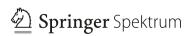
Stefan Zerbe

Restoration of Ecosystems — Bridging Nature and Humans

A Transdisciplinary Approach



Restoration of Ecosystems – Bridging Nature and Humans

Stefan Zerbe

Restoration of Ecosystems – Bridging Nature and Humans

A Transdisciplinary Approach

Stefan Zerbe Faculty of Science and Technology Free University of Bozen-Bolzano Bozen-Bolzano, Italy

ISBN 978-3-662-65657-0 ISBN 978-3-662-65658-7 (eBook) https://doi.org/10.1007/978-3-662-65658-7

© Springer-Verlag GmbH Germany, part of Springer Nature 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer Spektrum imprint is published by the registered company Springer-Verlag GmbH, DE, part of Springer Nature.

The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

The more clearly we can focus our attention on the wonders and realities of the universe about us, the less taste we shall have for destruction.

(Rachel Carson, April 1952)

Dedicated to my children

Preface

In 2022, the "Earth Overshoot Day," which indicates the date when humanity has exhausted nature's budget for the whole year, fell on July 28th (Global Footprint Network 2022). Accordingly, this day has moved forward by about three weeks compared to 2020, thus indicating increasing, unsustainable resource consumption. One may argue about this approach, the data basis, and about the determination of an exact day. What is an undisputable scientific fact, however, is the overexploitation of our natural resources and natural capital, respectively, by the world's human population and the subsequent trade-offs for the earth's ecosystems, land-use systems, and the socio-economic conditions of the societies. Worldwide, these are, in particular, the loss of biodiversity, climate change, problems of water supply, not only quantitatively but also qualitatively in terms of eutrophication and pollution, the pollution of marine ecosystems, soil erosion, soil salinization with decreasing agricultural productivity, and desertification in arid and semi-arid regions and all this related to the growth of the world's population, increasing energy demand, and the intensification of land-use and thus continuously increasing resource consumption.

The fact that renewable natural resources should only be consumed to an extent that they can regenerate is not new and has already been practiced in some indigenous human populations since millennia to ensure their permanent livelihood (Diamond 2011). However, at the latest with the book *The Limits to Growth*, the Club of Rome (Meadows et al. 1972) insistently drew attention to the fact that certain natural resources cannot be regenerated and are therefore finite. Already 25 years ago, Daily (1995) pointed out that about 45% of the world's land surface had a reduced capacity for land-use which means it was more or less anthropogenically degraded. She identified unsustainable land management as one major reason. This continuous degradation of many land-use types has been ecologically and economically quantified during recent decades, as illustrated in this book.

The current discussion on the decline of insects (e.g., NEFO 2017; "Insektensterben"), for example, shows that, despite decades of environmental policy, the establishment of legal frameworks and international conventions, and the practice of nature conservation, the desired goals of nature conservation or environmental protection in Central Europe have hardly been achieved. Even if one does not want to follow this agitated terminology such as, "forest dieback" ("Waldsterben" during the 1980s and 1990s) and "insect dieback," one cannot ignore the facts of the associated environmental problems and the urgent need for solutions. Apart from the local decline of forest stands due to high air pollution during the past decades (e.g., in the high altitudes of the Erzgebirge), the discussion about "forest dieback" has considerably stimulated forest ecosystem research in Central Europe and thus an increase in knowledge about the functions and services of our forest ecosystems. Consequently, also the discussion on "insect dieback" cannot be dismissed as mere emotional "hype." The study by Hallmann et al. (2017), which found a decline in the biomass of flying insects of around 75% over the past 27 years for various habitat types, is just one of many scientific studies that document qualitatively and quantitatively the continuous and worldwide loss of species and biodiversity, respectively, and thus the loss of important ecosystem services.

Preface

Against this background, we must raise the question of how we can use natural resources more sustainably in the future, on the one hand, and how we can restore those resources or natural capital that have already been exploited or declined, on the other. The restoration of ecosystems, based on the scientific discipline of restoration ecology, offers one of the possible answers to this. While the practice of ecosystem restoration is as old as human settlements on earth, restoration ecology has been established as a sub-discipline of ecology since the second half of the twentieth century and, since then, has developed rapidly. Today, ecosystem restoration is based on several decades of scientific research and practical experiences. Consequently, restoration ecology provides a comprehensive and valuable body of knowledge for the practice of sustainable land-use, landscape management, and nature conservation. As this book demonstrates, there is no lack of data and facts on the state of many ecosystems and land-use systems in Central Europe, respectively, nor of concepts and tools for the assessment of this state and deriving recommendations for the practice of ecosystem restoration. Nevertheless, in many cases we are still far from having achieved the desired goals of restoring functioning ecosystems and sustainable landuse with the concepts and measures of ecosystem restoration within the set timeframes. When ecosystems are even "restored" by the application of pesticides, burning vegetation, or by completely removing topsoil and vegetation, one might sometimes be willing to protect these ecosystems from those "ecosystem restorationists."

This interdisciplinary textbook will present the scientific basics of restoration ecology in an introductory section. Reasons and motivations for the restoration of ecosystems as well as reference systems will be outlined. The various measures of ecosystem restoration will be presented in the first overview. Then, those measures will be specified in more detail using the examples of the diverse ecosystems and land-use types of Central Europe. The ecosystems and land-use types are briefly introduced regarding their land-use history and ecological site conditions. Their ecosystem services are highlighted, particularly those which have been lost through overexploitation and degradation. Then, the current scientific restoration knowledge and practical experiences regarding the particular ecosystems and land-use systems, respectively, are presented. The brief outline of the land-use history of near-natural ecosystems and land-use systems of the cultural landscape is indispensable for the identification of restoration goals and respective reference systems. This follows the premise that only with the knowledge of the historical, anthropogenic impact the current ecological state can be comprehensively assessed and recommendations for the practice of sustainable land-use can be derived.

Although the practice of ecosystem restoration is essentially based on the concepts and knowledge of restoration ecology, it can only be successful if it is integrated into an interdisciplinary and transdisciplinary context, respectively. Accordingly, considerations of environmental economics as well as environmental ethics, sociology, anthropology, and religious aspects must be taken into account. These aspects will be addressed in Part III of this textbook. The penetration of a natural scientist into human science disciplines bears a risk. The expert of the respective human and social science discipline, respectively, may stumble over terms, modes of argumentation, and a lack of thoroughness in his or her respective discipline. Nevertheless, this is precisely what is intended to bridge the natural and the social sciences in order to stimulate further discussions and to intensify the scientific discourse between the natural and social sciences. This is particularly needed for the solution of the global environmental problems and the joint development of strategies to adapt to and mitigate global change. By stepping out of his or her own scientific discipline in order to investigate and understand both the ecological and human dimension of environmental problems and to develop possible solutions, the scientist enters the field of a transdisciplinarity (\triangleright Chap. 22). Consequently, this textbook follows a transdisciplinary approach.

The geographical focus of this textbook is on Central Europe, including the Alps, essentially with the countries Germany, Austria, Poland, Switzerland, Slovakia, and the Czech Republic. Thus, the most important ecosystems and land-use types are addressed for this geographical area. Forests, rivers including their floodplains, lakes, peatland, and alpine grasslands as natural or near-natural ecosystems are considered as well as the anthropogenic land-use types grassland, heaths, arable land, agroforestry systems, quarries, and settlement areas. Nevertheless, a comprehensive insight into restoration ecology and the practice of ecosystem restoration would fall short if concepts and experiences from other regions of Europe or the world were neglected. For example, a chapter on the restoration of coastal salt grassland would be incomplete without the numerous studies and experiences from Great Britain. The same applies, for example, to the extensive research and practical experiences on the restoration of heathland on the British Islands, in Scandinavia, and the Netherlands. Consequently, by considering scientific literature from whole Europe, an attempt is made to draw a comprehensive, up-to-date picture of restoration ecology and ecosystem restoration, respectively.

The numerous literature references may be a hindrance to the flow of reading. However, this is necessary to demonstrate that a huge amount of data and facts relevant to the restoration of ecosystems have already been elaborated by scientific research. In addition, these references should enable the reader to deepen specific issues, also in light of the fact that data and facts can be interpreted in different ways. In the individual chapters, key terms are highlighted in bold. Case studies from the practice of restoration are presented for the respective ecosystem or land-use type. Those case studies not only reflect successful restoration projects but are also intended to highlight problems in practical ecosystem restoration. There should be no doubt that the selection of case studies has a subjective character, but it usually follows the criteria of a comprehensive documentation of the restoration process from planning to implementation and success control, including socio-economic aspects, such as costs and acceptance. Many of the case studies presented here can also be considered examples of best practice.

This book was written in substantial parts during a sabbatical generously granted to me by the Free University of Bozen-Bolzano (South Tyrol, Italy). During this year, I was warmly welcomed by various hosts to whom I am grateful, namely (in chronological order) the Peria family on the Italian island of Elba, Prof. Dr. Ana Bozena Sabogal Dunin Borkowski De Alegria at the Pontificia Universidad Católica del Perú in Lima (Peru), David Unger in Cobán (Guatemala), Luz Marina Delgado in San Marcos (Guatemala), Prof. Dr. Victoriano Ramón Vallejo Calzada at the University of Barcelona and at the Center for Mediterranean Environmental Studies in Valencia (Spain), and Prof. Dr. Ingo Kowarik at the Technical University of Berlin. During this time, I was inspired by discussions with numerous people and colleagues, to whom I would also like to express my gratitude.

For the review of particular chapters and suggestions for their improvement, I would like to thank (in alphabetical order) Prof. Dr. Christian Ammer (University of Göttingen, Germany) for \blacktriangleright Chap. 7, Dr. Arthur Brande (TU Berlin, Germany) for \blacktriangleright Chap. 8, Dr. Ralf Döring (Thünen Institute of Sea Fisheries, Germany) for

▶ Chap. 13, Prof. em. Dr. Ulrich Hampicke (University of Greifswald, Germany) for ▶ Chaps. 17 and 23, Dr. Michael Hupfer (Leibniz Institute of Freshwater Ecology and Inland Fisheries in Berlin, Germany) for ▶ Chap. 11, Prof. Dr. Jochen Kantelhardt (University of Natural Resources and Life Sciences in Vienna, Austria) for ▶ Chap. 23, Prof. Dr. Ingo Kowarik (TU Berlin, Germany) for ▶ Chaps. 5 and 19, Prof. Dr. Volker Lüderitz (Magdeburg-Stendal University of Applied Sciences, Germany) for ▶ Chap. 10, Prof. Dr. Christoph Leuschner (University of Göttingen, Germany) for ▶ Chap. 7, Prof. Dr. Konrad Ott (University of Kiel, Germany) for ▶ Chap. 24, Dr. Markus Salomon (German Advisory Council on the Environment, Germany) for ▶ Chap. 13, Prof. Dr. Jutta Zeitz (Humboldt University Berlin, Germany) for ▶ Chap. 8, and Dr. Wiebke Züghardt (Federal Agency for Nature Conservation in Bonn, Germany) for ▶ Chap. 6.

For discussions, comments, and suggestions regarding specific topics, I would like to thank (also, in alphabetical order) Dr. Albin Blaschka (HBLFA Raumberg-Gumpenstein, Austria), Prof. Dr. Dietmar Brandes (University of Braunschweig, Germany), Prof. Dr. Eckhard Jedicke (Geisenheim University, Germany), Prof. Dr. Vera Luthardt (Eberswalde University for Sustainable Development, Germany), Forest Director Uwe Schölmerich (Regional Forest Department Rhein-Sieg-Erft, Germany), Heike Seehofer (Stuttgart Regional Council, Germany), Prof. Dr. Elisabeth Tauber (Free University of Bozen-Bolzano, Italy), Dr. Werner Westhus (Thuringian Federal State Institute for Environment and Geology, Germany), and Prof. Dr. Dorothy Louise Zinn (Free University of Bozen-Bolzano, Italy).

For the interesting guided tour through the case study sites in Germany, I would like to thank Jörg Fürstenow (Heinz Sielmann Foundation) in the Döberitzer Heide, Werner Schubert, and Bettina Gräf (Biological Station Hochsauerland) on mountain heaths in the Sauerland, Jürg Bunje (National Park Wadden Sea, Lower Saxony) and Dr. Holger Freund (University of Oldenburg) on the Island of Langeoog in the North Sea, Gregor Eßer (RWE) on the restoration of post-mining landscapes in North Rhine-Westphalia, and Dr. Hanna Köstler (Büro Dr. Köstler) on the Nature Park Schöneberger Südgelände in Berlin.

For the assistance with figures, I thank Dr. Luigimaria Borruso, Dr. Barbara Plagg, and Dr. Andrea Polo.

I would like to thank Dr. André Terwei (Federal Institute of Hydrology in Koblenz, Germany) for his professional and sharp eye when proofreading the book manuscript.

Last but not least, I would like to thank Springer Publishing and its staff for the professional preparation of this book for printing and the always pleasant cooperation and communication.

Stefan Zerbe

Berlin, Germany March 2022

Reference

Global Footprint Network (2022) Earth Overshoot Day. Global Footprint Network. Advancing the Science of Sustainability. https://www.footprintnetwork.org/our-work/earth-overshoot-day/ Accessed 13.12.2022

Contents

I Fundamentals

1	Introduction to Restoration Ecology	3
1.1	Ecosystem Restoration and Restoration Ecology From a Historical Perspective	8
1.2	Ecological Terms and Key Concepts as a Basis for Ecosystem Restoration	12
1.2.1	Species and Populations	12
1.2.2	Ecosystems and Landscapes	16
1.3	Ecosystem Services	22
1.4	Degradation of Ecosystems	24
1.5	What Does Ecosystem Restoration Mean? A Definition	24
1.6	Scales of Restoration	28
1.7	Ecosystem Restoration in Relation to the Practice of Other Disciplines	29
2	Which Ecosystem Should Be Restored? Reference Systems	
	for Restoration	31
2.1	Pristine or Historical Reference	34
2.2	Reference Ecosystems of the Present-Day Cultural Landscape	35
2.3	Potential or Hypothetical Reference State	39
3	Measures in the Practice of Ecosystem Restoration	43
3.1	Doing Nothing (Passive Restoration)	45
3.2	Stopping or Pushing Back Natural Succession	45
3.3	Removal or Reduction of Nutrients from Soil and Water	47
3.3.1	Terrestrial Sites, Wetlands, and Peatland	48
3.3.2	Lakes	50
3.4	Removal of Pollutants by Bioremediation	51
3.5	Restoration of the Water Balance, Rewetting, and Hydro-morphological Interventions	52
3.6	Erosion Control and Re-vegetation	53
3.7	Introduction and Re-introduction of Diaspores and Target Species	53
3.8	Inoculation with Mycorrhiza Fungi	54
3.9	Repression of Undesirable Species by Pesticides	54
3.10	Liming of Acidified Ecosystems	54
3.11	Fertilisation	55
3.12	Conclusion	55
4	Re-introduction of Plant and Animal Species	59
4.1	Re-introduction of Plant Species	60
4.2	Re-introduction of Animal Species	65
4.3	Case Study: Re-introduction of the Brown Bear in Trentino,	
	Northern Italy (EU Project LIFE Ursus)	74

5	Dealing with Non-native Species in Ecosystem Restoration	79
5.1	Are Non-native Species Problematic?	81
5.2	Non-native Species in Ecosystem Restoration	83
5.3	Recommendations for Dealing with Non-native Species in Ecosystem	
	Restoration	86
5.4	With Rationality and Objectivity for the Alien	86
6	Monitoring and Success Control	89
6.1	Ecological Monitoring: Basics and Recommendations for Practice	92
6.2	When Is a Restoration Project Successful?	95
6.3	Ecological and Nature Conservation Parameters for Monitoring	
	and Success Control	97
6.4	Case Studies and Best Practice	103

II Restoration of Specific Ecosystems and Land-Use Types in Central Europe and the Alps

7	Forests	107
7.1	Forest History in Central Europe Under Human Impact: From Natural	
	Forests to Intensive Timber Production	112
7.2	Vegetation and Ecology of Central European Forests	118
7.3	Biodiversity and Ecosystem Services Provided by Forests	121
7.4	Degradation of Forests and the Need for Restoration	129
7.5	National and International Frameworks and Restoration Goals	133
7.6	The Concept of Differentiated Forest Management	134
7.7	Assessment of Forest Naturalness	135
7.8	Use of Natural Processes for the Restoration of Forests and Forest Sites	136
7.8.1	Regeneration of Anthropogenically Degraded Topsoil and Atmogenic	
	Nitrogen Input	136
7.8.2	Natural Regeneration of Target Tree Species in Coniferous Monocultures	137
7.8.3	On the Importance of Short-Lived Tree Species for Forest Restoration	138
7.9	Restoration of Wetland Forests	142
7.10	Restoration of Forest Landscapes	144
7.11	Preservation and Revitalisation of Traditional Forest Uses	144
7.12	Case Study: New Forest and New Forest Landscapes After Open-Cast Lignite	
	Mining in the Rhineland—Recultivation in the <i>Südrevier</i>	148
8	Peatland	153
8.1	From Natural to Degraded Peatlands: The History of Peatland	
	Use in Central Europe	155
8.2	Ecology and Typology of Peatlands	159
8.3	Ecosystem Services of Peatland	164
8.4	Assessing the Degradation of Peatland	170
8.5	Regional, National, and International Peatland Protection Initiatives	171
8.6	Initiating Peatland Restoration and Restoration Objectives	172
8.7	Restoration Measures	172

8.7.1	Rewetting	173
8.7.2	Shallow Peat Removal (Flachabtorfung)	174
8.7.3	Introduction of Target Species and Nurse Plants	175
8.7.4	Dynamics of Phosphorus and Nutrient Removal	176
8.8	Protection Through Peatland Use: Integrative Peatland Restoration	178
8.8.1	Reed as Multipurpose Plant Species on Peatlands	178
8.8.2	Forestry on Fens	179
8.9	Monitoring and Success Control	180
8.10	Case Study: The Dosenmoor in Schleswig-Holstein	182
9	Subalpine and Alpine Grassland	185
9.1	The Alps as a Living and Economic Space	186
9.2	Ecological Site Conditions of the High Mountains	188
9.3	Alpine Convention on the Protection and Sustainable	
	Development of the European Alps	191
9.4	Challenges of the Restoration of High-Altitude Mountain Sites	192
9.5	Restoration Objectives for the High Altitudes of the Alps	196
9.6	Restoration Measures in the Subalpine and Alpine Mountain Sites	196
9.6.1	Suppressing Forest and Shrub Succession	196
9.6.2	Re-vegetation of Ski Slopes and Degraded Pastureland	197
9.6.3	Nutrient Removal on Eutrophicated Sites	202
9.6.4	Re-introduction of Animal and Plant Species	202
9.7	Avoiding Interventions in the High Altitudes of the Alps	204
9.8	Case Study: The Restoration of an Alpine Cultural Landscape	204
5.0	Through Pasture Management in Styria	204
	Through rasture management in Styna	204
10	Rivers and Floodplains	209
10.1	Ecology of Rivers and Their Floodplains	211
10.2	History of Use and Degradation of Rivers and Floodplains	214
10.3	Ecosystem Services of Rivers and Floodplains	220
10.4	Ecological Status Assessment of Rivers	222
10.5	International Initiatives for the Restoration of Rivers	224
10.5	Measures for River Restoration	225
10.6.1	Interventions in the River Morphology	225
10.6.2	Improvement of Physical and Chemical Water Conditions	228
10.6.3	Re-introduction of Target Species	228
10.6.4		229
10.7		229
10.7	Success Control Case Study: Elbe Floodplain Near Lenzen—Natural Dynamics	229
10.0	in a Cultural Landscape Shaped by the River	230
	in a Cultural Landscape Shaped by the River	250
11	Natural and Anthropogenic Lakes	235
11 11 1	Natural and Anthropogenic Lakes	
11.1	Diversity of Lakes in Central Europe	238
11.1 11.2	Diversity of Lakes in Central Europe Ecology of Lakes	238 240
11.1 11.2 11.2.1	Diversity of Lakes in Central Europe Ecology of Lakes Stratification, Zonation, and Sedimentation	238 240 240
11.1 11.2	Diversity of Lakes in Central Europe Ecology of Lakes	235 238 240 240 243 243

11.3.1	Eutrophication and Pollution	244
11.3.2	Temperature Increase in Lakes	247
11.3.3	Obstruction of Lakeshores	248
11.3.4	Non-native Species in Lakes	248
11.4	Ecological Status Assessment of Lakes	250
11.5	Ecosystem Services of Lakes	250
11.5.1	Habitat for Species and Biocenoses	250
11.5.2	Fishery	251
11.5.3	Self-Purification of Water	251
11.5.4	Carbon Storage in Lakes	252
11.5.5	Quality of Life and Human Health	252
11.5.6	Lakes as Archives for Landscape History and Environmental Change	252
11.6	Restoration Measures in Lakes and on Their Shores	253
11.6.1	Restoration of the Lakeshore	253
11.6.2	Interventions in the Lake Sediment	255
11.6.3	Interventions in the Water Body	256
11.6.4	Biomanipulation as an Intervention in the Food Web of Lakes	258
11.6.5	Biological Lake Management with the Zebra Mussel	260
11.6.6	Harvesting of Submerged and Floating Macrophytes for Nutrient Removal	261
11.7	Concluding Assessment of Lake Restoration Measures	261
11.8	Case Study: Lake Tegel in Berlin as an Urban Water Ecosystem	262
12	Coastal and Inland Salt Grassland	265
12.1	Coastal Salt Grassland	266
12.1.1	Ecology and Vegetation of Saline Coastal Habitats	266
12.1.2	Ecosystem Services of Coastal Salt Grassland	269
12.1.3	Land-Use History and Environmental Changes of Coastal Salt Grassland	272
12.1.4	Environmental Policy Framework for the Protection and Restoration	
	of Coastal Habitats in Central and Western Europe	275
12.1.5	Measures for the Restoration of Salt Grassland	279
12.1.6	Case Study: Restoration of Salt Grassland in the National	
	Park Wadden Sea on the North Sea Island of Langeoog	283
12.2	Inland Saline Habitats	287
12.2.1	Occurrence, Ecology, and Nature Conservation of Natural	
	Inland Saline Sites in Central Europe	287
12.2.2	Secondary Inland Saline Habitats	290
	Land-Use History, Degradation, and Threats to Inland Saline Habitats	290
	Restoration Measures on Inland Saline Habitats	292
12.2.5	Case Study: Inland Saline Habitat Altensalzwedel in Saxony-Anhalt—Initial	
	Success of a Restoration Project	293
13	Marine Habitats in the North Sea and Baltic Sea	295
13.1	Marine Ecosystems of the North Sea and the Baltic Sea	297
13.1.1	North Sea	297
13.1.1	Baltic Sea	297
13.1.2	Anthropogenic Evironmental Impacts on the Marine Ecosystems	270
13.2	of the North Sea and the Baltic Sea	299

13.3	Ecosystem Services and Threatened Marine Habitats	306
13.4	International Marine Protection Initiatives	307
13.5	An Overarching Concept for the Restoration of Marine Ecosystem Services	309
13.6	Measures for the Restoration of Marine Habitats	310
13.6.1	Interventions in the Biotic Ecosystem Compartments	310
13.6.2	Interventions in the Abiotic Conditions	312
14	Lowland and Mountain Heaths	315
14.1	Vegetation Formation Heath and Its Distribution in Europe	316
14.2	Origin and Land-Use History of Heathland	317
14.3	Ecology and Dynamics of Heathland	320
14.3.1	Climate, Soil, Vegetation, and Fauna	320
14.3.2	Development Phases of Calluna Heaths	325
14.4	Reasons for the Restoration of Heathland	326
14.5	Restoration Measures	330
14.5.1	Restoration and Management of Dry Sandy Lowland Heaths	330
14.5.2	Restoration of Wet Lowland Heaths	335
14.5.3	Restoration of Coastal Heaths	335
14.6	Particular Challenges for the Restoration and Management of Heaths	336
14.7	Case Study: Land Use and Nature Conservation Between Past, Present,	
	and Future—Restoration of Mountain Heaths in the Hochsauerland	338
15	Macanhilia Wat and Calanyaous Creational	242
15	Mesophilic, Wet, and Calcareous Grassland	343
15.1	Land-Use History of Grassland in Central Europe	345
15.2	A Short Glimpse into the Ecology of Grassland	348
15.3	Degradation of Grassland	354
15.4	Ecosystem Services of Extensively Used, Species-Rich Grassland	357
15.5	Initiatives and Environmental Programmes for the Restoration	250
15.6	of Species-Rich Grassland	358
15.6	Measures to Restore Grassland Biodiversity and Ecosystem Services	360
15.6.1	Restoration of Grassland After Other Intermediate Land Uses	363
15.6.2	Grassland Restoration by Mowing, Grazing, and Shrub Removal	364
15.6.3	Topsoil Removal and Inversion	365
15.6.4	Lowering the Nutrient Level After Eutrophication (<i>Aushagerung</i>)	366
15.6.5	Rewetting for the Restoration of Wet Grassland.	367
15.6.6	Re-introduction of Target Species and Diaspore Transfer	367
15.6.7	Inoculation with Mycorrhizal Fungi	370
15.7	Case Study: Grassland Restoration in the Rhön Biosphere	272
	Reserve—An Initiative for Cultural Landscape and Regional Rural Development	372
16	Coastal and Inland Sandy Dry Grassland	375
16.1	Occurrence and Historical Development of Sandy Sites in Central Europe	376
16.1.1	Coastal Dunes	376
16.1.2	Inland Sand Ecosystems	377
16.2	Ecology and Dynamics of Sandy Dry Grassland	379
16.3	Protection of Species, Habitats, and the Cultural Landscape	
	and Reasons for Grassland Restoration	381

16.4	Restoration Strategies and Measures for Open Sand Habitats	385
16.4.1	Grazing	386
16.4.2	Topsoil Removal and Inversion	386
16.4.3	Application of Low-Nutrient Deep Sand	387
16.4.4	Long-Term Nutrient Removal (Aushagerung)	387
16.4.5	Manual and Mechanical Diaspore Transfer of Target Species	388
16.4.6	Allowing for Natural Dynamics	388
16.5	Case Study: The Former Military Training Area Döberitz—Megaherbivores	
	and Sheep Replace Military Tanks	389
17	Species-Rich Arable Land	393
17.1	History: From a Sea of Flowers to a High-Performance Field	394
17.2	Flora, Fauna, and Vegetation of Arable Land	397
17.3	Nature Conservation and Restoration Strategies: Species-Rich	
	Protective Fields and Marginal Strips	399
17.4	Case Study: Extensification for the Restoration of Species-Rich	
	Arable Land in North-Eastern Germany	404
18	Traditional Agroforestry Systems	409
18.1	Traditional Orchards (Streuobstwiesen)	410
18.1.1	Land-Use History and Current Status	410
18.1.2	Ecosystem Services and Nature Conservation	411
18.1.3	Conservation and Restoration Initiatives	412
18.1.4	Case Study: Europe Promotes Bird Conservation in Orchards in Baden-Württemberg	414
18.2	Larch Meadows and Pastures in the Alps	415
18.2.1	Occurrence and Land Use	415
18.2.2	Ecosystem Services: Biodiversity and Carbon Storage	417
18.2.3	Maintaining an Element of the Traditional Cultural Landscape	417
18.3	Tree Meadows in Scandinavia and the Baltic Region	418
19	Urban Ecosystems	419
19.1	Ecological Characteristics of Urban Ecosystems	422
19.2	Urban Environment and Human Health	428
19.3	Motivation and National and International Initiatives for the Restoration	
	of Urban Nature	431
19.4	Restoration Measures in Urban Environments	432
19.5	New Approaches to Urban Greening and the Restoration of Urban Nature	434
19.6	International Perspective on Sustainable Urban Development	437
19.7	Case Study: Wilderness in the City Centre—The Schöneberger Südgelände	
	in Berlin	437
20	Mining Sites and Landfills	441
20.1	Ecological Characteristics of Mining Sites and Post-Mining Areas	444
20.1	Area Size	444
20.1.1	Geomorphology	444
20.1.2	Geology and Soils	444
20.1.3	Water Balance and Water Quality	445 445
20.1.4	water balance and water Quality	440

20.1.5	Flora, Fauna, and Vegetation	446
20.2	Planning and Legal Framework for the Restoration of Mining Sites	448
20.3	Passive and Active Ecosystem Restoration on Mining Sites	449
20.4	Restoration of Mining Heaps	455
20.5	Restoration of Landfills	457
20.6	Case Study: Chalk Quarries on the Island of Rügen—Anthropogenic	
	Diversity of Species and Habitats	459

III Ecosystem Restoration Serving Nature and Humans: Aspects from the Social Sciences and Humanities

21	Reasons and Motivations for Ecosystem Restoration
21.1	Environmental Facts and Figures
21.2	Degradation and Ecosystem Services: Costs and Benefits
21.3	Legal Obligations and International Conventions and Agreements
21.3.1	National Requirements
21.3.2	International Conventions and Agreements
21.4	Justification and Motivation Derived From Environmental Ethics,
	Religion, and Emotions
22	Actors and Stakeholders and Their Role in Ecosystem Restoration:
	Conflict Resolution and Acceptance Through Participation
22.1	Actor and Stakeholder Analysis
22.2	Actors and Stakeholders in Nature Conservation and Ecosystem Restoration
22.3	Lack of Acceptance as a Limiting Factor of Ecosystem Restoration
22.3.1	Re-introduction of Large Carnivores
22.3.2	Rejection of Natural Processes
22.3.3	Promoting Acceptance Through Information
22.4	Science and Practice Pull Together: Transdisciplinary Approaches
23	Restoration Economy: Costs and Benefits
23.1	Methods for the Assessment of Costs and Benefits of Ecosystem Restoration
23.1.1	Market Price and Cost-Based Methods
23.1.2	Methods for the Economic Valuation of Non-market Goods
23.1.3	Habitat and Resource Equivalency Analysis
23.1.4	Benefit Transfer
23.2	Opportunity Costs
23.3	Comprehensive Cost-Benefit Analysis: From Degradation to Restoration
23.4	What Factors Influence Restoration Costs?
23.5	Funding Sources for Ecosystem Restoration
23.6	Costs and Benefits of Ecosystem Restoration with Examples from Europe
23.6.1	Grassland Restoration: Introduction of Target Species
23.6.2	Heathland Restoration and Management in North-West Germany
23.6.3	Grazing for the Restoration and Management of Open-Land Habitats
23.6.4	Ecosystem Restoration for Climate Protection
23.6.5	Wild and Honey Bees as Pollinators in Agriculture
23.7	First Calculate Costs and Benefits, Then Act

24	Norms and Values in Ecosystem Restoration	507
24.1	Environmental Ethics and Implications for Ecosystem Restoration	510
24.1.1	Faking Nature? Criticism on Ecosystem Restoration From Environmental Ethics	513
24.2	Ecosystem Restoration as an Implementation of Strong Sustainability	515
24.3	Traditional Ecological Knowledge	515
24.4	Environmental Anthropology	516
24.5	Ecosystem Restoration as Active Responsibility for Creation	518
24.6	Restoration Measures Put to the Ethical Test Bench	519
24.6.1	Application of Pesticides in Ecosystem Restoration	520
24.6.2	Controlled Burning to Restore and Preserve Open Land	520
24.6.3	Topsoil Removal	523
24.7	Non-native Organisms and Xenophobia	525

IV Synthesis

25	Conclusions and Outlook	529
25.1	Limiting Factors for Ecosystem Restoration	530
25.2	Degradation in the Long Term and Restoration in the Short Term?	532
25.3	Restoration of Eutrophicated Terrestrial and Aquatic Habitats: A Sisyphean Task?	534
25.4	Limits to Planability, Uncertainties, and the Unforeseen:	
	Allowing for More Dynamics	536
25.5	Ecosystem Restoration in the Light of Current Trends	537
25.6	Ecosystem Restoration at Any Price?	538
25.7	Scientific Knowledge, Knowledge Transfer, and Socio-Political Decisions	538
25.8	Final Conclusion	539

Supplementary Information

Appendix: List of Species	542
References	566

About the Author

Stefan Zerbe

Professor of Environment and Applied Botany at the Free University of Bozen-Bolzano in South Tyrol (Italy)

Stefan Zerbe studied biology at the Universities of Würzburg and Stuttgart-Hohenheim in Germany, specializing in vegetation ecology. He was a research assistant at the University of Würzburg and the Technical University of Berlin, where he received his doctorate in 1992. In 1998, he was awarded his habilitation in botany. He performed research and university teaching at the Institute of Ecology at the TU Berlin until 2005. After a guest professorship in biology and botany at the TU Berlin, he took the Chair of Geobotany and Landscape Ecology at the University of Greifswald in 2005, where he also became the Managing Director of the Institute of Botany and Landscape Ecology. In 2009, he followed a direct call to the Free University of Bozen-Bolzano in South Tyrol as a professor for Environment and Applied Botany.

Stefan Zerbe developed and implemented two international Master's programs, i.e., Landscape Ecology and Nature Conservation (LENC) at the University of Greifswald and Environmental Management of Mountain Areas (EMMA) at the Free University of Bozen-Bolzano. Numerous disciplinary and interdisciplinary research projects and cooperations on the national and international level have resulted in more than 300 scientific publications, book contributions, and monographs. In addition to a wide range of other interests and topics in research and teaching, Stefan Zerbe has been working on restoration ecology and the restoration of ecosystems since his doctoral thesis on the vegetation of Norway spruce monocultures and their conversion to mixed broad-leaved forests by integrating natural ecological processes. This textbook is, therefore, both a synthesis of the current state of knowledge in an inter- and transdisciplinary perspective as well as a reflection of the author's own research work and experiences regarding sustainable land use, environmental protection, and resource efficiency.

Fundamentals

Contents

Chapter 1	Introduction to Restoration Ecology – 3
Chapter 2	Which Ecosystem Should Be Restored? Reference Systems for Restoration – 31
Chapter 3	Measures in the Practice of Ecosystem Restoration – 43
Chapter 4	Re-introduction of Plant and Animal Species – 59
Chapter 5	Dealing with Non-native Species in Ecosystem Restoration – 79
Chapter 6	Monitoring and Success Control – 89

Introduction to Restoration Ecology

Contents

1.1	Ecosystem Restoration and Restoration Ecology From a Historical Perspective – 8
1.2	Ecological Terms and Key Concepts as a Basis for Ecosystem Restoration – 12
1.2.1	Species and Populations – 12
1.2.2	Ecosystems and Landscapes – 16
1.3	Ecosystem Services – 22
1.4	Degradation of Ecosystems – 24
1.5	What Does Ecosystem Restoration Mean? A Definition – 24
1.6	Scales of Restoration – 28
1.7	Ecosystem Restoration in Relation to the Practice of Other Disciplines – 29

Ecosystem restoration has become an increasing challenge worldwide in recent decades to counteract the loss of ecosystem services and to restore natural resources and natural capital at the local, regional, and global level (Aronson et al. 2007; Jackson and Hobbs 2009; Zerbe et al. 2009). There is

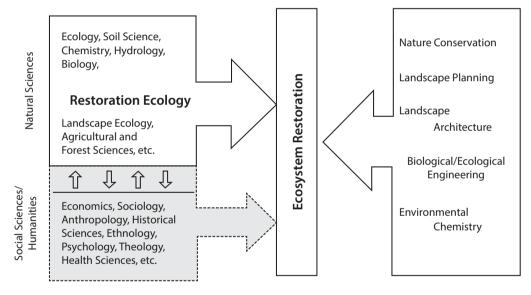
a comprehensive scientific basis and many decades of practice in ecosystem restoration. Restoration ecology, as a sub-discipline of ecology and landscape ecology, respectively, has made a considerable contribution to this (see overview of textbooks in **C** Table 1.1). However, there is also consenst today that an

Table 1.1 Selection of thematically and geographically comprehensive textbooks on restoration ecology and ecosystem restoration from 1980 to 2022, arranged chronologically by the year of publication

Authors	Year	Book title		
Bradshaw and Chadwick	1980	The Restoration of Land: The Ecology and Reclamation of Derelict and Degraded Land		
Jordan III et al.	1987	Restoration Ecology: A Synthetic Approach to Ecological Research		
Berger	1990	Environmental Restoration: Science and Strategies for Restoring the Earth		
Baldwin et al.	1994	Beyond Preservation: Restoring and Inventing Landscapes		
Harris et al.	1996	Land Restoration and Reclamation, Principles and Practice		
Elliot	1997	Faking Nature: Ethics of Environmental Restoration		
Rana	1998	Damaged Ecosystems and Restoration		
Harker et al.	1999	Landscape Restoration Handbook		
Bradshaw	2000	Methods in Ecological Restoration		
Gobster and Hull	2000	Restoring nature: Perspectives from the Social Sciences and Humanities		
Throop	2000	Environmental Restoration: Ethics, Theory, and Practice		
Urbanska et al.	2000	Restoration Ecology and Sustainable Development		
Perrow and Davy	2002	Handbook of Ecological Restoration: Restoration in Practice		
Mitsch and Jørgensen	2003	Ecological Engineering and Ecosystem Restoration		
Higgs	2003	Nature by Design: People, Natural Process, and Ecological Restoration		
Wong and Bradshaw	2003	The Restoration and Management of Derelict Land: Modern Approaches		
Temperton et al.	2004	Assembly Rules and Restoration Ecology: Bridging the Gap Between Theory and Practice		
Egan and Howell	2005	The Historical Ecology Handbook: A Restorationist's Guide to Reference Ecosystems		
Falk et al.	2006	Foundations of Restoration Ecology		
Friederici	2006	Nature's Restoration: People and Places on the Front Lines of Conservation		
Aronson et al.	2007	Restoring Natural Capital: Science, Business, and Practice		
Boyce et al.	2007	Reclaiming Nature: Environmental Justice and Ecological Restoration		
Naveh	2007	Transdisciplinary Challenges in Landscape Ecology and Restoration Ecology – An Anthology		

Table 1.1 (continued)					
Authors	Year	Book title			
Walker et al.	2007	Linking Restoration and Ecological Succession			
Hobbs and Suding	2008	New Models for Ecosystem Dynamics and Restoration			
Lennartz	2008	Renaturierung: Programmatik und Effektivitätsmessung			
Perrow and Davy	2008	Handbook of Ecological Restoration: Principles of Restoration			
Morrison	2009	Restoring Wildlife: Ecological Concepts and Practice of Applications			
Pardue and Olvera	2009	Ecological Restoration			
Zerbe and Wiegleb	2009	Renaturierung von Ökosystemen in Mitteleuropa			
Brown et al.	2010	Sustainable Land Development and Restoration: Decision Consequence Analysis			
Comín	2010	Ecological Restoration: A Global Challenge			
Tongway and Ludwig	2010	Restoring Disturbed Landscapes: Putting Principles into Practice			
Egan et al.	2011	Human Dimensions of Ecological Restoration: Integrating Science, Nature, and Culture			
Greipsson	2011	Restoration Ecology			
Jordan III and Lubick	2011	Making Nature Whole: A History of Ecological Restoration			
Allison	2012	Ecological Restoration and Environmental Change: Renewing Damaged Ecosystems			
Andel and Aronson	2012	Restoration Ecology: The New Frontier			
Galatowitsch	2012	Ecological Restoration			
Howell et al.	2012	Introduction to Restoration Ecology			
Prasad	2012	Restoration and Conservation Ecology			
Carmen Santa-Regina and Santa-Regina	2013	Restoration and Ecosystem Consequences of Changing Biodiversity			
Clewell and Aronson	2013	Ecological Restoration: Principles, Values, and Structure of an Emerging Profession			
Van Wieren	2013	Restored to Earth: Christianity, Environmental Ethics, and Ecological Restoration			
Rieger et al.	2014	Project Planning and Management for Ecological Restoration			
Simonis et al.	2014	Re-Naturierung: Gesellschaft im Einklang mit der Natur			
Chabay et al.	2015	Land Restoration: Reclaiming Landscapes for a Sustainable Future			
Pereira and Navarro	2015	Rewilding European Landscapes			
Palmer et al.	2016	Foundations of Restoration Ecology			
Squires	2016	Ecological Restoration: Global Challenges, Social Aspects, and Environmental Benefits			
Telesetsky et al.	2016	Ecological Restoration in International Environmental Law			

5

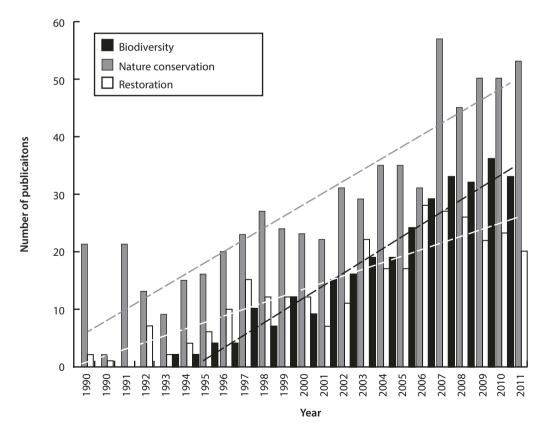

1

(continued)

Table 1.1 (continued)					
Authors	Year	Book title			
Allison and Murphy	2017	Routledge Handbook of Ecological and Environmental Restoration			
Zerbe	2019	Renaturierung von Ökosystemen im Spannungsfeld von Mensch und Umwelt			
Akhtar-Khavari and Richardson	2019	Ecological restoration law. Concepts and case studies			
Kollmann et al.	2019	Renaturierungsökologie			
Holl	2020	Primer of ecological restoration			
Zerbe	2022	Restoration of multifunctional cultural landscapes. Merging tradition and innovation for a sustainable future			

Scientific contributioin from ...

Practical contribution from ...


Fig. 1.1 The practice of ecosystem restoration in an interdisciplinary context, scientifically supported by the natural as well as the social sciences and humanities, respectively, and with practical contribu-

ecosystem or land-use type with its specific ecosystem services can only be successfully restored if not only ecological principles and fundamentals are taken into account, but ecosystem restoration is also embedded in a socio-economic context (Cairns and Heckman 1996; Higgs 1997; Gobster and Hull 2000; Throop 2000; van Diggelen et al.

tions from applied research in various disciplines. The illustrated overlap of the natural sciences with the social sciences and humanities is intended to highlight the transdisciplinary character of restoration ecology

2001; Aronson et al. 2007; Egan et al. 2011; Squires 2016). The practice of ecosystem restoration is thus interacting with numerous other scientific disciplines and their implications for practice (Fig. 1.1). Restoring functioning ecosystems with their services on a former industrial site in an urban area, for example, especially if elaborate measures are applied, needs a cost calculation as well as the integration of stakeholders and decision-makers. Restoration ecology becomes transdisciplinary when it applies concepts and methodologies of the social sciences and humanities, respectively, or "goes beyond traditional system boundaries" (Rentz 2004, p. 150) to solve complex environmental problems (see Mittelstrass 2011; Bernstein 2015; on Mode 1 of transdisciplinarity, see Scholz 2011; Scholz and Steiner 2015a; ► Sect. 22.4).

One of the main drivers or justifications for ecosystem restoration is considered to be the loss and restoration of **biodiversity** at the species (including genetic diversity), ecosystem, and landscape level. This is highlighted repeatedly in review studies, for example for heathlands (\square Fig. 1.2) and peatlands (Bonnett et al. 2009). There is no doubt that biodiversity loss is a global environmental problem that has been pointed out by science and the practice of nature conservation for decades (e.g., Ehrlich 1994; Tilman et al. 1994; Pimm et al. 1995; Sala et al. 2000; Barthlott et al. 2008/2009; Cardinale et al. 2012; Hooper et al. 2012) and has been translated into environmental policies and actions in many countries around the world, at least since the United Nations Conference on Environment and Development in Rio de Janeiro in 1992. Nevertheless, the focus of ecosystem restoration on the conservation and restoration of biodiversity falls short if the entire ecosystem services (\triangleright Sect. 1.3) are not comprehensively integrated into a qualitative and quantitative assessment against the background of sustainability (► Chap. 24).

Fig. 1.2 Scientific publications on heathlands with a focus on biodiversity, conservation, and restoration in the period 1900–2011. (After Fagúndez 2013)

1

First, this chapter presents important fundamentals of restoration ecology that are indispensable as a scientific basis for the following chapters. A brief historical overview of ecosystem restoration and restoration ecology is given. Basic ecological terms and key concepts are explained, which provide the scientific basis for the practice of ecosystem restoration. In particular, the concept of ecosystem services is addressed and the term degradation is discussed. An up-to-date definition of ecosystem restoration is derived from the current state of knowledge. Finally, this chapter outlines the different scales of ecosystem and landscape restoration.

Part I of this book focuses on aspects of the natural sciences, and Part II bridges the gap to the social sciences and humanities, respectively, and their implications for ecosystem restoration.

1.1 Ecosystem Restoration and Restoration Ecology From a Historical Perspective

The "restoration" of ecosystems is as old and common as man started to create settlements and perform agriculture, i.e., in principle it goes back to the Neolithic Period, for nothing other than a type of restoration is **fallow** on cultivated agricultural land, where abiotic resources regenerate. As the brief outline of the history of agriculture in \blacktriangleright Chap. 17 shows, fallow in the traditional three-field agricultural system only came to an end when mineral fertilizer was introduced, thus allowing for an increase in agricultural yields through a permanent nutrient supply.

One of the largest and most comprehensive restoration projects in Central Europe was the **afforestation** of the open cultural landscape with coniferous trees about 200 years ago, after a period of overexploitation of the timber resources. Grazing, forest clearance, litter gathering, and other uses that depleted the natural abiotic and biotic resources had led to a large-scale loss of forests and thus of timber as a natural resource. Woodland had been largely vanished in many regions, and heathland and poor grassland covered large parts of Central Europe. The afforestation, especially with Scots pine in the lowlands and Norway spruce in the mountain ranges, particularly since the end of the eighteenth century, also marked the beginning of regulated forestry (\triangleright Chap. 7) and the concept of sustainability (\triangleright Chap. 24).

Still without the theoretical foundations of modern restoration ecology, overused and degraded sites had already been restored since the beginning of the last century. For example, the neo-baroque **Körnerpark** in Neukölln (Berlin) was created between 1912 and 1916 as a recultivation measure on the site of a former gravel pit. The high significance of this park today in terms of ecosystem services in one of the most densely populated districts of Berlin (Statistical Report 2016 for Neukölln: 14,295 inhabitants per km²) is easily revealed to the visitor by the number of people there on a summer day (**D** Fig. 1.3).

Experiences in ecosystem restoration through several decades are available, particularly for rivers, peatlands, lakes, and the large-scale open-cast lignite mining landscapes. Restoration ecology has developed

Fig. 1.3 The Körnerpark in Berlin-Neukölln, created in the early twentieth century as the recultivation of a former gravel pit. (S. Zerbe, August 2017)

1

conceptually and methodologically from all these different experiences in the various ecosystems and land-use types, respectively. The restoration of the characteristic prairies in North America since the 1930s are regarded as internationally trend-setting for the development of restoration ecology. In this context, the restoration of the Curtis Prairie of Wisconsin-Madison the University of Arboretum is considered as one of the first initiatives (Sperry 1983; Cottam 1987; Wegener et al. 2008), even though this was not a scientifically documented experiment of restoration ecology (Anderson 2009) and has more the character of a founding myth of restoration ecology (Jordan III and Lubick 2011, p. 75). Looking at Central Europe, the first targeted attempts to restore ecosystems on a scientific basis also start during this period. If we disregard the first initiatives before 1920, more extensive recultivation measures with afforestation began in the lignite mining area of North Rhine-Westphalia between 1920 and 1945 (Schölmerich 2013). Today, these afforestations, some of which are very close to nature and represent interesting experimental areas of forest restoration, are already more than 80 years old (► Chap. 7). Also, there are ecological studies on mining spoil heaps. In the 1960s, for example, Bornkamm (1985) established permanent plots for the investigation of vegetation development and natural re-colonization processes on the dumping sites of opencast lignite mining.

Conceptually already well rooted in the natural sciences (e.g., biology, ecology, hydrology), **lake restoration** projects have been carried out e.g., in Sweden (Björk 2014) since the 1960s. The restoration of **peatlands** and **rivers** with their **floodplains** also has a long history of practical experience (e.g., Brülisauer and Klötzli 1998; Succow and Joosten 2001; Jürging 2006). Since the 1990s, the forestry sector in many German states has been promoting **forest conversion** and thus the restoration of near-natural forests with silvicultural programmes based on nature conservation and ecological principles. Apart from these near-natural ecosystems, the focus today is on the one hand on traditional land-use systems of the cultural landscape, such as meadows, pastures, dry grasslands, and heaths, and on the other hand on highly disturbed landscapes such as mining sites (e.g., brown coal), military training areas, and urban-industrial sites. In addition to a large number of local and small-scale restoration projects, which are unfortunately often insufficiently documented scientifically, large-scale restoration projects, in particular, have provided an impetus for the development of restoration ecology. For example, many of the large-scale nature conservation projects funded by the German government, with a total area of all projects funded to date of approximately 3700 km² (Fig. 1.4), encompass habitat restoration (Doerpinghaus and Bruker 2016).

Similar to what Jordan III and Lubick (2011) have published with a focus on North America, it would certainly also be worthwhile to comprehensively review the history of restoration ecology and ecosystem restoration in Central Europe, also integrating the interactions of the natural and human sciences as well as the interdisciplinary impulses that result from this interaction of the various scientific disciplines.

For the development of restoration ecology as a sub-discipline of ecology, the foundation of the Society for Ecological Restoration (SER) in 1987 must be considered an international milestone. The society comprises representatives from science and practice and offers a platform for the exchange of information with regular international conferences. In addition, SER publishes a Newsletter that provides information on current activities in research, teaching, and restoration practice \blacktriangleright (\blacktriangleright www.ser.org). In comparison to these international activities, a working group on restoration ecology was founded 10 years later in 1997 within the Society for Ecology (Gesellschaft für Ökologie), which formed the joint Working

Fig. 1.4 Completed and ongoing large-scale nature conservation projects in Germany (state: 1st July, 2016); many of these projects aim at habitat restoration. (From Doerpinghaus and Bruker 2016)

Group on Nature Conservation and Restoration Ecology in 2016.

In addition to the scientific journal *Restoration Ecology*, which is published by SER, other international scientific journals also focus on restoration ecology and ecosystem restoration, such as Environmental

Management, Ecological Restoration, Ecological Engineering, Land Degradation and Development, Landscape and Ecological Engineering, Restoration & Management Notes, and Ecological Management & Restoration. Many English- and Germanlanguage journals for science and practice, including those in the disciplines of ecology, animal ecology, vegetation ecology, landscape ecology, ecological engineering, agriculture and forestry, and environmental sciences, increasingly report on ecosystem restoration projects and experimental restoration studies *sensu latu* (see Ormerod 2003; Fagúndez 2013). Since the 1980s, comprehensive textbooks with different thematic and geographical focuses have been published continuously (**■** Table 1.1).

Information on practical restoration projects is also provided by the financial sponsors of the projects (\triangleright Chap. 23), such as the European Union, nature conservation associations. foundations (e.g., Deutsche Bundesstiftung Otto Umwelt. Michael Environmental Foundation, Michael Succow Foundation, German Wildlife Foundation. the foundations within the German Stifterverband) or the national offices for nature conservation and environmental protection. In addition, references to restoration projects can be found in the municipalities or on their websites. A problem for restoration

ecology, especially with regard to the critical analysis of the manifold practical experiences and their evaluation for future restoration projects, is that information is often difficult to find in the grey literature. In contrast to restoration projects that are successful, at least in the short term, there is often insufficient or no reporting at all on the failures, which makes it difficult to learn from them and to consistently further develop and adapt the approaches, methods, and measures of ecosystem restoration.

Courses or modules on restoration ecology or ecosystem restoration are meanwhile offered at Bachelor's or Master's level at many universities in Europe as part of the degree courses in biology, ecology, land-scape ecology, environmental and resource management, environmental and ecological engineering, agricultural and forest sciences, landscape planning, etc. Study programs that focus exclusively on ecosystem restoration, possibly with a special focus (e.g., on wetlands), have been comparatively rare in Europe to date (**T** Table 1.2). In contrast,

Study programUniversityCountryType of Higher EducationBiology - Biodiversity: Conservation and RestorationAntwerpBELMScEcology, Environmental Management, and RestorationBarcelonaEMScEnvironmental Diagnosis and ManagementLondon (Royal Holloway)UKMScEnvironmental Protection: Restoration and Management of EnvironmentWarsawPLMScLand Reclamation and RestorationCranfieldUKMScLandscape Restoration for Sustainable Development: a Business ApproachRotterdam (School of Management)NLFurther education	focus on ecosystem restoration and restoration ecology in Europe (state: 2019)					
Ecology, Environmental Management, and RestorationBarcelonaEMScEnvironmental Diagnosis and ManagementLondon (Royal Holloway)UKMScEnvironmental Protection: Restoration and Management of EnvironmentWarsawPLMScLand Reclamation and RestorationCranfieldUKMScLandscape Restoration for Sustainable Development: a Business ApproachRotterdam (School of Management)NLFurther education	Study program	University	Country	• • •		
Environmental Diagnosis and ManagementLondon (Royal Holloway)UKMScEnvironmental Protection: Restoration and Management of EnvironmentWarsawPLMScLand Reclamation and RestorationCranfieldUKMScLandscape Restoration for Sustainable Development: a Business ApproachRotterdam (School of Management)NLFurther education	Biology - Biodiversity: Conservation and Restoration	Antwerp	BEL	MSc		
Holloway)Holloway)Environmental Protection: Restoration and Management of EnvironmentWarsawPLMScLand Reclamation and RestorationCranfieldUKMScLandscape Restoration for Sustainable Development: a Business ApproachRotterdam (School of Management)NLFurther education	Ecology, Environmental Management, and Restoration	Barcelona	Е	MSc		
Management of EnvironmentCranfieldUKMScLand Reclamation and RestorationCranfieldUKMScLandscape Restoration for Sustainable Development: a Business ApproachRotterdam (School of Management)NLFurther education	Environmental Diagnosis and Management	` *	UK	MSc		
Landscape Restoration for Sustainable Development: a Business ApproachRotterdam (School of Management)NLFurther education		Warsaw	PL	MSc		
a Business Approach (School of education Management)	Land Reclamation and Restoration	Cranfield	UK	MSc		
	*	(School of	NL			
wetiand science and Conservation Bangor UK MSc	Wetland science and Conservation	Bangor	UK	MSc		

Table 1.2 Examples of study programmes (Master's programme (MSc) or further education) with a focus on ecosystem restoration and restoration ecology in Europe (state: 2019)

BEL Belgium, E Spain, NL Netherlands, PL Poland, UK United Kingdom

1

ecosystem restoration and restoration ecology can be studied at universities outside Europe e.g., at the Simon Fraser University in Burnaby in Canada as well as at the Defiance College and Paul Smith's College, the Montana State University, the State University of New York, the University of Texas, and the University of Florida in the United States of America (SER 2017).

1.2 Ecological Terms and Key Concepts as a Basis for Ecosystem Restoration

Restoration ecology, as a sub-discipline of ecology is based on its scientific terminology and key concepts. Many of these key concepts are applied in practical ecosystem restoration (Table 1.4). In many cases, ecological hypotheses are verified or falsified in a trial-and-error process in the context of restoration projects. Bradshaw (1987, p. 23) has aptly expressed this in the words "ecosystem restoration is an acid test for ecology". Even if, in the case of the need for immediate action (e.g., against the invasion of undesirable species) or novel habitat conditions (e.g., on abandoned industrial sites) and thus a lack of thorough scientific research, ecosystem restoration is more of an "art" than science according to van Diggelen et al. (2001, p. 115), restoration ecology, nevertheless, has achieved a comprehensive knowledge level in recent decades that can be profitably incorporated into restoration practice.

In the following chapters, some important ecological terms and key concepts are briefly outlined. Thereby, it is distinguishing between the population and species level and the ecosystem and landscape level, although this is not always consistently possible. For further study, please refer to the numerous ecological textbooks available (e.g., Chapman and Reiss 1999; Odum and Barrett 2004; Begon et al. 2005; Schulze et al. 2005; Smith and Smith 2009; Loreau 2010; Chapin III et al. 2011; Nentwig et al. 2012; Frey and Lösch 2014; Leuschner and Ellenberg 2017a, b) and the relevant chapters of this book, where specific reference to ecosystem restoration is made (Part II).

1.2.1 Species and Populations

Species Pool

The number of species in a given spatial landscape section (e.g., a forest ecosystem) is determined by the available species at the next higher spatial level (e.g., forest landscape, biogeographic region) (Zobel 1997; Zobel et al. 1998; Herben 2000; Lepš 2001; ■ Fig. 1.5). The species pool of a geographical area is not static, but dynamic. Today, this dynamic is mainly influenced by humans, i.e., species can disappear from the species pool due to the influence of land use and habitat changes (for the global situation, see IUCN 2016), or the anthropogenic introduction of non-native (non-indigenous, alien, exotic) species (neobiota; Kowarik 2010) increases the species pool, such as in cities (► Chaps. 5 and 19). The re-introduction of species can change both the local (e.g., re-introduction of grassland species to a meadow) and the regional species pool (e.g., re-introduction of megaherbivores or large predators) (\blacktriangleright Chap. 4).

Metapopulation

According to the metapopulation model, populations of a species are spatially separated as sub-populations within their range (Hanski and Gaggiotti 2004). In this system of populations, the extinction of a local subpopulation and its re-establishment through immigration results in a constant change in the spatial distribution of a species within the potential settlement area (Nentwig et al. 2012). The exchange of individuals (gene flow) in this system of populations also helps to ensure that sub-populations do not become genetically impoverished. Different models assume sub-populations of different