.

Since elements resulting from the growing profusion and complexity of data in the healthcare sector are emphasized in this book, it will assist scholars in focusing on future research problems and objectives. Our principal goal is to leverage AI, biomedical and health informatics for effective analysis and application to provide a tangible contribution to innovative breakthroughs in healthcare.

Dr. Tushar H. Jaware

Dr. K. Sarat Kumar

Dr. Ravindra D. Badgujar

Dr. Svetlin Antonov

April 2022