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Introduction

Liferay has been a market leader in ready-to-deploy portals for quite some
time. During its lifetime, Liferay has experienced several architectural
upgrades that enhanced user and development experiences. Liferay DXP
is the most mature version of Liferay. As Liferay matured, it kept adding
several technologies; the biggest of which are OSGi and Gradle. OSGi
added a layer of modularity to Liferay, whereas Gradle has given the
deployment process more flexibility.

This book is a perfect fit for you if you possess basic Java knowledge
and are familiar with the Liferay user interface. It’s perfect if you want
to develop portlet modules in Liferay DXP and customize the default
Liferay behavior. You will also learn about OSGi, Blade CLI, the Liferay
development environment setup, and best practices. This book will help
improve your productivity. If you are hands-on with an older version of
Liferay or have little understanding of Liferay's development approach
and are looking forward to learning about the nitty-gritty of Liferay—DXP
development—this book is a perfect fit for you.

Portlets are the heart and soul of Liferay development, and they can be
created using multiple templates such as LiferayMVC, Spring, and others.
Portlets are the endpoint for users, from where they can trigger different
functionalities, such as database connectivity, IPC, schedulers, and so on.

Liferay is not all about custom development; you can also use its
out-of-the-box functionalities to achieve requirements. To utilize its out-
of-the-box functionality, you can customize Liferay default behavior in

xiii



INTRODUCTION

several ways, including customization of user interfaces, languages, action
classes, events, services, and other aspects. Liferay’s out-of-the-box search
framework can also be used to enable search in custom entities.

We tried to cover all concepts related to hands-on Liferay development
and sincerely hope the book fulfills our readers’ expectations.

Source Code

All source code used in this book can be downloaded from github.
com/Apress/Hands--On-Liferay-DXP-by-Apoorva-Prakash-and-
Inthiyaz-Basha.

Xiv



CHAPTER 1

OSGi Basics

This chapter dives deep into OSGi concepts, along with its essential
features, its architecture, services, the Service Registry, and a few other
crucial topics that fall under the basics of OSGi concerning Liferay
DXP. Further, you learn about bundles with a straightforward example
in the next chapters. By the end of this chapter, you will understand the
unlimited potential of OSGi.

Understanding 0SGi

The Open Services Gateway Initiative (OSGi) was founded in March, 1999
and is managed by the OSGi Alliance.

The OSGi Alliance now refers to the framework specification as OSGi
or the OSGi Service Platform. To create a Java-based service framework
that can be managed remotely, the vendors of networking providers
and embedded systems came together and created a set of standards.
OSGi was initially developed to be a gateway for managing Internet-
enabled devices like smart appliances. The Java software framework is
embedded in a gateway hardware platform, such as a set-top box or cable
modem. This software framework acts as a central message dealer to the
home’s LAN (Local Area Network). The core goal is to efficiently manage
cross-dependencies for software developers by creating a standardized
middleware for intelligent devices.

© Apoorva Prakash and Shaik Inthiyaz Basha 2022
A. Prakash and S. I. Basha, Hands- On Liferay DXP,
https://doi.org/10.1007/978-1-4842-8563-3_1
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CHAPTER 1  0OSGI BASICS

Liferay uses OSGi extensively for product development. Other
noteworthy companies include Oracle WebLogic, Eclipse Foundation,
IBM WebSphere, Atlassian Jira and Confluence, and JBoss. These are the
notable companies that are using OSGi for their product development.

Let’s look at what makes OSGi different from other frameworks.

How Is 0SGi Different?

The OSGi framework is different from other frameworks based on Java,
especially Spring. More than one application can exist in the same
container in the OSGi bundle runtime environment. The OSGi container
takes care of access to the dependencies required by each component
in the container. The OSGi framework also supports standardized
dependency injection, as defined by the Aries Blueprint project.

In OSGi, bundles can consume services exposed to other bundles.
A bundle can define and declare a version of bundles. The runtime will
automatically load all its bundles to resolve all dependencies.

Note In OSGi, if any bundle dependencies require multiple versions
of the same bundle, they are also available side by side.

OSGi is a modularity layer for the Java platform. OSGi’s core
specifications define a component and service model for Java. OSGi
provides a service-oriented development model, allowing for a service-
oriented architecture within a virtual machine.

For example, large Java applications can be challenging to deploy
and manage. In order to update deployment, the system/servers need
to be cycled, and the application build and deployment may cause
system outages. But OSGi provides an isolated module cycling/updating
capability to increase availability.
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A Deeper Look at 0SGi

OSGi offers an elegant solution for handling dependencies, by requiring
dependency declarations within units of modularity. Multiple applications
can coexist in the same container in OSGi, and the OSGi bundle runtime
environment manages them. The OSGi container will ensure each
component is sufficiently isolated and approach any dependencies
required to access.

OSGi has two parts. The first part is called the bundle. It has modular
component specifications, which are generally referred to as plugins. The
specification will help determine the bundle’s interaction and lifecycle
infrastructure. The second part is the Service Registry, which is beneficial
to understanding how bundles discover, publish, and bind to services
in the Service Oriented Architecture (SOA) at the Java Virtual Machine
(JVM) level.

0SGi Architecture

The OSGi architecture is used in different Java-based applications. It is
illustrated in Figure 1-1 and consists of several layers that work on top of
the hardware and operating system:
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Application & Services
Bundles
Lifecycle | =
=]
(&}
Modules | 3

Execution Environment

Java Virtual Machine

Native Operating System

Hardware

Figure 1-1. OSGI service gateway

e Bundles: An OSGi bundle is a Java ARchive (JAR) file
that contains resources, Java code, and a manifest that
describes the bundle and its dependencies. For an
application, the OSGi bundle is the unit of deployment.
You learn more about bundles in the next section of the
chapter.

o Services: The services layer in the OSGi architecture
will offer a “publish find bind” model for old Java
objects to connect bundles dynamically. To simplify, an
OSGi service is a Java object instance registered to an
OSGi framework with a set of properties.

o Lifecycle: The lifecycle layer provides the API used to
start, install, uninstall, update, and stop objects.



CHAPTER 1  0SGI BASICS

e Modules: This layer defines how to export and import
code by bundle.

o Security: This layer handles the security aspects.

o Execution Environment: This layer defines the
available classes and methods in a specific platform.

Now that you've learned a bit about the OSGi basics, the next section
explores OSGi bundles.

0SGi Bundles

Bundles are modular Java components. Creating and managing bundles
is facilitated by OSGi, and bundles can be deployed in a container. A
developer uses OSGi specifications and tools to create one or more
bundles. The bundle’s lifecycle is defined and managed by OSGi. It also
supports the bundles’ interactions and hosts them in a container. The
OSGi container is roughly parallel to a JVM. Similarly, bundles can be
treated as Java applications with distinctive abilities. OSGi bundles run as
client and server components inside the OSGi container.

So, bundles are nothing more than OSGi components, and they are
in the form of standard JAR files. The only difference between regular
JAR files and bundles is the manifest header (also referred to as bundle
identifiers). These manifest headers tell the runtime that this JAR is not a
standard JAR file but an OSGi bundle. These bundle identifiers consist of
two main parts—Bundle-SymbolicName and Bundle-Version. You must
use a combination of these two to export and import the services. This
combination of Bundle-SymbolicName and Bundle-Version (semantic
versioning) creates a unique identifier for OSGi bundles and thus for
dependencies.
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Note Logically, a bundle has an independent lifecycle with a
piece of functionality. It can work independently with start, stop,
and remove.

Technically, a bundle is a JAR file containing some 0SGi-specific
headers in the MANIFEST . MF file.

As depicted here, the Bundle-SymbolicName is com.handsonliferay.
employee.portlet and the Bundle-Versionis 1.2.3.2022.

Bundle-Name: handsonliferay-employee-portlet
Bundle-SymbolicName: com.handsonliferay.employee.portlet
Bundle-Version: 1.2.3.2022

Export-Package: com.handsonliferay.employee

Let’s deep dive into understanding them:

o Bundle-SymbolicName: A unique identifier that refers
to the bundle. This is generally understandable
human text so that developers can understand the
functionality written inside it. The best practice is to
name it as class packages are named. In the previous
example, you created an API with the symbolic name
com.handsonliferay.employee.portlet, which any
OSGi bundle can import to consume the exposed
services. This naming convention is a standard Liferay
development approach.

e Bundle-Version: 1.2.3.2022. There are four parts to
a version number, each separated by three dots (see
Figure 1-2). This versioning scheme is also known as
bundle semantic versioning. Let’s look at part of the
semantic versioning process:
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e Major, which is 1 in this case. The major version
is changed when there are code changes that can
break the code used in the APIs of this bundle.

e Minor, which is 2 in this example. This means there
are API changes in the bundle, which may include
some fixes. It refers to APIs of this bundle and it will
not break the code.

e Micro, which is 3 is this example. This changes
when there are minor changes and no
compatibility issues.

e Qualifier, which is used when there is no impact
to compatibility. It’s used to tag snapshots or
nightly builds.

. 2022

KIS

Figure 1-2. Bundle version

0SGi Bundle Rules

With these details, you can now learn how OSGI bundles are supposed to
work in real-time. Let’s look at the OSGI bundle rules:

1. You want code that may include or exclude some
application configuration. Using this approach, you
will get the primary benefit of modularity.

2. You want code that should update independently
from other code. Using this approach, you get
another primary benefit of modularity.
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3. You want code that has a set of specific
dependencies on other libraries. This way, you
decrease the chance of conflicts by isolating those
dependencies.

4. Some of the interface code might have different
implementations. This way, without making any
other changes, you can swap out implementations.

Importing and Exporting Bundles

The following example exports a service called com.handsonliferay.
employee.api with version 1.0.0. The Employee API is exposed with a
Symbolic-Name of com.handsonliferay.employee.api and a version
number 0f1.0.0:

Bundle-Name: Employee-api

Bundle-SymbolicName: com.handsonliferay.api
Bundle-Version: 1.0.0

Export-Package: com.handsonliferay.api; version=1.0.0

Importing Bundles

To understand bundle importing, you must understand version ranges. As
you have already learned, an OSGi bundle can be exported with a specific
version number, so multiple OSGi bundles have the same symbolic name
but different versions. They are essentially nothing but different versions
of the same OSGi bundle. There may be cases when you have more than
one valid bundle version from various deployed OSGi bundles. To solve
this scenario, you can mention ranges in the import statement. Square
brackets and parentheses are used for this purpose. Square brackets
denote inclusiveness, whereas parentheses indicate exclusiveness. You can
see this with the following example:
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[2.1, 3.0) means include version 2.1 up to, but not including, 3.0.

Import-Package: com.handsonliferay.employee;
version="[2.1,3.0)"

This section has explained the basics of OSGi bundles; in the next
section, you explore the OSGi bundle lifecycle.

0SGi Bundle Lifecycle

OSGi is a very dynamic platform, and bundles are the core of this
mechanism. A bundle is a state-aware unit, meaning a bundle has several
states that it can traverse through and know what state it is in. In traditional
OSGi, you have a BundleActivator, where you have start() and

stop() methods that are invoked upon the start and stop of the bundle,
respectively.

Note Activators are nothing but classes that implement the org.
osgi.framework.BundleActivator interface.

The OSGi bundle lifecycle layer puts on bundles that can be
dynamically started, installed, updated, stopped, and uninstalled. These
bundles depend on the module layer for class loading, but it will add an
API to manage modules at runtime. See Listing 1-1.

Listing 1-1. Bundle Activator Class
package com.handsonliferay.employee.osgi;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;
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public class Activator implements BundleActivator{

@Override
public void start(BundleContext context) throws
Exception {
System.out.println("Starting Hands On
Liferay");
}

@0verride

public void stop(BundleContext context) throws
Exception {

System.out.println("Stopping Hands on Liferay");

}

Bundle States

Now that you understand that the bundle is state-aware and uses the start
and stop methods of a BundleActivator, it’s time to look at all the possible
states that the OSGi bundle can traverse through (see Figure 1-3).

10
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Starting

Policy

Resolved

Uninstalled Stopping

Figure 1-3. Bundle states

o Installed: This state depicts that the bundle has
entered the OSGi runtime. Nothing else; it’s not
available; running or resolving the dependencies
means a bundle is available in the OSGi runtime. If a
bundle stays in this state for a long time, that means
that it’s waiting for some of the bundle’s dependencies
to be met.

¢ Resolved: This state shows that the bundle has been
installed successfully, and the OSGi runtime resolves
all the dependencies with the help of the installed
bundles in the OSGi runtime. The bundle is available
for the next stage, which is Start. Sometimes, the
runtime will skip this state if a bundle is started by
getting all the required dependencies.

11
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o Starting: At this state, the entry-level classes are
initialized, and it’s a temporary state that the
bundle goes through while it is starting and once all
dependencies are met.

e Active: This state shows that the bundle is up and
running.

o Stopping: This is a temporary state similar to starting;
it goes through this when the bundle stops. All the
destructors are called during this state.

¢ Uninstalled: This states shows that the bundle has
been removed successfully from the OSGi container.

A bundle lifecycle state will be managed, meaning a bundle
can change its state by itself upon deployment, and developers and
administrators can manage its state. There are various GUI and command-
line tools available to do this. Gogo shell and Apache Felix are two of the
most popular tools. You'll see these tools in detail in later chapters.

This section has explained the OSGi bundle lifecycle; in the next
section, you explore the OSGi components.

0SGi Components

Any Java class inside a bundle can be declared a component. This can be
achieved with the help of declarative services (DS), which provide a service
component model on top of the OSGi services. A component can publish
itself as a service and make itself available to other components. Similarly,
it can consume services published by already installed components.

OSGi components have an independent lifecycle and are reusable,
which means you can stop them and start them again without reinstalling
them. They will traverse through their lifecycle events again and again.
They can have properties and activation policies. An OSGi bundle can have
lifecycle methods for activation, deactivation, and configuration.

12
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DS service components are marked with the @Component annotation;
they implement or extend a service class. These service components can
refer to and use each other’s services. The Service Component Runtime
(SCR) registers component services and handles them by binding them to
other components that reference them.

There are two parts to this process—service registration and service
handling.

o Service registration: When a module containing
a service component is installed, the SCR creates a
config, binds it with the specified service type, and
makes a reference in the Service Registry.

e Service handling: When a module referencing a
service exposed from another module is installed, SCR
searches the Service Registry for a component whose
configuration matches the required service type. Once
the component is found, SCR binds an instance of that
service to the referring member.

Note To understand in a nutshell, you can say—when a module
with an exposed service is deployed, SCR registers it in the Service
Registry and when a module importing a service is deployed, SCR
searches for it in the Service Registry and returns its instance.

@Component annotation is a declaration to make the class an OSGi
component. @Referance annotation marks a field to be injected with
a service, and once the Service Registry finds the essential service,
itis injected with the resolved service. It can only be used in a
@Component class.
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