

ORIGIN, CHARACTERIZATION, FATE,
AND IMPACTS

EDITED BY ANTHONY L. ANDRADY

Table of Contents

Cover
<u>Title Page</u>
<u>Copyright Page</u>
<u>Dedication</u>
<u>List of Contributors</u>
<u>Preface</u>
An Already Stressed Ocean
Is it a Cause for Concern?
How Much of a Threat do Plastics in the Ocean
Pose?
Foreword
1 Plastics in the Anthropocene
1.1 What Are Plastics?
1.2 Plastics at Present and in the Future
1.3 Ingestion of Microplastics Marine Organisms
1.4 Sustainability of Plastics
1.5 Plastic Manufacturing
1.6 Polymers: A Basic Introduction
1.7 Societal Benefits of Plastics
References
2 Plastic Additives in the Ocean
2.1 Function of Plastic Additive Classes
2.2 Functional Additives
2.3 Sources, Transport, and Fate of Additives in the
<u>Ocean</u>

2.4 Degradation of Plastic Additives in the Marine
Environment
2.5 Detection in the Marine Environment
2.6 Toxicity of Additives
2.7 NIST Disclaimer
<u>References</u>
3 Deconstructing the Plastic Soup:
3.1 Introduction
3.2 Methods for Determining Plastic Pollution
Sources
3.3 Discussion
3.4 Conclusions
<u>Acknowledgments</u>
<u>References</u>
4 Collection and Characterization of Microplastics
<u>Debris in Marine Ecosystems</u>
4.1 Introduction
4.2 MP Sampling
4.3 Sample Processing
4.4 Characterization and Quantification
4.5 Summary and Outlook
4.6 Conclusions
<u>References</u>
5 Estimating Microplastics in Deep Water
5.1 Introduction
5.2 Sampling Methods
5.3 Spatial Patterns of MPs in Water Columns
5.4 The Export of Microplastics from the Surface
Water to the Deep Sea

5.5 Knowledge gaps and conclusion
References
6 Marine Litter, Plastic, and Microplastics on the
Seafloor
<u>6.1 Introduction</u>
6.2 Methods Used to Monitor Seafloor Litter
6.3 Sources
6.4 Oceanographic Conditions on the Seafloor
6.5 Accumulation Areas of Litter at the Seafloor
6.6 Importance of ALDFG
6.7 Nature and Distribution of Seafloor Litter
6.8 Microplastics
6.9 Impacts
6.10 Trends and Monitoring
6.11 Management Measures and Perspectives
6.12 Conclusions and Perspectives
<u>Acknowledgments</u>
<u>References</u>
7 Plastics in Freshwater Bodies
7.1 Introduction
7.2 Monitoring of Plastics in Freshwater Bodies
7.3 Global Observational Efforts
7.4 Modeling Plastics in Rivers and Lakes
7.5 Prospects and Opportunities
<u>References</u>
8 Degradation and Fragmentation of Microplastics
8.1 Classifying Degradation
8.2 Weathering Under Laboratory Accelerated
Conditions

8.3 Photo-Oxidation Pathways of Common Plastics
8.4 Changes Accompanying Weathering of Plastics
8.5 Weathering of Plastics in the Marine
<u>Environment</u>
8.6 Studies on Weathering of Plastics in Seawater
8.7 Fragmentation of Plastics in Marine Weathering
8.8 Conclusions
<u>References</u>
9 Pollutants Sorbed Onto Microplastics
9.1 Introduction
9.2 Pollutants Sorbed by MPs
9.3 Influencing Factors
9.4 Sorption Kinetics and Isotherms
9.5 Sorption Mechanism
9.6 Conclusions
References
10 Colonization of Plastic Marine Debris
10.1 Introduction
10.2 Preamble
10.3 The Known
10.4 The Unknown, but Knowable
10.5 The Unknowable
10.6 Conclusion
References
11 Marine Biodegradation of Common Plastics
11.1 The Marine Environment
11.2 Rates of Biodegradation of Common Plastics
11.3 Plastics That Are Effectively
Nonbiodegradable: Polyethylene, Polypropylene,

and Polystyrene
11.4 Assessing Biodegradation and Mineralization
11.5 Standardized Tests to Assess Biodegradation
References
12 Ingestion of Microplastics by Marine Animals
12.1 Introduction
12.2 Ingestion of Microplastics by Marine
<u>Organisms</u>
12.3 The Impacts of Microplastic Ingestion on
<u>Marine Organisms</u>
12.4 Impacts of Plastic-Associated Chemicals on
<u>Organisms</u>
12.5 Conclusion
<u>References</u>
13 Microplastics in Fish and Seafood Species
13.1 Introduction
13.2 How Microplastics Can Enter Seafood and
<u>Transfer to Humans</u>
13.3 Microplastics in the Seafood Supply Chain
13.4 Consequences of Microplastics in Seafood
13.5 Conclusion
<u>References</u>
14 Nanoplastics and the Marine Environment
14.1 Introduction
14.2 Interactions Between Nanoplastics and Marine
<u>Microbiota</u>
14.3 Impact of Nanoplastics on Marine
<u>Phototrophic Microorganisms</u>
14.4 Impact of Nanoplastics on Marine
<u>Heterotrophic Microorganisms</u>

14.5 Ecosystem Implications
14.6 Potential Effects of Nanoplastics on Humans
14.7 Outlook and Future Considerations
References
15 Human Behavior and Marine Plastic Pollution
15.1 Introduction: Human Behavior and Marine
<u>Plastic Pollution</u>
15.2 Human Behavior
15.3 Scoping Review of Behavior Change Interventions 2015-2020
15.4 Plastic Pollution and Behavior in the Global
<u>South</u>
15.5 Research Gaps and Limitations
15.6 Remaining Challenges
15.7 Conclusion
<u>Acknowledgements</u>
<u>References</u>
16 Legal and Policy Frameworks for Preventing and Reducing Marine Plastic Pollution
16.1 Introduction to the Governance of Plastic Pollution
16.2 Overview of Legal and Policy Instruments
16.3 Regional Instruments
16.4 National Regulations and Policies
16.5 Conclusion
References
<u>Index</u>
End User License Agreement

List of Tables

Chapter 1

<u>Table 1.1 Abundance of the top seven items found</u> <u>in global coastal cleanup b...</u>

<u>Table 1.2 Comparison of the embodied energy</u> (GJ/kg) and carbon footprint (k...

<u>Table 1.3 A simple classification of plastics based</u> on their feedstock.

Table 1.4 Estimated environmental impacts of plastic manufacture (per 1000 ...

<u>Table 1.5 Common plastics litter found in the marine environment.</u>

<u>Table 1.6 Characteristics of plastics typically</u> encountered in marine debri...

<u>Table 1.7 Applications of common types of plastics.</u>

<u>Table 1.8 Energy and carbon footprint associated</u> with packaging milk in var...

<u>Table 1.9 Embodied energy and carbon data for 8-inch diameter water pipes....</u>

Chapter 2

<u>Table 2.1 Classes of plastic additives, typical loadings, and percent share...</u>

Table 2.2 Eight of the most commonly used phthalate plasticizers in PVC....

<u>Table 2.3 Examples of common antioxidant</u> <u>additives used in plastics.</u>

<u>Table 2.4 Industrial releases of toxic plastic</u> <u>additives as reported to the...</u>

Table 2.5 Reported $\log K_{ow}$ values, water solubility, molecular weight, and...

<u>Table 2.6 Examples of review articles discussing</u> <u>the toxicities of plastic ...</u>

Table 2.7 Plastic additives that are endocrine-disrupting compounds.

Chapter 3

<u>Table 3.1 (A) Emission rates and quantities of</u> plastic to the environment a...

Chapter 4

<u>Table 4.1 Summary of density separation methods</u> used to separate microplast...

Table 4.2 Summary of chemicals used for digestion of marine organisms to ex...

<u>Table 4.3 The assignment for ATR-FTIR spectral</u> <u>features of some plastics....</u>

<u>Table 4.4 Advantages and limitations of the commonly used MP identification...</u>

Chapter 5

<u>Table 5.1 Summary of published studies quantifying microplastic pollution in...</u>

Chapter 6

<u>Table 6.1 A review of data published since 2010 on</u> seafloor litter, as coll...

<u>Table 6.2 A review of data published since 2010 on seafloor litter, as coll...</u>

<u>Table 6.3 A review of data published since 2010 on sediment microplastics.</u>

Chapter 7

<u>Table 7.1 Overview of plastic transport models.</u>

<u>Table 7.2 Existing models and observation-based</u> <u>estimates for river plastic...</u>

Chapter 8

<u>Table 8.1 A comparison of radiation sources used in laboratory-accelerated ...</u>

<u>Table 8.2 Position of component peaks that</u> <u>compose the broad carbonyl absor...</u>

<u>Table 8.3 Factors that control photodegradation of plastics in different oc...</u>

<u>Table 8.4 Comparison of natural weathering data</u> <u>for plastic material expose...</u>

<u>Table 8.5 Summary of recent publications on natural weathering of common pl...</u>

<u>Table 8.6 Summary of publications on laboratory-accelerated weathering of c...</u>

Chapter 9

Table 9.1 Sorption of antibiotics by MPs.

<u>Table 9.2 Sorption of PAHs, PCBs, HCHs, and DDTs by MPs.</u>

<u>Table 9.3 Sorption of flame retardants and fuel aromatics onto MPs.</u>

<u>Table 9.4 Sorption of other types of pollutants by</u> MPs.

Table 9.5 Sorption of metals ions onto MPs.

Chapter 11

Table 11.1 Characteristics of the different ecological niches in the ocean ...

<u>Table 11.2 Suggested rates of plastic</u> <u>biodegradation in the marine environm...</u>

<u>Table 11.3 Aerobic biodegradation of aliphatic</u> <u>polyester films in seawater....</u>

<u>Table 11.4 Biodegradation of effectively</u> nonbiodegradable common plastics u...

<u>Table 11.5 Representative weight-loss studies on effectively nonbiodegradab...</u>

<u>Table 11.6 A compilation of currently available standardized aerobic biodeg...</u>

Chapter 12

Table 12.1 Summary of the number of species within each taxa documented to ...

Chapter 13

Table 13.1 Estimated seafood dietary intake of microplastics by humans (cou...

Chapter 14

<u>Table 14.1 Toxicological effects of different</u> <u>nanoplastic polymers on vario...</u>

Table 14.2 Examples of select available methods for nanoplastic detection....

Chapter 16

<u>Table 16.1 International legal and policy framework</u> <u>applicable to marine pl...</u>

List of Illustrations

Chapter 1

<u>Figure 1.1 Classification of plastic types commonly</u> found in the marine envi...

<u>Figure 1.2 Left: Global plastic resin production</u> (2015 data), <u>Right: Percent...</u>

Figure 1.3 Schematic representation of the manufacturing process for plastic...

Figure 1.4 Global plastic resin production versus the population.

<u>Figure 1.5 Estimated plastic waste in the aquatic system versus projected po...</u>

Figure 1.6 Density (log particles/m 3) of MPs (100–5000 μ m) in the different ...

<u>Figure 1.7 Left: Categories of marine plastic debris</u> developed by GESAMP (20...

Figure 1.8 Hybrid PET with ~23% of bio-based content (a fifth of carbon atom...

<u>Figure 1.9 Classification of plastics according to inherent biodegradability...</u>

<u>Figure 1.10 A plot of the GWP (kg CO₂-e) versus</u> <u>Embodied Energy (GJ) per 100...</u>

<u>Figure 1.11 A schematic of the molecular weight</u> <u>distribution of two samples ...</u>

Figure 1.12 Left: Scanning Electron Micrograph of an ultra-high molecular we...

<u>Figure 1.13 Left: Illustration of the molecular geometry of LDPE and HDPE. M...</u>

<u>Figure 1.14 Schematic representation of manufacturing a package.</u>

Chapter 2

Figure 2.1 Chemical structures of (a) PBDE, (b) HBCD, (c) TBBPA, and (d) PBB...

<u>Figure 2.2 Complex sources and transport of plastic additives to, from, and ...</u>

Figure 2.3 Transport and fate of hydrophobic organic chemicals to/from marin...

Figure 2.4 Mean concentrations of additives measured in plastics found in th...

<u>Figure 2.5 Range of concentrations of three plastic additive classes measure...</u>

<u>Figure 2.6 An updated spatial comparison of mean concentrations of DEHP meas...</u>

<u>Figure 2.7 Distribution of plastic additive studies</u> <u>assessing different taxo...</u>

<u>Figure 2.8 Spatial comparison of bisphenol A mean</u> <u>concentrations in muscle t...</u>

Chapter 3

Figure 3.1 Schematic overview of three methodological approaches to identify...

Figure 3.2 A visualization of a material flow analysis for plastics from pro...

Figure 3.3 Illustration of a plastic bottle which can be identified when lit...

<u>Figure 3.4 The scientific field of plastic pollution</u> research and potential ...

Chapter 4

<u>Figure 4.1 The schematics of chemical digestion</u> and MP isolation from marine...

Figure 4.2 Schematic representation of a hyperspectral image.

Figure 4.3 Simplified schematic diagram of common FTIR analysis modes.

<u>Figure 4.4 Comparison of transmission and ATR</u> <u>techniques based on FTIR spect...</u>

<u>Figure 4.5 Principal component analysis score plot of eight plastics.</u>

<u>Figure 4.6 ATR-FTIR spectral profiles of the commonly used plastics.</u>

<u>Figure 4.7 Raman spectra of polyethylene and poly(tetrafluoroethylene) plast...</u>

<u>Figure 4.8 Comparison of some commonly used</u> <u>techniques in terms of precision...</u>

Chapter 5

<u>Figure 5.1 Geolocation of sampled water columns</u> <u>for MPs research (a). Sampli...</u>

Chapter 6

<u>Figure 6.1 Natural processes affecting the distribution and fate of micropla...</u>

<u>Figure 6.2 An overview of experiments on seafloor litter and sediment microp...</u>

Figure 6.3 (a) Fishing buoy (Celtic Sea, 2015, 113 m). (b) Barrel collected ...

<u>Figure 6.4 Diversity of organisms settled on various litter types collected ...</u>

Chapter 7

<u>Figure 7.1 Commonly reported steps to monitor</u> <u>different sizes of plastics in...</u>

<u>Figure 7.2 Global observational efforts by the</u> number of studies for the mon...

<u>Figure 7.3 Illustration of sources and main</u> <u>processes influencing the transp...</u>

Chapter 8

Figure 8.1 Agents that bring about degradation and fragmentation of plastics...

<u>Figure 8.2 Spectral power distributions of the ASTM G173-03 standard (AM 1.5...</u>

<u>Figure 8.3 Comparison of the spectral features of a mercury vapor lamp with ...</u>

<u>Figure 8.4 (Left) Transmittance spectra for several cut-on filters. (Right) ...</u>

<u>Figure 8.5 Photo-oxidation of polyolefins illustrating</u> the autocatalytic nat...

<u>Figure 8.6 (Left) Evolution of the carbonyl band in</u> <u>FTIR spectra of the LDPE...</u>

<u>Figure 8.7 Summary of agents and effects</u> <u>associated with weathering of plast...</u>

<u>Figure 8.8 Factors that control the mechanism and kinetics of photodegradati...</u>

Figure 8.9 Change in the average number-average molecular weight Mn (g/mol),...

Figure 8.10 (Left) Two-stage macro-fragmentation model for plastic objects e...

<u>Figure 8.11 A schematic of fragmentation by</u> <u>surface ablation. (Left) A spher...</u>

Figure 8.12 Micrographs showing irregular surface features of 0.1 µm po...

Chapter 9

<u>Figure 9.1 Summary of organic pollutants and metal ions reported to be sorbe...</u>

Figure 9.2 MPs studied in literature.

<u>Figure 9.3 Influence of properties of MPs on the sorption of pollutants.</u>

<u>Figure 9.4 Sorption isotherms of pollutants onto</u> <u>MPs based on published lite...</u>

Figure 9.5 Sorption kinetics of pollutants by MPs.

<u>Figure 9.6 Sorption mechanisms of pollutants by</u> MPs.

Chapter 10

<u>Figure 10.1 Consistency in the Plastisphere: (a)</u> bacteria, diatoms, and (b) ...

<u>Figure 10.2 Diatom biofilm covering the surface of glass submerged in the ma...</u>

<u>Figure 10.3 (a) A single diatom attached to the surface of a piece of plasti...</u>

<u>Figure 10.4 Scanning electron microscopy images</u> <u>showing associations between...</u>

<u>Figure 10.5 Bacterial community structure on plastic marine debris (polyethy...</u>

<u>Figure 10.6 "Plastic tides" of biobeads from sewage treatment overflow in th...</u>

Chapter 11

<u>Figure 11.1 Schematic representation of the two-step biodegradation process ...</u>

<u>Figure 11.2 An illustration of the biodegradation process of a semi-crystall...</u>

<u>Figure 11.3 Left: Inverse dependence of enzymatic biodegradation rate (mg we...</u>

<u>Figure 11.4 Comparison of respirometric data from rapidly biodegrading polye...</u>

<u>Figure 11.5 Left: Biometer flask with substrate in marine sediment. Right: F...</u>

Chapter 12

Figure 12.1 The number of articles published (stated above the bars) over th...

<u>Figure 12.2 Factors influencing the bioavailability</u> of microplastics to mari...

Chapter 13

<u>Figure 13.1 Potential routes for microplastics to enter seafood throughout t...</u>

Chapter 14

Figure 14.1 Weathering of macroplastics leads to production of secondary mic...

Figure 14.2 Nanoplastics may exist in the environment as (a) temporary free/...

<u>Figure 14.3 Nanoplastics develop a corona of proteins and other materials up...</u>

Plastics and the Ocean: Origin, Characterization, Fate, and Impacts

Edited by

Anthony L. Andrady North Carolina, USA

This edition first published 2022 © 2022 John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Anthony L. Andrady to be identified as the author of the editorial material in this work has been asserted in accordance with law.

Registered Office

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-ondemand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data applied for

[Hardback: 9781119768401]

Cover Design: Wiley Cover Image: © Serg64/Shutterstock

This work is dedicated with gratitude to my two mentors-Dr. R.O.B. Wijesekera (Ceylon Institute for Scientific Research, Colombo, Sri Lanka) and Professor Jim Harwood (University of Akron, Akron, OH, USA), both exceptionally talented teachers as well as accomplished researchers, under whose able guidance I was fortunate enough to receive my own training in scientific research.

List of Contributors

Linda A. Amaral-Zettler

NIOZ - Royal Netherlands Institute for Sea Research Den Burg, The Netherlands and

Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam, The Netherlands

Anthony L. Andrady

Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh, USA

Nathaniel J. Clark

International Marine Litter Research Unit, School of Biological and Marine Sciences University of Plymouth Plymouth, United Kingdom

Garth A. Covernton

Department of Ecology and Evolutionary Biology University of Toronto Ontario, Canada

Lia N. Corbett

NIOZ - Royal Netherlands Institute for Sea Research Den Burg, The Netherlands and

Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam. The Netherlands

Winnie Courtene-Jones

International Marine Litter Research Unit School of Biological and Marine Sciences University of Plymouth

Plymouth, United Kingdom

D. Cracknell

University of Plymouth Plymouth, UK

Astrid C. Fischer

International Marine Litter Research Unit, School of Biological and Marine Sciences University of Plymouth Plymouth, United Kingdom

Jennifer M. Lynch

Chemical Sciences Division, National Institute of Standards and Technology Gaithersburg, USA

and

Center for Marine Debris Research, Hawaii Pacific University Honolulu, USA

Amy L. Lusher

Norwegian Institute for Water Research (NIVA) Oslo, Norway and

Department of Biological Science

University of Bergen Bergen, Norway

Francois Galgani

Institut Français de Recherche pour l'Exploitation de la MER (IFREMER), Centre Méditerranée La Seyne-sur-Mer, France

Olivia Gérigny

Institut Français de Recherche pour l'Exploitation de la MER (IFREMER)

Centre Méditerranée La Seyne-sur-Mer, France

Aoife A. Gowen

School of Biosystems and Food Engineering University College Dublin Dublin, Ireland

Xuan Guo

Laboratory of Environmental Technology INET, Tsinghua University Beijing, China

Peter T. Harris

Grid Arendal Arendal, Norway

M. Kooi

Aquatic Ecology and Water Quality Management Group Wageningen University
The Netherlands

Bimali Koongolla

Guangdong Provincial Key Laboratory of Applied Marine Biology

South China Sea Institute of Oceanology, Institution of South China

and

Sea Ecology and Environmental Engineering Chinese Academy of Sciences (CAS) Guangzhou, China

Katrina Knauer

Novoloop, Inc. Menlo Park, USA

L. Lebreton

The Ocean Cleanup Rotterdam, The Netherlands and The Modelling House Raglan, New Zealand

Daoji Li

State Key Laboratory of Estuarine and Coastal Research East China Normal University Shanghai, China

Kai Liu

State Key Laboratory of Estuarine and Coastal Research East China Normal University Shanghai, China

Angiolillo Michela

Istituto Superiore per la Protezione e Ricerca Ambientale (ISPRA)

Roma, Italy

and

Stazione Zoologica Anton Dohrn (SZN)

Napoli, Italy

Thomas Maes

Grid Arendal

Arendal, Norway

T. Mani

The Ocean Cleanup

Rotterdam, The Netherlands

S. M. Mintenig

Aquatic Ecology and Water Quality Management Group Wageningen University

The Netherlands

M. B. Tekman

Deep-Sea Ecology and Technology, Alfred Wegener Institute Helmholtz Centre for Polar Research Germany

Tim van Emmerik

Hydrology and Quantitative Water Management Group Wageningen University
The Netherlands

S. Nuojua

University of Plymouth Plymouth, UK

S. Pahl

University of Plymouth Plymouth, UK and University of Vienna Vienna, Austria

Karen Raubenheimer

Australian National Centre for Ocean Resources and Security (ANCORS) University of Wollongong Wollongong, Australia

Katherine R. Shaw

Chemical Sciences Division, National Institute of Standards and Technology and

Center for Marine Debris Research Hawaii Pacific University

Anna Schwarz

Netherlands Organisation for Applied Scientific Research (TNO)

Utrecht, The Netherlands

Natalie S. Smith

International Marine Litter Research Unit, School of Biological and Marine Sciences University of Plymouth Plymouth, United Kingdom

Eric Tambutté

Centre Scientifique de Monaco Monaco, Principality of Monaco

Brijesh Kumar Tiwari

Department of Food Chemistry and Technology Teagasc Food Research Centre Dublin, Ireland

Richard C. Thompson

International Marine Litter Research Unit, School of Biological and Marine Sciences University of Plymouth Plymouth, United Kingdom

Tim van Emmerik

Hydrology and Quantitative Water Management Group Wageningen University Wageningen, The Netherlands

Jun-Li Xu

School of Biosystems and Food Engineering University College Dublin Belfield. Ireland

H. Wolter

The Ocean Cleanup Rotterdam, The Netherlands

Jianlong Wang

Laboratory of Environmental Technology INET, Tsinghua University Beijing, China

Ming Zhao

School of Biosystems and Food Engineering University College Dublin Belfield, Ireland and Department of Food Chemistry and Technology Teagasc Food Research Centre Dublin, Ireland

Preface

Interestingly, the invention of the first plastic was closely linked to the conservation of the African elephant. The material was invented as a low-cost replacement for ivory used to make Billiard balls back in the 1800s. With a single elephant tusk yielding just three balls, the expense, difficulty, and perhaps even the brutality of securing ivory, drove Michael Phelan, a star player of the game and an entrepreneur of his day, to announce a prize for anyone with an apt substitute for the unique ivory. That led the US inventor Wesley Hyatt, in 1869, to come up with hardened nitrocellulose (which he called celluloid) as a good substitute. Though he did not receive the prize, his efforts ushered in an era of plastics, a defining feature of the anthropocene epoch. It was soon followed by Bakelite in 1907 and then by a series of other plastics that continue to serve us even today. In fact, all the common plastics in use today were discovered by the early 1950s. An early success was nylon (invented by Carothers at Du Pont) introduced to the consumer at the 1939 World Fair, causing a sensation with 64 million pairs of stockings sold in a year. As nylon was a replacement the natural silk used in hosiery, the discovery of this first synthetic textile fiber saved millions of silkworms from an early demise as the demand for fine natural silk leggings dropped.

Plastics captured the imagination of the public and much was expected of this miraculous material which lived up to public expectations, quickly finding applications in fabric, packaging as well as in numerous other consumer products. The August 1955 issue of the *Life* magazine proudly announced the dawn of a plastic era with "throwaway living," where housewives would finally be

relieved of having to clean utensils after each meal. Not only did this ominous claim come true with every single item in the Life magazine illustration becoming a common household product, but also introducing a host of innovative single-use plastics products widely used today. With nearly half the commodity plastics produced today devoted to disposable products, the unmanaged or carelessly disposed post-use plastics have now ended up in our environment, ironically harming wildlife, especially marine organisms. Today every aquatic system including the Marianna trench, the Arctic ice masses, and rivers on even uninhabited islands around the world are contaminated with post-use plastics. Marine convergence zones, like those in the Northern Pacific, concentrate small fragments of plastics, the microplastics, counted in the trillions in the upper ocean. As some plastics in the ocean sink to the sediment, what is sampled in surface water is only the tip of the proverbial iceberg. Their abundance in the water column, especially the bottom sediment, is reported to be much larger than in either surface water or the dry beach sediment. How much plastic enters the oceans is not precisely known. An estimate places the influx in 2010 at 4.8-12.7 MMT but it keeps growing each year.

An Already Stressed Ocean

The ocean that ends up receiving an annual increment of plastic waste from both land-generated debris *via* riverine transport and also directly from coastal areas, is already under stress. The burning of fossil fuels over the past several hundred years has already increased the acidity of surface waters by 30% threatening the survival of hard-shelled species; it's impact on the global fishery is not reliably known. Rampant unsustainable overfishing depleting the fishery, also leaves behind enormous amounts