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Preface
Interestingly, the invention of the first plastic was closely
linked to the conservation of the African elephant. The
material was invented as a low‐cost replacement for ivory
used to make Billiard balls back in the 1800s. With a single
elephant tusk yielding just three balls, the expense,
difficulty, and perhaps even the brutality of securing ivory,
drove Michael Phelan, a star player of the game and an
entrepreneur of his day, to announce a prize for anyone
with an apt substitute for the unique ivory. That led the US
inventor Wesley Hyatt, in 1869, to come up with hardened
nitrocellulose (which he called celluloid) as a good
substitute. Though he did not receive the prize, his efforts
ushered in an era of plastics, a defining feature of the
anthropocene epoch. It was soon followed by Bakelite in
1907 and then by a series of other plastics that continue to
serve us even today. In fact, all the common plastics in use
today were discovered by the early 1950s. An early success
was nylon (invented by Carothers at Du Pont) introduced to
the consumer at the 1939 World Fair, causing a sensation
with 64 million pairs of stockings sold in a year. As nylon
was a replacement the natural silk used in hosiery, the
discovery of this first synthetic textile fiber saved millions
of silkworms from an early demise as the demand for fine
natural silk leggings dropped.
Plastics captured the imagination of the public and much
was expected of this miraculous material which lived up to
public expectations, quickly finding applications in fabric,
packaging as well as in numerous other consumer
products. The August 1955 issue of the Life magazine
proudly announced the dawn of a plastic era with
“throwaway living,” where housewives would finally be



relieved of having to clean utensils after each meal. Not
only did this ominous claim come true with every single
item in the Life magazine illustration becoming a common
household product, but also introducing a host of
innovative single‐use plastics products widely used today.
With nearly half the commodity plastics produced today
devoted to disposable products, the unmanaged or
carelessly disposed post‐use plastics have now ended up in
our environment, ironically harming wildlife, especially
marine organisms. Today every aquatic system including
the Marianna trench, the Arctic ice masses, and rivers on
even uninhabited islands around the world are
contaminated with post‐use plastics. Marine convergence
zones, like those in the Northern Pacific, concentrate small
fragments of plastics, the microplastics, counted in the
trillions in the upper ocean. As some plastics in the ocean
sink to the sediment, what is sampled in surface water is
only the tip of the proverbial iceberg. Their abundance in
the water column, especially the bottom sediment, is
reported to be much larger than in either surface water or
the dry beach sediment. How much plastic enters the
oceans is not precisely known. An estimate places the influx
in 2010 at 4.8–12.7 MMT but it keeps growing each year.

An Already Stressed Ocean
The ocean that ends up receiving an annual increment of
plastic waste from both land‐generated debris via riverine
transport and also directly from coastal areas, is already
under stress. The burning of fossil fuels over the past
several hundred years has already increased the acidity of
surface waters by 30% threatening the survival of hard‐
shelled species; it’s impact on the global fishery is not
reliably known. Rampant unsustainable overfishing
depleting the fishery, also leaves behind enormous amounts


