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Foreword

At the request of the authors, I have been given the honour of writing the foreword
to this book, which is devoted to railway bridges. It develops the aspects referring to
their structural conception, taking into account the characteristics of railway traffic:
actions, limit states, speeds, etc., and includes a detailed analysis of the superstruc-
ture of the track with its different components and singular elements (for example,
expansion devices) that allow the correct behaviour of the track.

In the following chapters, the knowledge and experience of the authors is passed
on. In this respect, I remember a technical conference that took place in the 1970s
at the Eduardo Torroja Institute, dedicated to bridges; at that time, the undersigned
engineer was assigned to the Renfe Bridge Division and attended it. Ramón
del Cuvillo, professor of Concrete at the School of Civil Engineering in Madrid,
presented a paper in which he focused on the defects and mistakes in design and
execution in projects and works in which he had been involved. His presentation
was the most applauded of the day’s and, personally, the one from which I learned
the most. I hope that reading this book will be useful to avoid the repetition of
problems that can be avoided, without having to wait for experience after the
execution of the works.

As the reader will appreciate, special emphasis is placed on the interactions
between the structure and the track, subjected to railway and environmental
actions, taking into account the requirements of their stability in different situ-
ations; solutions are also proposed and considered in relation to the transitions
between the bridge and the adjacent infrastructure (and track).

Special attention is paid to the dynamic nature of railway actions, studying the
dynamic response of the structure and its influence on the behaviour, also dynamic,
of the track and its components, with the repercussions that this may have on safety,
traffic flow quality, and maintenance needs.

To conclude, I would like to transmit here some ideas that the Emeritus Professor
of Structural Engineering of the University of Berkeley, Edward L. Wilson, sets out in
his book Static and Dynamic Analysis of Structures. In a section of Personal Remarks,
he relates that his first-year physics professor warned his students ‘not to use an
equation they could not prove’; he also advises, with respect to modern structural



xvi Foreword

engineering, ‘not to use a structural analysis program unless you fully understand
the theory and approximations contained in the program’. I fully agree with these
considerations; I therefore share them with the reader, in the hope that they will be
useful to them.

Madrid, June 2023 Jorge Nasarre
Civil Engineer
Caminos de Hierro Foundation
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1

Introduction to High-Speed Railway Bridges
José Romo

1.1 Book’s Content

One of the particularities of this book is that it includes not only the aspects related
to the design and behaviour of these types of bridges, but also those questions linked
to the railway technology of the track itself. It is clear that the knowledge of both
fields and the interaction between these two technologies, structural and railway, is
fundamental for the complete design of these bridges.

The first chapter of the book is dedicated to explain the particularities of
high-speed railway bridges (HSRB), in comparison with structures for conventional
railways. The typological particularities of this type of bridge are also explained, as
well as the importance of these works as a legacy for future generations.

Chapter 2 is devoted entirely to explaining the technology of the track and the
particularities of the high-speed infrastructure. This chapter explains the special
constraints in terms of rail traffic safety and passenger comfort. It also deals with
critical elements in the design of these structures, such as rail joints and other special
track elements.

Chapter 3 reviews the main concepts which affect the design and includes the
main typologies used in structures for high-speed railway lines. The dimensions and
characteristic weights of the different solutions are also included. This chapter also
describes the special structural elements of these structures, such as abutments and
fixed points. Finally, the particulars of the design of HSRB located in seismic areas
are included. This chapter also has a worked example corresponding to a railway
viaduct, which starts with the general definition of the bridge in a specific valley
and the geometric definition of the different structural elements that make up the
structure.

Chapter 4 is dedicated to the Design Basis of bridges of the railways high-speed
lines. In this section, the typical loads and design criteria are indicated, as well as its
application to the worked example defined in Chapter 3.

Chapter 5 is devoted entirely to analysing the dynamic phenomena associated
with HSR bridges. In this section the different methods of analysis, the trains that

High-Speed Railway Bridges: Conceptual Design Guide, First Edition.
José Romo, Alejandro Pérez-Caldentey, and Manuel Cuadrado.
© 2024 Ernst & Sohn GmbH. Published 2024 by Ernst & Sohn GmbH.



2 1 Introduction to High-Speed Railway Bridges

must be analysed to calculate the dynamic response, as well as the way to consider
other aspects of the response, such as the irregularity of the track and the vehicle or
the interaction between the vehicle and the structure, are presented. The chapter
is completed with several practical examples and an appendix which includes
the theoretical aspects of general dynamics and their application to the analysis
of HSRB.

Chapter 6 is dedicated to the interaction between the track and the structure.
This section analyses this phenomenon and how to take into account the thermal
effects, traction and braking forces, vertical loads and rheological effects, in the case
of concrete decks. In addition to the analysis models, the checks to be carried out
to calculate stresses in rails and relative displacements are analysed. This chapter
also deals with the criteria for the placement of track joints, as well as the practical
application of the worked example.

Chapter 7 deals specifically with aspects linked to the conceptual design with
maintenance of bridges for high-speed rail lines in mind.

In addition to Chapters 1–7, the book includes two appendices. One is devoted
to a review of the general concepts of dynamics that the reader of Chapter 5 on the
dynamic behaviour of these bridges should be familiar with. The second appendix
includes a ‘register’ of high-speed railway bridges built in different parts of the world.

1.2 What is Special About a High-Speed Rail Bridge?

It is often asked what is so special about a railway bridge for a high-speed line and
particularly, what makes a railway bridge for a high-speed line different from a con-
ventional railway bridge. The corresponding Sections 1.2.1–1.2.4 that follow in this
chapter describe the causes or aspects that make HSRB so special.

1.2.1 Dynamic Amplification and Resonance

On railway bridges, there are a number of factors that lead to a dynamic response of
the structure under traffic loads.

On the one hand, the loads are fast so there is an impact effect. On the other hand,
the trains are composed of a more or less long succession of vehicles which means
that the loads are repeated, so the dynamic effect is amplified. Finally, the imperfec-
tions of both the track and the vehicles create disturbances in the value and the way
of applying the loads, which leads to an increase in the response of the structure.

Therefore, the actual forces and deformations of a bridge due to rail traffic are
of a dynamic nature and their values can be considerably higher than those due to
static actions. In order to take this amplification into account in the calculations, an
impact or dynamic magnification coefficient is applied to the static loads, a coeffi-
cient established in the design standards on the basis of statistical studies carried out
on bridges in service.

But all these causes are increased when the speed of trains is increased, and as
will be seen throughout the book, the critical range of speeds for the phenomenon
of resonance on a bridge occurs when trains run over 220 km/h.
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Resonance of a structure occurs when the frequencies of the dynamic excitatory
actions coincide with the eigenfrequency of vibration of the structure f 0 (a whole
fraction of it). In the case of railway bridges, resonance can be produced by the
passage of trains with regularly spaced axle loads or groups of axles (dk metres)
running at a certain critical speed (v in m/s).

v∕dk = f0∕i with ; i = 1,2,3… (1.1)

Thus for a 30 m span bridge with a typical eigenfrequency of 3.5 Hz, on which
high-speed trains with 18 m coaches are running, the critical speed of passage is
3.5 ⋅ 18 ⋅ 3.6 = 227 m/s.

The coefficients of dynamic load magnification do not cover the risk of the effects
of the resonance of the structure.

The amplification of stresses and accelerations due to the proximity to the
resonance frequency means that special problems typical of HSRB can occur.
These problems can affect the functionality of the structure as they can lead on
the one hand to safety problems for rail traffic and on the other hand to a loss of
comfort for train users.

Therefore, it must be verified that the vibrations of the deck do not reduce the
lateral support of the track or reduce the contact pressure between the wheel and
the rail, which could cause the wheel to come off the track and the convoy to derail.

1.2.2 Rail Traffic Security

One of the effects that can jeopardise the safety of rail traffic as a result of the high
speed of the train is the high vertical acceleration of the deck produced as a dynamic
effect of the excitation of the structure if the frequency of the loads is close to the
vertical frequency of the structure. In these cases, track instability can occur as a
result of the loss of ballast support or the loss of geometric quality of the track.

Other effects, such as the danger of derailment by deck twist or by the deformation
of the deck or rotations in supports, or by the transverse deformation of the deck,
or by the relative displacement of the deck, increase considerably as the speed of
passage of train increases.

All this obliges the establishment of much more rigorous limits for the highest
speeds and even, as will be seen later, to create fixed longitudinal connection points
between the deck and the infrastructure to avoid its relative movement.

1.2.3 Passenger’s Comfort

Also, as a consequence of the vertical accelerations suffered by the structure, there
may be a loss of comfort for train users. For this reason, the design of the structure
must seek to distance the vibration frequencies of the structure from the frequency of
passage of the bogies and therefore the loads, in order to reduce this problem so that
the acceleration experienced by the passengers and therefore their loss of comfort is
within manageable limits. To analyse that a dynamic analysis used different types of
trains has to be carried out.
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1.2.4 Track–Structure Interaction

On all railway bridges there is an interaction between the track and the structure.
The track is laid on the structure and therefore there is a joint response to the loads.
For example, the difference in temperature between the rails and the structure, the
transmission of traction and braking loads make it necessary to control the stresses
on the rails to prevent them from breaking. The complexity of the mechanics
of the connection between the rails and the deck and between the deck and the
substructure (including the foundations) means that in any bridge project for a
high-speed line it is necessary to analyse the interaction between the rails and the
structure by means of a non-linear analysis. This type of complex analysis allows
calculating the value of the stresses in the rails as well as the distribution of loads to
the different part of the structure.

1.3 General Ideas on High-Speed Railway Bridges

Here again it might be asked what the differences are between a conventional railway
bridge and a high-speed one. Firstly, it should be noted that the deformation and
acceleration limits that must be met in this type of bridge are much more demanding,
due to the stricter demands on the regularity of the track to achieve high-throughput
speeds, and consequently the decks are slightly more robust than in the case of a
conventional railway bridge.

But perhaps what most differentiates an HSRB from other bridges is the need
to rigidly fix the deck to a fixed point in the infrastructure, in the common case
of continuous decks. This means that on the one hand the longitudinal typology
of these bridges is different and on the other hand the connection details between
superstructure and substructure are special as will be explained below [1]. There is
also another factor that conditions the longitudinal typology. The stroke of the track
expansion devices homologated for high-speed. For a time the maximum stroke
was 600 m and then in the last decades it went up to 1200 mm.

The need to fix the deck longitudinally to one point of the infrastructure, in bridges
with a continuous deck, means that on the one hand the longitudinal behaviour
of this type of bridge is radically different from that of other bridges. Firstly, the
resistance to longitudinal action is concentrated at one point, which means that the
deck will be subject to significant traction and this influences the design of the deck.
On the other hand, when the deck is fixed at one point, it is often necessary to have
rail expansion joints in one of the abutments when the structure exceeds a length of
approximately 90 m in order to reduce the over-stress on the rails.

In all cases where the deck is continuous, at least one element of the infrastructure
must be designed with high longitudinal rigidity (Figure 1.1). As will be seen later,
in the case of long viaducts, and due to the limitation of maximum movements of
commercial expansion joint devices, it may be necessary to have a fixed point in the
middle of the bridge.

An alternative to the previous design is to make isostatic bridges in which each
pier takes the corresponding part of the longitudinal load, especially the traction and
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Figure 1.1 Sar Viaduct (FHECOR), Spain (Source: FHECOR).

Figure 1.2 Span by span isostatic solution: China, China Railways (Courtesy of China
Railways).

braking force. This allows the elimination of joints in the rails but on the contrary,
there are structural expansion joints in all sections of the deck coinciding with the
piles. This solution, which might seem better from the point of view of track mainte-
nance, has the disadvantage of higher maintenance of the structure and in the case
of bridges in seismic areas, the lack of robustness in combination, which could cause
relative movements between adjacent decks during the seismic actions. This type of
design is being used very often in China because it is highly industrialisable and
because it allows for very flexible construction (Figure 1.2).

There are some intermediate alternatives that involve the construction of a series
of continuous sections having intermediate joints every certain number of spans.
This solution has recently been used in Germany [2] and [3], shown in Figure 1.3.
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Figure 1.3 Gänsebachtal Viaduct (schlaich bergermann partner sbp), Germany, DB Netz AG
(Source: Störfix).

In summary, and from a typological point of view, high-speed bridges have some
specific aspects which make them, at least from a longitudinal perspective, different
from other bridges, as will be seen in Sections 1.4 and 1.5.

1.4 Evolution and Trends in High-Speed Bridge Design

1.4.1 First High-Speed Bridges

The first high-speed railway lines were built in the 1960s and 1970s in Japan and
later in Europe in Germany, France, and Spain. The first viaducts for high-speed rail-
way lines were built in Japan. The population density throughout Japan has meant
that most of the lines have been built on viaducts. The typologies of bridges for
the Shinkansen are varied, although the most singular are the extradosed bridges, a
typology that originated in Japan itself.

In Europe, the first high-speed railway lines were built between one and two
decades later than the Japanese lines. On these lines, large sections of embankment
or cuttings alternate with a few viaducts and tunnels at specific points along the
route.

1.4.1.1 First-Generation German Bridges
The German bridges for first-generation high-speed lines were designed according
to the principle of rapid replacement of the decks in case of failure of one of them.
Thus, except in exceptional cases, the bridges were built with isostatic spans, with
maximum spans of 55 m. These bridges were obviously heavier than the continu-
ous bridges and required four bearings and expansion joints in all the pier supports,
which is obviously a problem for the maintenance of the structures. However, this
typology allowed the track to be continuous and therefore without rail joints, with
the great advantage that this entailed for track maintenance.

On these early lines, when the size of the obstacle made it impossible to use iso-
static spans, Deutsche Bahn allowed the use of continuous bridges but with a length
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Figure 1.4 Structural scheme bridge over the river Main at Gemünden (1984).
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Figure 1.5 Structural scheme bridge over the river Main at Veitshöchheim (1987).

limited to 400 m so that this section could be replaced, at least theoretically, in a
single operation.

The bridges over the river Main in Gemünden (Figure 1.4) and Veitshöchheim
(Figure 1.5) built in 1984 and 1987, respectively, are structures with continuous
spans and therefore with rail expansion joints between the individual deck
subsections [4].

The Pfieffetal Viaduct, built in 1989 (Figure 1.6), was the first bridge in which,
while maintaining the isostatic replaceable span solution, a central point was
designed to collect the braking loads there. The isostatic decks were connected to
each other longitudinally by means of a prestressing system centred on the deck,
which allows the braking loads to be transferred to this central point. In this case,
the track has two expansion joints coinciding with the abutments [4].
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Figure 1.6 Structural scheme bridge over the Pfieffetal Viaduct (1989).
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Figure 1.7 La Grenette Viaduct with ‘inert’ section and double expansion joints of
structure and track.
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Figure 1.8 Avignon viaducts with intermediate expansion joint (1999).

1.4.1.2 First-Generation French Bridges
In contrast to the first-generation German bridges, the first French high-speed
bridges were built with continuous decks. This implies that for long bridges it is
necessary to provide track expansion joints.

Usually, long decks are divided into three parts. The two lateral sections are long
and are connected longitudinally to their respective abutments. Between these two
spans is an isostatic central span called the neutral or inertial span, which allows
the effective expansion length of the bridge to be divided by two (Figure 1.7). These
bridges have two rail joints coinciding with the two expansion joints of the neutral
portal frame structure [5].

In some cases, the provision of a central expansion joint coinciding with an inter-
mediate point of a span has been tested in order to provide one single track expansion
joint in one intermediate point of and intermediate span instead of the two necessary
in the case of solutions with an inert span (Figure 1.8) [6].

Unlike in other countries, special bridges on French high-speed lines have always
been designed in collaboration with architects and engineers. This has perhaps
meant that all the designs have been special and have somehow departed from
purely structural solutions.

1.4.1.3 First-Generation Spanish Bridges
Spanish bridges built from 1987 are characterised by the use of continuous solutions
with a fixed point, usually at one abutment, and a structural and track expansion
joint at the opposite abutment. In the case of very long bridges, it is common to have


