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Preface

This book grew out of lectures that the author gave at the Technische Universität
Dresden. These lectureswere entitled “ComputationalMethods for ReinforcedCon-
crete Structures” and “Design of Reinforced Concrete Structures.” Reinforced con-
crete is a composite of concrete and reinforcement connected by bond. Bond is a key
item for the behaviour of the composite, which utilises the compressive strength
of concrete and the tensile strength of reinforcement while allowing for controlled
crack formation. This makes reinforced concrete unique compared to other con-
struction materials such as steel, wood, glass, masonry, plastic materials, fibre re-
inforced plastics, geomaterials, etc. The theory and use of reinforced concrete in
structures falls in the area of structural concrete.
Numerical methods like the finite element method, on the other hand, ba-

sically allow for a realistic computation of the behaviour of all types of struc-
tures. But the implementations are generally presented as black boxes in the
view of the users. Input is fed in and the output has to be trusted. The assump-
tions and methods in-between are not transparent. This book aims to provide
transparency with special attention being paid to the unique properties of re-
inforced concrete structures. Corresponding methods are described with their
potentials and limitations while integrating them into the larger framework of
computational mechanics connected to reinforced concrete. This is aimed at ad-
vanced students of civil and mechanical engineering, academic teachers, design-
ing and supervising engineers involved in complex problems of structural con-
crete, and researchers and software developers interested in the broader picture.
Most of the methods described are complemented with examples computed with
a Python software package developed by the author and coworkers. Program
package and example data should be available at https://www.concrete-fem.com.
The package exclusively uses the methods described in this book. It is open for
discussion with the disclosure of the source code and should give stimulation for
alternatives and further developments.
This book represents a fundamental revision of the book Computational

Methods for Reinforced Concrete Structures, which was published in
2014. In particular, the chapter onmulti-axial concretematerial laws was expanded,
and the topics of crack formation and the regularisation of material laws with strain
softening were dealt with in a separate chapter. Thanks are given to the publisher



VI Preface

Ernst & Sohn, Berlin, and in particular to Mrs Claudia Ozimek for the engagement
in supporting this work. My education in civil engineering andmy professional and
academic career were guided by my academic teacher Prof. Dr.-Ing. Dr.-Ing. E.h.
Dr. techn. h.c. Josef Eibl1), former Head of the Department of Concrete Structures
at the Institute of Concrete Structures and Building Materials at the Technische
Hochschule Karlsruhe (nowadays KIT – Karlsruhe Institute of Technology). Fur-
ther thanks are given to former coworkers Patrik Pröchtel, JensHartig,MirkoKitzig,
Tino Kühn, Joachim Finzel, Tilo Senckpiel-Peters, Daniel Karl, Ahmad Chihadeh,
Ammar Siddig Ali Babiker, Evmorfia Panteki, and Alaleh Sehni for their specific
contributions. I deeply appreciate the inspiring and collaborative environment of
the Institute of Concrete Structures at the Technische Unversität Dresden, which
is directed by Prof. Dr.-Ing. Dr.-Ing. E.h. Manfred Curbach. It was my pleasure to
teach and research at this institution. And I have to express my deep gratitude to
my wife Caroline for her love and patience.

Dresden, Spring 2022 Ulrich Häussler-Combe

1) He passed away in 2018.
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Notation

The same symbols may have different meanings in some cases. But the different
meanings are used in different contexts, and misunderstandings should not arise.

firstly used
General∙T transpose of vector or matrix ∙ Eq. (2.5)∙−1 inverse of quadratic matrix ∙ Eq. (2.13)𝛿∙ virtual variation of ∙, test function Eq. (2.5)𝛿∙ solution increment of ∙ within iterations Eq. (2.75)∙̃ ∙ transformed in (local) coordinate system Eq. (6.14)∙̇ time derivative of ∙ Eq. (2.4)∙𝑒 ∙ related to single finite element Eq. (2.18)

Normal lowercase italics𝑎𝑠 reinforcement cross-section per unit width Eq. (9.61)𝑏 cross-section width Eq. (4.9)𝑏𝑤 crack band width Eq. (3.6)𝑑 cross-section effective height Eq. (9.67)𝑒 element index Eq. (2.18)𝑓 strength condition Eq. (6.48)𝑓𝑐 uniaxial compressive strength of concrete (unsigned) Eq. (3.2)𝑓𝑐𝑡 uniaxial tensile strength of concrete Eq. (3.4)𝑓𝑡 uniaxial failure stress of reinforcement Eq. (3.41)𝑓𝑦 uniaxial yield stress of reinforcement Eq. (2.48)𝑓𝐸, 𝑓𝑅 probability density functions of random variables 𝐸, 𝑅 Eqs. (11.2), (11.3)𝑔𝑓 specific crack energy per unit volume Eq. (3.7)ℎ cross-section geometric height Eq. (4.10)𝑚𝑥,𝑚𝑦,𝑚𝑥𝑦 moments per unit width Eq. (9.7)𝑛 total number of degrees of freedom in a discretised system Eq. (2.70)𝑛𝐸 total number of elements Section 4.3𝑛𝑖 order of Gauss integration Eq. (2.69)𝑛𝑁 total number of nodes Section 4.3𝑛𝑥, 𝑛𝑦, 𝑛𝑥𝑦 normal forces per unit width Eq. (9.7)𝑝 pressure Eq. (6.8)𝑝𝑓 failure probability Eq. (11.19)𝑝𝑥, 𝑝𝑧 loading distributed along beam Eq. (4.49)
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firstly used𝑟, 𝑠, 𝑡 local spatial coordinates Eq. (2.15)𝑠 slip Section 3.4𝑠𝑏𝑓 slip at residual bond strength Section 3.4𝑠𝑏max slip at bond strength Section 3.4𝑡 clock time or loading time Eq. (2.4)𝑡𝑥, 𝑡𝑦, 𝑡𝑥𝑦 couple force resultants per unit width Eq. (9.58)𝑢𝑖 𝑖-th displacement component Eq. (6.1)𝑣𝑥, 𝑣𝑦 shear forces per unit width Eq. (9.7)𝑤 deflection Eq. (2.56)𝑤 fictitious crack width Eq. (3.5)𝑤𝑐𝑟 critical crack width Eq. (3.9)𝑥, 𝑦, 𝑧 global spatial coordinates Eq. (2.14)𝑥, 𝑥 compression zone height Eqs. (4.29), (9.66)𝑧, 𝑧 internal lever arm Eqs. (4.115), (9.58)

Bold lowercase roman
b body forces Eq. (2.5)
f internal nodal forces Eq. (2.9)
p external nodal forces Eq. (2.9)
n normal vector Eq. (6.5)
s slip Eq. (8.53)
t surface tractions Eq. (2.5)
t𝑏 bond force Eq. (8.54)
t𝑐𝐿 crack traction in local system Eq. (7.3)
t𝑐 crack traction in global system Eq. (7.133)
u displacement field Eq. (2.1)𝝊 nodal displacement vector Eq. (2.1)𝝊𝑒 nodal displacement vector related to a single element Eq. (2.18)
w𝑐𝐿 fictitious crack width in local system Eq. (7.2)
w𝑐 fictitious crack width in global system Eq. (7.133)

Normal uppercase italics𝐴 cross-sectional area of a bar or beam Eq. (2.54)𝐴𝑠 cross-sectional area reinforcement Section 3.6𝐴𝑡 part of surface with prescribed tractions Eq. (2.5)𝐴𝑢 part of surface with prescribed displacements Eq. (2.53)𝐶 material stiffness coefficient Eq. (3.35)𝐶𝑇 tangential material stiffness coefficient Eq. (3.37)𝐷 scalar damage variable Eq. (6.105)𝐸 Young’s modulus Eq. (2.43)𝐸0 initial Young’s modulus Eq. (3.16)𝐸𝑐 initial Young’s modulus of concrete Eq. (3.1)𝐸𝑠 initial Young’s modulus of steel Eq. (3.41)𝐸𝑇 tangential hardening material stiffness coefficient Eq. (3.41)𝐹 yield function Eq. (6.64)𝐹 damage function Eq. (6.108)𝐹𝐸 distribution function of random variable 𝐸 Eq. (11.1)𝐺 shear modulus Eq. (4.8)
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firstly used𝐺 flow potential Eq. (6.63)𝐺𝑓 specific crack energy per surface Eq. (3.8)𝐼1 first invariant of stress Eq. (6.19)𝐽 determinant of Jacobian matrix Eq. (2.37)𝐽2, 𝐽3 second, third invariant of stress deviator Eq. (6.19)𝐾 slab bending stiffness Eq. (9.12)𝐿𝑐 characteristic length of an element Eq. (7.18)𝐿𝑒 length of bar or beam element Eq. (2.23)𝑀 bending moment Eq. (4.9)𝑁 normal force Eq. (4.9)𝑃 probability Eq. (11.1)𝑇 natural period Eq. (4.209)𝑉 shear force Eq. (4.9)𝑉 volume Eq. (2.5)

Bold uppercase roman
B matrix of spatial derivatives of trial functions Eq. (2.2)
C material stiffness matrix Eq. (2.47)
C𝑇 tangential material stiffness matrix Eq. (2.50)
C𝑐𝐿𝑇 tangential local crack stiffness matrix Eq. (7.9)
D material compliance matrix Eq. (2.51)
D𝑇 tangential material compliance matrix Eq. (2.51)
D𝑐𝑇 tangential crack band compliance matrix Eq. (7.38)
D𝑐𝐿𝑇 tangential local crack compliance matrix Eq. (7.9)
E isotropic linear elastic material stiffness matrix Eq. (6.23)
G1,G2,G3 unit vectors of covariant system Eq. (10.16)
G1,G2,G3 unit vectors of contravariant system Eq. (10.17)
I unit matrix Eq. (6.100)
J Jacobian matrix Eq. (2.20)
K stiffness matrix Eq. (2.11)
K𝑇 tangential stiffness matrix Eq. (2.67)
M mass matrix Eq. (2.61)
N matrix of trial functions Eq. (2.1)
Q stress / strain rotation matrix Eq. (6.14)
T element rotation matrix Eq. (4.105)
V𝑛 shell director Eq. (10.2)
V𝛼,V𝛽 unit vectors of local shell system Eqs. (10.2), (10.3)

Normal lowercase Greek𝛼 for several purposes in a local context𝛼𝐸, 𝛼𝑅 sensitivity parameters Eq. (11.14)𝛼𝑠 shear retention factor Eq. (7.7)𝛽 for several purposes in a local context𝛽𝑡 tension stiffening coefficient Eq. (3.65)𝜖 uniaxial strain Eq. (2.43)𝜖 strain of a beam reference axis Eq. (4.4)𝜖1, 𝜖2, 𝜖3 principal strains Section 6.2.3𝜖𝑐𝑡 concrete strain at uniaxial tensile strength Figure 3.3
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firstly used𝜖𝑐𝑢 concrete failure strain at uniaxial tension Figure 3.3𝜖𝑐1 concrete strain at uniaxial compressive strength (signed) Eq. (3.1)𝜖𝑐𝑢1 concrete failure strain at uniaxial compression (signed) Eq. (3.1)𝜖𝐼 imposed uniaxial strain Eq. (3.35)𝜖𝑉 volumetric strain Eq. (6.101)𝜙 cross-section rotation Eq. (4.1)𝜙 angle of external friction Eq. (6.90)𝜑 for several purposes in a local context𝜑𝑐 orientation of concrete principal compression Eq. (8.5)𝜑𝑠 orientation of reinforcement Eq. (8.6)𝛾 shear angle Eq. (4.1)𝛾𝐸, 𝛾𝑅 partial safety factors Eqs. (11.58), (11.59)𝜅 curvature Eq. (4.4)𝜅𝑝 internal state variable for plasticity Eq. (6.64)𝜅𝑑 internal state variable for damage Eq. (6.107)𝜇𝑅, 𝜇𝐸 means of random variables 𝑅 and 𝐸 Eqs ((11.3), (11.6))𝜈 Poisson’s ratio Eq. (2.44)𝜈𝑅, 𝜈𝐸 coefficients of variation Eq. (11.60)𝜃 Lode angle Eq. (6.45)𝜗 angle of internal friction Eq. (6.88)𝜌 deviatoric length Eq. (6.44)𝜌𝑠 reinforcement ratio Eq. (8.8)𝜚𝑠 specific mass Eq. (2.52)𝜎 uniaxial stress Eq. (2.43)𝜎1, 𝜎2, 𝜎3 principal stresses Section 6.2.3𝜎𝑅, 𝜎𝐸 standard deviations of random variables 𝑅, 𝐸 Eqs. (11.3), (11.6)𝜏 bond stress Eq. (3.47)𝜏 for several purposes in a local context𝜏𝑏𝑓 residual bond strength Figure 3.13𝜏𝑏max bond strength Figure 3.13𝜔 circular natural frequency Eq. (4.209)𝜔 related crack width Eq. (7.5)𝜉 hydrostatic length Eq. (6.43)

Bold lowercase Greek𝝐 small strain Eq. (2.2)𝝐 generalised strain Eq. (2.33)𝝐𝑝 small plastic strain Eq. (6.61)𝜿 vector of internal state variables Eq. (6.38)𝝈 Cauchy stress Eq. (2.3)𝝈 generalised stress Eq. (2.34)𝝈′ deviatoric part of Cauchy stress Eq. (6.9)

Uppercase GreekΦ standardised normal distribution function Eq. (11.20)𝚺 stress extension Eq. (2.82)
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1
Introduction

Why Read This Book?

Concrete is by far the most used building material in the world. Concrete can be
given arbitrary forms, its basic constituents are available everywhere, its processing
is basically simple, and it is inexpensive. Furthermore, concrete can be customised
to fulfil special requirements – e.g. high strength, resistance in rough environments,
impermeability, ductility – through adjustment of binder, aggregates, fibres, and ad-
ditives. Its major characteristic from a mechanical point of view is given by a rel-
atively high compressive strength but a low tensile strength. Thus, it is reinforced
with bars, wire mats, fabrics of steel, carbon, glass, and more, which leads to an
immense variety of composite building materials.
With this we see architectural landmark buildings like the television tower in

Stuttgart, Germany, the first of this type designed and engineered by Fritz Leonhardt
and built in 1956, Figure 1.1a, the Palazzetto dello Sport in Rome, Italy, a coliseum
for the Olympic games 1960 built in 1956 and engineered by Pier Lucri Nervi, Fig-
ure 1.1b, the Ganter bridge within the access road to the Simplon pass in the Swiss
Alps built in 1980 and designed and engineered by ChristianMenn, Figure 1.2a, and

(a) (b)

Figure 1.1 (a) Stuttgart television tower, from Kleinmanns and Weber (2009), photography:
Landesmedienzentrum Baden-Württemberg: Albrecht Brugger. (b) Palazetto dello Sport,
from Ehmann and Pfeffer (1999).

Computational Structural Concrete – Theory and Applications, Second Edition. Ulrich Häussler-Combe.
©2023Ernst&SohnGmbH.Published2023byErnst&SohnGmbH.
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(a) (b)

Figure 1.2 (a) Ganter bridge, from Billington (2014), photography: Nicolas Janberg. (b) Na-
tional Veterans Memorial and Museum, from Helbig et al. (2020), photography: Knippers
Helbig Stuttgart – New York – Berlin.

(a) (b)

Figure 1.3 (a) Office building: Züblin-Haus, from Bachmann et al. (2021). (b) High-speed
railway viaduct over the valley Unstruttal, Germany, photomontage, from Schenkel et al.
(2009).

the National Veterans Memorial and Museum, Columbus, Ohio, USA, built in 2018
and engineered by Knippers Helbig, Figure 1.2b, to mention only a few.
A countless number of concrete buildings contribute to everyday life; for ex-

ample, office buildings, Figure 1.3a (Züblin headquarters, Stuttgart, Germany;
precast concrete with steel–glass atrium), railway bridges, Figure 1.3b (Unstrut-
tal viaduct, Thuringia, Germany), power plants, Figure 1.4a (RWE, Niederaußem,
Germany), station concourses, Figure 1.4b (Stuttgart 21, Germany; final state visu-
alisation, still under construction). This demonstrates some visible contributions
of the application of concrete. Indispensable infrastructures providing freshwater,
drainage, and wastewater processing, waste disposal processing in general, gener-
ation and provision of electricity, support of transport via vehicles, trains, ships,
and airplanes are generally hidden from immediate visibility. To sum it up, today’s
civilisation would be unthinkable without concrete as a building material.

◀ It can be stated that reinforced concrete is the building material of the twentieth cen-
tury. But will it also be the building material of the twenty-first century?

Presumably yes, due to its advantages listed above. But sustainability has to become
a predominant topic also for reinforced concrete besides bearing capacity, usabili-
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(a) (b)

Figure 1.4 (a) Power plant, RWE, Niederaußem, Germany, from Krätzig et al. (2007), pho-
tography: RWE. (b) Underground station concourse, Stuttgart 21, from Bechmann et al.
(2019), visualisation: Ingenhoven Architekten, Düsseldorf.

ty, and durability. Production of cement – the predominant binder for concrete –
causes a high output of CO2 due to its energy consumption on the one hand and
chemical conversion processes on the other hand. The same also applies to rein-
forcing steel whereupon its contribution to reinforced concrete is relatively small
measured by weight ratio. Construction waste makes up the largest proportion of
the total amount of waste. What is the conclusion?

◀ We have to use less concrete and fewer reinforcement materials and at the same time
achieve a higher quality of building components.

Structural design plays a key role to reach this goal. We should gain a better un-
derstanding of load carrying mechanisms of building components in order to fully
utilise load bearing potentials and to optimise structural forms andmaterials. There
is still a lot of room for improvement in this regard.
Computationalmethods are an extremely important tool for this. Numerical sim-

ulation in combinationwith experimental investigationsallows for a comprehensive
understanding of the deformation behaviour, force flow, and failure mechanisms of
building components. This permits weak points to be identified and eliminated in
a targeted manner. New concepts may be initiated, and a simulation-based rapid
prototyping may be performed for initial assessments of new innovative structural
forms andmaterials. On the basis of the knowledge gained from this, the design and
elaboration of components in building practice can be carried out more efficiently
and with higher quality using computational methods.

Topics of the Book

Such methods are generally demanding with respect to methodology, implementa-
tion, and application. This is especially true for nonlinear problems as are typical for
structural concrete. Computational methods for nonlinear structural analysis offer
a wide range of capabilities. But they are made available to users as black boxes.
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This hides the fact that numerical methods usually have application limits. If these
are not observed, the results become questionable. Often, this is not obvious to users
providing input for black boxes and accepting output without hesitation. This mo-
tivates the goals and contents of this textbook about computational methods – in
particular, the finite element method (FEM) – for reinforced concrete (RC):

• Survey of the key aspects of the FEM.
• Understanding of basic mechanisms of RC regarding interaction of concrete and
reinforcement through bond.

• Specifics of FEM regarding structural elements like RC-beams, plates, slabs, and
shells.

• Essential characteristics of the multi-axial mechanical behaviour of concrete.
• Pitfalls related to FEM treating structural concrete and in particular the failure
behaviour.

Knowing these issues, the black boxes should become more transparent, and their
results should be better comprehensible. The finite element method is the preferred
method also for the computation of reinforced concrete structures due to its versa-
tility and adaptability.
Chapter 2 gives an overviewofmodelling in general and summarises items of FEM

as far as is required for its application to reinforced concrete structures. Chapter 3
describes basic mechanisms of structural concrete, which relies on the interaction
of concrete and reinforcement by continuous transfer of forces through bond. This
is restricted to uniaxial behaviour in a first approach to point out essential prop-
erties and describes the mechanisms of the reinforced uniaxial tension bar as pro-
totype of structural concrete. In Chapter 4, this is extended to reinforced concrete
beams and frames, which are characterised by bending that may be superimposed
with normal forces whereby still basing on uniaxial behaviour of materials. This
also includes first aspects of creep, temperature, and shrinkage. Furthermore, pre-
stressing of beams is treated, which is an important technology to extend the appli-
cation range of reinforced concrete. The chapter closes with the analysis of large dis-
placements and dynamics, exemplarily in each case with their application to beams.
A first extension of bending of beams to high beams and plates is given in Chapter 5
with strut-and-tiemodels, which utilise the uniaxial behaviour of concrete and rein-
forcement for a design of plane structures with in-plane loading. Furthermore, limit
theorems of plasticity – which are an important basis for design in structural con-
crete – are exemplarily developed within this context. Chapter 6 treats multi-axial
concrete behaviour as extension of the uniaxial approach applied in the foregoing
chapters. Multi-axial material concrete models are the basis for the structural mod-
els for plates, slabs, and shells treated in the following chapters. Basic topics of con-
tinuummechanics are described in as far as they are necessary to understandmulti-
axial nonlinear stress–strain and failure behaviour of concrete. Material models like
elasto-plasticity, damage, and microplane are applied with respect to concrete mod-
elling. A major item regardingmaterial modelling occurs with strain softening – in-
creasing strains with decreasing stresses – which requires a regularisation to reach
reliable numerical solution. A furthermajor item concerns the cracking of concrete,
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which separates parts of a continuum into a discontinuum. This couples discretisa-
tion issues with material modelling and is described in Chapter 7. Chapter 8 treats
design and simulation of reinforced concrete plates with high beams as a special
but common case. In this respect, the design is considered separately, as it may be
based on linear solutions for plate stresses utilizing a limit theorem of plasticity. On
the other hand, simulation considers nonlinear stress–strain relations additional-
ly leading to solutions for the deformation behaviour. Reinforced concrete slabs,
which are treated in Chapter 9, extend uniaxial 1D-bending of beams into biaxial
2D-bending. As before with plates, aspects of design and simulation may be sepa-
rated in an analogous manner. The most general approach for structural analysis is
given with shells, which combine in-plane actions of plates and transverse actions
of slabs whereby extending flat geometries to folded or curved geometries. Shells
require complex mechanical models, which is exemplarily treated in Chapter 10 to-
gether with the application to reinforced concrete. Chapter 11 treats first aspects of
randomness, which is a major topic regarding structural concrete behaviour. Deter-
ministic models – however sophisticated they may be – always give a more or less
restricted view of the real world. First notions of an extended view are given in this
chapter. Finally, a number of topics are treated in the appendices insofar they are
reasonable for better understanding of the main text but might disturb the line of
concise arguing therein.

How to Read This Book

The treatment of the above combines methods of mechanics, structural analysis,
and applied mathematics. This recourse should be self-explanatory and conclusive
to a large degree, so that a study of accompanying literature is generally not required.
In doing so, essential lines of development are worked out on the one hand, but on
the other hand, the available concepts andmethods cannot be described with all de-
tails. Furthermore, not every problem addressed is provided with a comprehensive
solution. The book is intended to encourage the reader to deepen and explore such
topics independently.
Nevertheless, the book involves a large volume. Proposals for shorter tracks are

given in the following thereby also enlightening the structure of the book content
and the relations between sections. Major groups are characterised as

• FEM and reinforced concrete bases, see Figure 1.5a.
• Uniaxial structures, see Figure 1.5b.
• Multi-axial concrete and its implications for numerical methods, see Figure 1.6a.
• Multi-axial structures such as plates, slabs, and shells, see Figure 1.6b.

This includes a short track (left column) and branches (right column) for each of
these. Chapter 11.1 Randomness and Reliability falls out of this scheme. Never-
theless, basic knowledge of stochastics related to reinforced concrete is considered
necessary.
Many topics are illustrated with examples. Most of them are computational and

are processedwith the Python3.6 programpackage ConFem. A few are performed
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Figure 1.5 (a) FEM and reinforced concrete bases. (b) Uniaxial structures.
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Figure 1.6 (a) Multi-axial concrete and its implications. (b) Multi-axial structures.

with stand-alone Python scripts or are short, illustrating theoretical derivations.
Environments to perform Python are freely available on the internet for all com-
mon platforms.

◀ All Python sources for ConFem, a basic documentation, example input data, and ref-
erence result data are available at https://www.concrete-fem.com under open-source
conditions.

Thus, all book examples should be reproducible by the reader. But the ConFem
project is not finished and may be subject to continuous development. The user
should see it as an inspiring challenge to master this tool. The interplay of theory,
implementation, and application – possibly with overcoming resistance – ultimately
leads to a deeper understanding of numericalmethods,structural concrete, and their
dependencies.
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2
Finite Elements Overview

Numerical methods like the finite element method are outstanding as engineering
tools but actually have to be embedded in a larger frame of modelling. Discretisa-
tion is a key therein, whereby an infinite number of unknowns is reduced to a fi-
nite number. On the one hand, this is based on cornerstones of structural analysis
like equilibrium, kinematic compatibility, and material behaviour, and on the oth-
er hand, methods of numerical mathematics have to be used to reach solutions. An
overview is given in the following in as far it is necessary for the application to struc-
tural concrete.

2.1 Modelling Basics

There are no exact answers. Just bad ones, good ones and better ones.
Engineering is the art of approximation.

Approximation is performed with models. We consider a reality of interest, e.g.
a concrete beam. In a first view, it has properties such as dimensions, colour, and sur-
face texture. From the view of structural analysis, the latter are irrelevant. A more
detailed inspection reveals a lot more properties: weight, displacements, stiffness,
strength, temperatures, conductivities, capacities, and so on. Only a part of these is
essential from the structural point of view. We combine those essential properties
to form a conceptual model. Whether a property is essential is obvious for some, but
the valuation of others might be doubtful. We have to choose. By choosing proper-
ties our model becomes an approximation compared to reality. Approximations are
more or less accurate.
On the one hand, we should reduce the number of properties of a model. Any re-

duction of propertieswill make amodel less accurate. Nevertheless, it might remain
a goodmodel. On the other hand, an over-reduction of propertieswill make amodel
inaccurate and therefore useless. Furthermore,maybe properties that have no coun-
terparts in the reality of interest are introduced. Conceptual modelling is the art of
choosing properties. As all other arts, it cannot be performed guided by strict rules.
The chosen properties have to be related to each other in a quantitative manner.

This leads to a mathematical model. In many cases, we have systems of differen-

Computational Structural Concrete – Theory and Applications, Second Edition. Ulrich Häussler-Combe.
©2023Ernst&SohnGmbH.Published2023byErnst&SohnGmbH.
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(a) (b)

Figure 2.1 Modelling. (a) Type of models following Schwer (2007). (b) Relations between
model and reality.

tial equations relating variable properties or variables. After prescribing appropriate
boundary and initial conditions an exact, unique solution should exist for variables
depending on spatial coordinates and time. Thus, a particular variable forms a field.
Such fields of variables are infinite, as space coordinates and instants of time are
infinite although being bounded.
As analytical solutions are not available in many cases, a discretisation is per-

formed to obtain approximate numerical solutions. Discretisation reduces under-
lying infinite space and time into a finite number of supporting points in space and
time and maps differential equations into algebraic equations connecting a finite
number of variables. This leads to a numerical model. A numerical model needs
a completion bymeans of programming to form a computationalmodel. Finally, pro-
grams yield solutions through processing by computers. The whole cycle is shown
in Figure 2.1. The sequence of partial models forms themodel as a whole.
A final solution provided after computer processing is approximate compared to

the exact solution of the underlyingmathematical model. This is caused by discreti-
sation and round-off errors. Let us assume that we can minimise thismathematical
approximation error in some sense and consider the final solution as a model solu-
tion. Nevertheless, the relation between themodel solution and the underlying real-
ity of interest remains an issue. Both –model and reality of interest – share the same
properties by definition or conceptual modelling, respectively. Let us also assume
that the real data of properties can be objectively determined, e.g. by measurements.
Thus, real data of variables should be approximated by their computed model

counterparts at least. The difference between model solution data and real data
yields a modelling error. In order to distinguish between bad (inaccurate), good
(accurate), and better model solutions, we have to choose a reference to measure
the modelling error. This choice has to be made within a larger context, allows for
a margin of discretion, and again is not guided by strict rules. Furthermore, the ref-
erencemay shift while getting improvedmodel solutions due tomethodical progress
or a better data survey.
A bad model solution may be caused by a bad model – bad choice of properties,

poor relations of properties, insufficient discretisation, programming errors – or by
incorrect model parameters. Parameters are those properties that are assumed to be
known in advance for a particular problem and are not subject to a computation.
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Under the assumption of a good model, the model parameters can be corrected by
calibration. This is based upon appropriateproblems from the reality of interestwith
known real data. On the one hand, calibration minimises the modelling error by
adjustment of parameters. On the other hand, validation examines similar problems
with modified parameters and known real data and assesses the modelling error.
A proper calibration generally does not guarantee a successful validation.
Regarding reinforced concrete structures, calibrations usually involve the adap-

tion of material parameters like strength and stiffness as part of material models.
These parameters are chosen such that the behaviour ofmaterial specimen observed
in experiments is reproduced. A validation is usually performed with structural el-
ements such as bars, beams, plates, and slabs. Computational results of structural
models are compared with the corresponding experimental data. This may lead to
basic peculiarities. Reproducible experiments performed with structural elements
are of a small, simplified format compared with complex unique buildings. Fur-
thermore, repeated experimental tests with the same nominal parameters exhibit
scattering results. Standardised benchmark tests carving out different aspects of re-
inforced concrete behaviour are required. Actually, agreements about such bench-
mark tests exist only to a limited extent. Regarding a particular structural problem
a correspondingmodel has to be validated on a case-by-case strategy using adequate
experimental investigations. Again, there are no strict rules like for the preceding
arts.
Complex proceedings have been sketched hitherto outlining a model of model-

ling; see also Babuska and Oden (2004) for a more comprehensive discussion. Some
benefit is finally expected. Thus, a model that passes validations is usable for predic-
tions. Structures built along such predictions, hopefully, prove their high quality in
the reality of interest.
This textbook covers the range of conceptual models, mathematical models, and

numerical models with special attention being paid to reinforced concrete struc-
tures. The computational model with Python-sources is available under open-
source conditions at https://www.concrete-fem.com. A major aspect of the follow-
ing is themodelling ofultimate limit states: stateswithmaximumbearable loading or
acceptable deformations and displacements in relation to failure. Another aspect is
given with serviceability: deformations, and in some cases oscillations, of structures
have to be limited to allow their proper usage and fulfilment of intended services.
Durability is a third important aspect: deterioration of materials through, e.g. corro-
sion, has to be controlled. This is connected to cracking and crack width in the case
of reinforced concrete structures. These topics are also treated in the following.

2.2 Discretisation Outline

The finite element method (FEM) is the predominant method to derive numerical
models from mathematical models. Its basic theory is described in the following
sections of this chapter insofar as it is needed for its application to different types of
structures with reinforced concrete in the following chapters.
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Figure 2.2 Model of a plate.

(a) (b)

Figure 2.3 (a) Elements and nodes (deformed). (b) Nodal quantities.

The underlyingmathematicalmodel is defined in one-, two-, or three-dimensional
fields of space related to a body and one-dimensional space of time. A body under-
goes deformations during time due to loading. We consider a simple example with
a plate defined in 2D space, see Figure 2.2.
Loading is generally defined depending on time, whereby time may be replaced

by a loading factor or an equivalent loading time in the case of quasi-static prob-
lems. Field variables depending on spatial coordinates and time are, e.g. given by
the displacements.

• Such fields are discretised by dividing space into elements that are connected by
nodes, see Figure 2.3a. Elements adjoin but do not overlap and fill out the space
of the body under consideration.

• Discretisation basically means interpolation, i.e. displacementswithin an element
are interpolated using the values at nodes belonging to the particular element.

In the following, this is written as

u = N ⋅ 𝝊 (2.1)

with the displacements u depending on spatial coordinates and time, a matrix N of
trial functions depending on spatial coordinates, and a vector 𝝊 depending on time
and collecting all displacements at nodes.


