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Preface

The thorough Investigations of the new types of materials  –  nano-  and 
ultrafine- grained metallic solids, amorphous metal alloys called glassy 
metals, and high- performance alloys – lead to an essential general conclu-
sion. Observing their failure processes, one may notice that a paradigm 
shift transpires before our eyes regarding the widely known and accepted 
ductile failure micromechanisms as initiation, growth, and coalescence of 
voids. The recent nonstandard experiments confirm the novel observations 
about the vital importance of accompanying shear modes, e.g. stereo digi-
tal image correlation, the tomograms of X- ray, or synchrotron techniques 
related to 3D imaging methods. Dunand and Mohr (2010), using two-  and 
three- dimensional digital image correlation technique, measured the sur-
face strain fields on tensile specimens, including the one with a central 
hole and circular notches. The samples came from TRIP780 steel sheets. 
The authors concluded that the non- porous plasticity model’s numerical 
predictions agree well with all macroscopic measurements for various 
loading conditions. Dunand and Mohr (2011) studied for TRIP780 steel  
the shear- modified Gurson model’s predictive capabilities (Nielsen and 
Tvergaard 2010) and the modified Mohr–Coulomb fracture model (Bai and 
Wierzbicki 2008). The result is that significant differences between the two 
models appear with the less accurate prediction for the shear- modified 
Gurson model. Gorij and Mohr (2017) present a new micro- tension and 
micro- shear testing technique applying aluminium alloy 6016- T4 flat 
dogbone- shaped, as well as notched and central hole samples and smiley- 
shear micro- specimens to identify the parameters of hardening law and 
fracture initiation model. The Hosford–Coulomb damage indicator model 
predicts the ductile fracture initiation that appears imminent with the 
onset of shear localisation.
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It became then evident that the known porous material models, e.g. by 
Shima et al. (1973), Shima and Oyane (1976), or Gurson (1977) extended by 
Tvergaard and Needleman (1984), reveal limited applications besides the 
cases when high triaxiality states are prevalent. Therefore, the studies of 
inelastic deformation and failure of materials should require, in my view, a 
fresh and novel approach. It aims towards a better understanding and 
description of the multilevel character of shear deformation modes. It is 
also worth stressing that Pardoen (2006) emphasizes the role of shear locali-
sation in low- stress triaxiality ductile fracture.

The known experimental data reveal that metallic solids’ inelastic 
deformation appears in the effect of competing mechanisms of slips, 
twinning, and micro- shear banding. Shear banding is a form of instabil-
ity that localises large shear strains in relatively thin bands. The micro- 
shear bands transpire as concentrated shear zones in the form of 
transcrystalline layers of the order 0.1 μm thickness. The observations 
show that a particular micro- shear band operates only once and develops 
rapidly to its full extent. The micro- shear bands, once formed, do not 
contribute further to the increase of inelastic shear strain. Thus, it appears 
that successive generations of active micro- shear bands, competing with 
the mechanisms of multiple crystallographic slips or twinning, are 
responsible for the inelastic deformation of metals. Therefore, identify-
ing the physical origins of the initiation, growth, and evolution of micro- 
shear bands is fundamental for understanding polycrystalline metallic 
solids’ macroscopic behaviour.

A new physical model of multilevel hierarchy and evolution of micro- 
shear bands is at the centre of this work. An original idea of extending the 
representative volume element (RVE) concept using the general theory of 
propagation of the singular surfaces of microscopic velocity field sweeping 
the RVE appears useful for the macroscopic description of shear- banding 
mechanism in viscoplastic flow, cf. Pęcherski (1997,  1998). The essential 
novelty of the presented approach comes from numerous observations 
revealing that the process of shear banding is the driving factor – a cause 
and not a result. So it turns out, in my view, that the successive genera-
tions of micro- shearing processes induced mostly by changing deformation 
path produces and controls viscoplastic flow. On the other hand, one may 
recall many valuable papers containing the results of in- depth analysis, 
modelling of dislocation- mediated multi- slip plastic deformation, and 
numerical simulations of the laminate microstructure, bands, or shear 
strain localisation in crystalline solids cf. Dequiedt (2018), Anand and 
Kothari (1996), Havner (1992), as well as Petryk and Kursa (2013) and the 
wealth of papers cited herein.
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Recent studies reveal that two types of shear banding, generating the ine-
lastic deformation in materials, can play a pivotal role.

 ● The first type corresponds to the rapid formation of the multiscale shear- 
banding systems. It contains micro- shear bands of the thickness of the 
order of the 0.1 μm, which form clusters. The clusters propagate and pro-
duce the discontinuity of microscopic velocity field vm. They spread over 
the RVE of a traditional polycrystalline metallic solid. A detailed discus-
sion of such a case is presented in Pęcherski (1997, 1998). A new concept 
of the RVE with a strong singularity appears, and the instantaneous shear- 
banding contribution function fSB originates.

 ● The second type is a gradual, cumulative shear banding that collects micro- 
shear bands’ particular contributions and clusters. Finally, they accumulate 
in the localisation zone spreading across the macroscopic volume of consid-
ered material. Such a deformation mechanism appears in amorphous solids 
as glassy metals or polymers. It seems that there are the local shear transfor-
mation zones (STZs) behind the cumulative kind of shear banding, cf. Argon 
(1979, 1999), Scudino et al. (2011), and Greer et al. (2013). The volumetric 
contribution function fSB

v  of shear banding appears in such a case.

Often both types of the above- mentioned shearing phenomena appear with 
variable contribution during the deformation processes. During shaping oper-
ations, this situation can arise in polycrystalline metallic s olids, typically 
accompanied by a distinct change of deformation or lo ading paths or a lo ading 
scheme. Also, materials revealing the composed, hybrid structure character-
izing with amorphous, ultra- fine grained (ufg), and nanostructural phases are 
prone to the mixed type of shear banding responsible for inelastic deforma-
tion, cf. the recent results of Orava et al. (2021) and Ziabicki et al. (2016).

The commonly used averaging procedures over the RVE need deeper analy-
sis to account for the multilevel shear- banding phenomena. The RVE of crystal-
line material is the configuration of a body element idealized as a particle. The 
particle becomes a carrier of the inter- scale shearing effect producing the visco-
plastic flow. It leads to an original and novel concept of the particle endowed 
with the transfer of information on a multilevel hierarchy of micro- shear bands 
developing in the body element of crystalline material. The discussion about 
the difficulties and shortcomings of applying a traditional direct multiscale 
integration scheme appears in Chapter 4. The remarks mentioned above moti-
vate the core subject of the work and underline the new way of thinking.

Ryszard B. Pęcherski
2022

Kraków and Warszawa, Poland
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