g

Liferay DXP

Learn Portlet Development and
Customization Using 0SGi Modules

Apoorva Prakash
Shaik Inthiyaz Basha

Hands- On Liferay
DXP

Learn Portlet Development

and Customization Using
OSGi Modules

Apoorva Prakash
Shaik Inthiyaz Basha

Apress’

Hands- On Liferay DXP: Learn Portlet Development and Customization
Using OSGi Modules

Apoorva Prakash Shaik Inthiyaz Basha
BANGALORE, India Nellore, AP, India
ISBN-13 (pbk): 978-1-4842-8562-6 ISBN-13 (electronic): 978-1-4842-8563-3

https://doi.org/10.1007/978-1-4842-8563-3
Copyright © 2022 by Apoorva Prakash and Shaik Inthiyaz Basha

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Divya Modi

Development Editor: James Markham

Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar
Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1

New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub. For more detailed information, please visit https://www.apress.
com/us/services/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8563-3

To my father,
Dr. Om Prakash Srivastava,
to whom I owe everything,
and
who inspired me but is not here to read. this.
Yes, life is like that sometimes!
— Apoorva Prakash

Table of Contents

About the AUthOrS.......c.cusemmsssmmmsssnssssssnsssssnssssnsssssnsssssnsssssnsssssnnssssnnnnns ix
Acknowledgments.......cccvermssssssssssnmmmmsssssssssssssnsssessssssssssnnnnsssssssssssnnnnns Xi
Introduction........ccccmnimmmmnmnmmnesnn s ———————— xiii
Chapter 1: 0SGi BASICS ...cuuvusssmmmmmmsssnnnmmssssnnnssssssnsnssssssnsnssssssnnnsssssnnnssssss 1
UNnderstanding OSGi.......ccveevrererernenierernsessesse s ses s se s s s e s ssessesessessesaes 1
How IS OSGi DIfferent?ccueevnvinesnnsse s ssanes 2

A Deeper LOOK at OSGic.ccovverreriererinsenseressssessese s ssssessessessssessessesssssssessesaes 3

OSGi ArChItECIUNEcovieicccri 3

OSGi BUNGIEScvvieririnissesi s 5
OSGi BUNI@ RUIES.........cociciriririnscine s 7
Importing and EXporting BUNAIEScccevevrvrenienennsensenesessssessessessesessessensens 8

0SGi BUNGIE LIfECYCI ...eeuereerreererereereesesreressessssesessessesassessessesssssssessessessssessessenes 9
BUNGIE STALESovoviecciriririr e 10

0SGi COMPONENLSceeercrerrerir e s ras 12
OSGi SBIVICES....crrererreerrrereresesresesesese s ses e se s e se s e e seesesenns 14
SErVICE REJISIIY ...veeeereeerrecrenese s 16
DECIarative SErVICES......c.ouorrrererererresererese s s sennes 16
Liferay’s 0SGi ArChiteCIUNEccoveericerrerrr e 19
OSGi FEAIUMES ...t 20
1] 4= 22

TABLE OF CONTENTS

Chapter 2: Liferay Development BasiCS.....ccccuusssnnssssssnsssssssssnssssssnnnnss 23
The Liferay WOrkSPacCe..........ccvcvvereriniinsinesssis s s s snsse s ssesssssssesne s 23
Liferay WOrksSpace PrMErccvvinvnennsnsinnese s s s sessesne s 24
BUIIA TOOIS ... e 26
€T 1 S 26
MAVEN ... e 27
Introduction to Liferay MOAUIESccvveermrenmrenenneseseses s nens 29
ThE BIAde CLI.....c.ceeeeeeccss sttt se s s sssnsnns 32
Running Liferay the First TIMe......cccoovvvrvrinn e sesennens 33
Running Liferay AppliCation.........ccccvvvviniennnnseniene s s sessesessessesees 34
Database Connectivity with Liferay DXPcccccevvvveriennnensensenssessessesessssessenens 37
61070 [0 11| OO 42
SUMIMANY....eieeirereeee e e e n e s re e e e e 44
Chapter 3: Portlet Module Development...........coccmmmmmnnnnnssssssssssnnnnnns 45
INtroduction t0 POMIELScccveeerecerrcrrese e 45
Portlet Specifications.........cccvvvrvnininnsrsn s 47
POrtIEt LIfECYCIE ..evuereereeerere st sere st se s a s e sae s e saesnens 47
Portlet Modes and Window SEatesccocerrnsnmsesnnnssssesssessssese s 50
POrtlet MOE ..o s 51
WINAOW STALES......ccorrerirrrrcise e 51
Java Standard POrtlets.......c.coveeccerrnencrcre e 52
A Closer Look at HelloApressPortlet...........cccovevrecreccvniennescre s 56
Liferay Portlet Module (MVC POIIEt).......cccoereierecrrcrereeree e 58
Creating a Sample Liferay MVC Portlet...........cccccovvvvnininnnnsnicnenssensennens 59
Understanding the Liferay MVC Portlet Controller..........ccoooveirnecneniesennnnes 64
Understanding the Different URLs in the Liferay MVC Portlet........................ 67

TABLE OF CONTENTS

Understanding Different Commands in the Liferay MVC Portlet.................... 82
Implementing Window State.........ccccccvvrinnnnininenssnsese s sessesessens 96
Introduction to Other Portlet ModUIES.........ccovreenceerernneesereres e 98
The Spring MVC Portlet.........coveoreerrcrncrre st sennenens 98
Liferay SOY POIIEL ...t e 99
JSF POMHEL......ccvcectcecee et 99
BeaN POMIEL.......oo s 99
GOGO SHEll iN ACHION ... e 100
Gogo Shell from the Liferay Control Panel..........c.cccovonrercrennnscnenenenennes 103
Gogo Shell from the Blade CLI..........ccooooeeenrererecererere e 104
SUMMANY....ceiieeresesesese e se e e s e se e nensenenns 105
Chapter 4: Advanced Liferay Concepts.......ccccusssemmmmsssssnsssssssansnssssnnns 107
Inter-Portlet CommURICALiON...........ccovermvirernsesre s 107
IPC via Public Render Parameters.........ccuvevvennnsesnnesnnnesesssesesesesssessnnes 108
IPC via Private Session Attributes..........cccvvevrenrnsesnnesnnese e 117
IPC via Server-Side EVENtScccovcrncnnennesensse e 123
Client-Side IPC Via AJaXccoueerrrrererenernsesssessssssessssessssessssssessssssessessssasessnnes 131
Client-Side IPC via COOKIESccorererrnsmresensrrenessssessssesessssessssssessessssaessanes 132
Liferay MeSSAQge BUS......ccucrerrrrerreriereninsesese s ses e e ssesessessessessssessessessssessessees 133
Synchronous MeSSAge BUScocevrververerieninseneseses s s sesessessssessessesses 140
Asynchronous MessSage BUS..........c.ccuvvveneriniensienessessenses s sessessssssessessenns 142

L) (=T VT 1 =T 11T O 145
11T 111 T OO 149
Chapter 5: Service Builder Conceptsccerrusmsmsssnsssssssssssnsssssnnsnas 151
Introduction to the Service BUIlder ... 151
GENerating SEIVICES.......ccuourrrererrnsmresesess s e s srans 153
Deep Diving Into the Code Generated by the Service Builderc.ccocvveernene. 164

vii

TABLE OF CONTENTS

Customization via Implementation Classes........cccuvvrriererenserserseresessessenaes 165
Remote Service Implementation.............cccccvvvevnienninscvnscnne e 171
CRUD OPErations........ccoucervererresensessessessssessessesssssssessesssssssessesssssssessessessssessesseses 173
410 SR 176
DYNAMIC QUEY.....covrrirreeceririsis e se s 179
(0T 0]] N 181
Working With RemMOte SEIVICES.......ccvvrrererrrenrererersssessere e sessessessesssssssesseses 185

Headless REST APIS.........cocmnermnminssessssss s sssesssssssas 185

Plain WED/REST SEIVICESccocvererrrrsnsmseresssssssssesesssssssssesessssssssssesesssssnsas 191
31111117 O 194

Chapter 6: Liferay Customizationccusccemmmmssssnnnmsssssnsnssssssssssssssnns 195
Overriding Language KeYSc.vocoererererrererereresesessesessese s sessesessese e sessesenns 195

Global Language PrOPEertYcoeerernnererenerenereesesesese s sessesesseesennes 196

Module Language Propertycccoveererernncrennenesesesessesesesessesesessesessenens 198
CUSTOMIZING JSPS ...oeereererereree s 200

Customization JSPs with Liferay APIScccureeerenernnenesnssesssesessesessssesennes 201

Using 0SGi Fragments or a Custom JSP Bagcccverevvininennnensensennns 207
Customizing Services USing WIapperscoucemenmsesesnsesesesesssessssessssssessenes 212
Customizing OSGi SEIVICES......cccvvrrerererrerserersssesse e sse s s e sessese e ssssessessenes 218
Customizing MVC COMMANGScceeerrererrerrerersnsesseressessssessessessssessessessssessessees 220
Customizing Models Using Model LiStenersccooecvnvenrenernscrnsenesesenennes 226
Expando AttribULES ... —————— 229
Pre and POSE-ACHIONSccccvrenmrnsmrrnesersse s s sessnnes 236
CustomIzZing SEAICHccoveeircerr s 240
SUMMAIY.c.eeitestrerere et e s s s r e e s e s saese e e e e e aesa e e s e s aesae e e e nannnees 245

INA@X . iiiiisssnnnnnnnnnnnsssssssssnnnnnnnsssssssssnnnnnnnnnsssssssnnnnnnnnnnsssssssnnnnnnnnnnssssssnnn 247

viii

About the Authors

Apoorva Prakash is a Liferay-certified
professional who has worked on Liferay

for over a decade. Currently, he works with
Schneider Electric Pvt Ltd., India, as a Liferay
Expert and Engineering Lead for a team
working on various projects of different
technologies, including Node]JS, Python,
AWS-based serverless technologies, and so
on. Apoorva has defined the architecture of

multiple portals, including large employee
portals, ecommerce sites, and so on, in Liferay
for over 12 years and counting. His other work areas include Node]JS,
Python, AWS, and Kubernetes. Development and deployment are his
passions, and he is inherently very keen on attention to detail. He is an
avid blogger, and his blog has been mentioned in the Liferay community
round-up several times. Apoorva has completed his master’s degree

in computer application from the school of computer science, Apeejay
Institute of Technology, Greater Noida, Uttar Pradesh. His other hobbies
are tech blogging and wildlife photography.

ix

ABOUT THE AUTHORS

Shaik Inthiyaz Basha is a Liferay Architect
and Technical Expert at Schneider Electric
Pvt Ltd., India. He is an expert in Content
Management Systems (CMS) and Amazon
Web Service (AWS). Inthiyaz currently holds
the position of Platform Architect in a group
involved in developing Liferay and Elastic

Search applications. His accomplishments
in enhancing and creating various Liferay
components are evident from his various successful implementations. His
experience and knowledge are supported by certificates such as Liferay
Backend Developer (DXP). Inthiyaz is also the founder of the https://
letuslearnliferay.blogspot.com, which contains a lot of information
on Liferay and the CMS world. Since 2011, he has created various kinds
of CMS applications, supporting large banking and financial systems.
His main area of interest is web applications. Inthiyaz uses Java, AWS,
and Elastic Search on a daily basis, but he is open to learning other
technologies and solutions. He holds a master's degree in Computer
Networks from Quba College of Eng & Tech, Affiliated with JNTUA
University, Nellore, Andhra Pradesh, India.

https://letuslearnliferay.blogspot.com
https://letuslearnliferay.blogspot.com

Acknowledgments

In life, one rarely comes across people whose few words or mere presence
can bolster you to do something extraordinary. Many people encouraged
us and contributed in innumerable ways when writing this book. We want
to acknowledge the following key people whose humble support was a
constant source of strength during the toil of creating this book:

e Mr. Sanju Varghese Raju
e Senior General Manager, Schneider Electric Pvt Ltd.

¢ One of the most humble and most genuine person
we’ve met and we thank him for his continuous
support, from inception to publishing this book.

e Mr. Veera Vasantha Reddy

e Assistant Vice President, Development Bank of
Singapore.

A technocrat and dear friend, and we thank him for
his guidance and critical review comments.

e Our families

o For allowing us to burn the midnight oil and spend
weekends on this book.

Introduction

Liferay has been a market leader in ready-to-deploy portals for quite some
time. During its lifetime, Liferay has experienced several architectural
upgrades that enhanced user and development experiences. Liferay DXP
is the most mature version of Liferay. As Liferay matured, it kept adding
several technologies; the biggest of which are OSGi and Gradle. OSGi
added a layer of modularity to Liferay, whereas Gradle has given the
deployment process more flexibility.

This book is a perfect fit for you if you possess basic Java knowledge
and are familiar with the Liferay user interface. It’s perfect if you want
to develop portlet modules in Liferay DXP and customize the default
Liferay behavior. You will also learn about OSGi, Blade CLI, the Liferay
development environment setup, and best practices. This book will help
improve your productivity. If you are hands-on with an older version of
Liferay or have little understanding of Liferay's development approach
and are looking forward to learning about the nitty-gritty of Liferay—DXP
development—this book is a perfect fit for you.

Portlets are the heart and soul of Liferay development, and they can be
created using multiple templates such as LiferayMVC, Spring, and others.
Portlets are the endpoint for users, from where they can trigger different
functionalities, such as database connectivity, IPC, schedulers, and so on.

Liferay is not all about custom development; you can also use its
out-of-the-box functionalities to achieve requirements. To utilize its out-
of-the-box functionality, you can customize Liferay default behavior in

xiii

INTRODUCTION

several ways, including customization of user interfaces, languages, action
classes, events, services, and other aspects. Liferay’s out-of-the-box search
framework can also be used to enable search in custom entities.

We tried to cover all concepts related to hands-on Liferay development
and sincerely hope the book fulfills our readers’ expectations.

Source Code

All source code used in this book can be downloaded from github.
com/Apress/Hands--On-Liferay-DXP-by-Apoorva-Prakash-and-
Inthiyaz-Basha.

Xiv

CHAPTER 1

OSGi Basics

This chapter dives deep into OSGi concepts, along with its essential
features, its architecture, services, the Service Registry, and a few other
crucial topics that fall under the basics of OSGi concerning Liferay
DXP. Further, you learn about bundles with a straightforward example
in the next chapters. By the end of this chapter, you will understand the
unlimited potential of OSGi.

Understanding 0SGi

The Open Services Gateway Initiative (OSGi) was founded in March, 1999
and is managed by the OSGi Alliance.

The OSGi Alliance now refers to the framework specification as OSGi
or the OSGi Service Platform. To create a Java-based service framework
that can be managed remotely, the vendors of networking providers
and embedded systems came together and created a set of standards.
OSGi was initially developed to be a gateway for managing Internet-
enabled devices like smart appliances. The Java software framework is
embedded in a gateway hardware platform, such as a set-top box or cable
modem. This software framework acts as a central message dealer to the
home’s LAN (Local Area Network). The core goal is to efficiently manage
cross-dependencies for software developers by creating a standardized
middleware for intelligent devices.

© Apoorva Prakash and Shaik Inthiyaz Basha 2022
A. Prakash and S. I. Basha, Hands- On Liferay DXP,
https://doi.org/10.1007/978-1-4842-8563-3_1

https://doi.org/10.1007/978-1-4842-8563-3_1

CHAPTER 1 0OSGI BASICS

Liferay uses OSGi extensively for product development. Other
noteworthy companies include Oracle WebLogic, Eclipse Foundation,
IBM WebSphere, Atlassian Jira and Confluence, and JBoss. These are the
notable companies that are using OSGi for their product development.

Let’s look at what makes OSGi different from other frameworks.

How Is 0SGi Different?

The OSGi framework is different from other frameworks based on Java,
especially Spring. More than one application can exist in the same
container in the OSGi bundle runtime environment. The OSGi container
takes care of access to the dependencies required by each component
in the container. The OSGi framework also supports standardized
dependency injection, as defined by the Aries Blueprint project.

In OSGi, bundles can consume services exposed to other bundles.
A bundle can define and declare a version of bundles. The runtime will
automatically load all its bundles to resolve all dependencies.

Note In OSGi, if any bundle dependencies require multiple versions
of the same bundle, they are also available side by side.

OSGi is a modularity layer for the Java platform. OSGi’s core
specifications define a component and service model for Java. OSGi
provides a service-oriented development model, allowing for a service-
oriented architecture within a virtual machine.

For example, large Java applications can be challenging to deploy
and manage. In order to update deployment, the system/servers need
to be cycled, and the application build and deployment may cause
system outages. But OSGi provides an isolated module cycling/updating
capability to increase availability.

CHAPTER 1 0SGI BASICS

A Deeper Look at 0SGi

OSGi offers an elegant solution for handling dependencies, by requiring
dependency declarations within units of modularity. Multiple applications
can coexist in the same container in OSGi, and the OSGi bundle runtime
environment manages them. The OSGi container will ensure each
component is sufficiently isolated and approach any dependencies
required to access.

OSGi has two parts. The first part is called the bundle. It has modular
component specifications, which are generally referred to as plugins. The
specification will help determine the bundle’s interaction and lifecycle
infrastructure. The second part is the Service Registry, which is beneficial
to understanding how bundles discover, publish, and bind to services
in the Service Oriented Architecture (SOA) at the Java Virtual Machine
(JVM) level.

0SGi Architecture

The OSGi architecture is used in different Java-based applications. It is
illustrated in Figure 1-1 and consists of several layers that work on top of
the hardware and operating system:

CHAPTER 1 0OSGI BASICS

Application & Services
Bundles
Lifecycle | =
=]
(&}
Modules | 3

Execution Environment

Java Virtual Machine

Native Operating System

Hardware

Figure 1-1. OSGI service gateway

e Bundles: An OSGi bundle is a Java ARchive (JAR) file
that contains resources, Java code, and a manifest that
describes the bundle and its dependencies. For an
application, the OSGi bundle is the unit of deployment.
You learn more about bundles in the next section of the
chapter.

o Services: The services layer in the OSGi architecture
will offer a “publish find bind” model for old Java
objects to connect bundles dynamically. To simplify, an
OSGi service is a Java object instance registered to an
OSGi framework with a set of properties.

o Lifecycle: The lifecycle layer provides the API used to
start, install, uninstall, update, and stop objects.

CHAPTER 1 0SGI BASICS

e Modules: This layer defines how to export and import
code by bundle.

o Security: This layer handles the security aspects.

o Execution Environment: This layer defines the
available classes and methods in a specific platform.

Now that you've learned a bit about the OSGi basics, the next section
explores OSGi bundles.

0SGi Bundles

Bundles are modular Java components. Creating and managing bundles
is facilitated by OSGi, and bundles can be deployed in a container. A
developer uses OSGi specifications and tools to create one or more
bundles. The bundle’s lifecycle is defined and managed by OSGi. It also
supports the bundles’ interactions and hosts them in a container. The
OSGi container is roughly parallel to a JVM. Similarly, bundles can be
treated as Java applications with distinctive abilities. OSGi bundles run as
client and server components inside the OSGi container.

So, bundles are nothing more than OSGi components, and they are
in the form of standard JAR files. The only difference between regular
JAR files and bundles is the manifest header (also referred to as bundle
identifiers). These manifest headers tell the runtime that this JAR is not a
standard JAR file but an OSGi bundle. These bundle identifiers consist of
two main parts—Bundle-SymbolicName and Bundle-Version. You must
use a combination of these two to export and import the services. This
combination of Bundle-SymbolicName and Bundle-Version (semantic
versioning) creates a unique identifier for OSGi bundles and thus for
dependencies.

CHAPTER 1 0OSGI BASICS

Note Logically, a bundle has an independent lifecycle with a
piece of functionality. It can work independently with start, stop,
and remove.

Technically, a bundle is a JAR file containing some 0SGi-specific
headers in the MANIFEST . MF file.

As depicted here, the Bundle-SymbolicName is com.handsonliferay.
employee.portlet and the Bundle-Versionis 1.2.3.2022.

Bundle-Name: handsonliferay-employee-portlet
Bundle-SymbolicName: com.handsonliferay.employee.portlet
Bundle-Version: 1.2.3.2022

Export-Package: com.handsonliferay.employee

Let’s deep dive into understanding them:

o Bundle-SymbolicName: A unique identifier that refers
to the bundle. This is generally understandable
human text so that developers can understand the
functionality written inside it. The best practice is to
name it as class packages are named. In the previous
example, you created an API with the symbolic name
com.handsonliferay.employee.portlet, which any
OSGi bundle can import to consume the exposed
services. This naming convention is a standard Liferay
development approach.

e Bundle-Version: 1.2.3.2022. There are four parts to
a version number, each separated by three dots (see
Figure 1-2). This versioning scheme is also known as
bundle semantic versioning. Let’s look at part of the
semantic versioning process:

CHAPTER 1 0SGI BASICS

e Major, which is 1 in this case. The major version
is changed when there are code changes that can
break the code used in the APIs of this bundle.

e Minor, which is 2 in this example. This means there
are API changes in the bundle, which may include
some fixes. It refers to APIs of this bundle and it will
not break the code.

e Micro, which is 3 is this example. This changes
when there are minor changes and no
compatibility issues.

e Qualifier, which is used when there is no impact
to compatibility. It’s used to tag snapshots or
nightly builds.

. 2022

KIS

Figure 1-2. Bundle version

0SGi Bundle Rules

With these details, you can now learn how OSGI bundles are supposed to
work in real-time. Let’s look at the OSGI bundle rules:

1. You want code that may include or exclude some
application configuration. Using this approach, you
will get the primary benefit of modularity.

2. You want code that should update independently
from other code. Using this approach, you get
another primary benefit of modularity.

CHAPTER 1 0OSGI BASICS

3. You want code that has a set of specific
dependencies on other libraries. This way, you
decrease the chance of conflicts by isolating those
dependencies.

4. Some of the interface code might have different
implementations. This way, without making any
other changes, you can swap out implementations.

Importing and Exporting Bundles

The following example exports a service called com.handsonliferay.
employee.api with version 1.0.0. The Employee API is exposed with a
Symbolic-Name of com.handsonliferay.employee.api and a version
number 0f1.0.0:

Bundle-Name: Employee-api

Bundle-SymbolicName: com.handsonliferay.api
Bundle-Version: 1.0.0

Export-Package: com.handsonliferay.api; version=1.0.0

Importing Bundles

To understand bundle importing, you must understand version ranges. As
you have already learned, an OSGi bundle can be exported with a specific
version number, so multiple OSGi bundles have the same symbolic name
but different versions. They are essentially nothing but different versions
of the same OSGi bundle. There may be cases when you have more than
one valid bundle version from various deployed OSGi bundles. To solve
this scenario, you can mention ranges in the import statement. Square
brackets and parentheses are used for this purpose. Square brackets
denote inclusiveness, whereas parentheses indicate exclusiveness. You can
see this with the following example:

CHAPTER 1 OSGI BASICS
[2.1, 3.0) means include version 2.1 up to, but not including, 3.0.

Import-Package: com.handsonliferay.employee;
version="[2.1,3.0)"

This section has explained the basics of OSGi bundles; in the next
section, you explore the OSGi bundle lifecycle.

0SGi Bundle Lifecycle

OSGi is a very dynamic platform, and bundles are the core of this
mechanism. A bundle is a state-aware unit, meaning a bundle has several
states that it can traverse through and know what state it is in. In traditional
OSGi, you have a BundleActivator, where you have start() and

stop() methods that are invoked upon the start and stop of the bundle,
respectively.

Note Activators are nothing but classes that implement the org.
osgi.framework.BundleActivator interface.

The OSGi bundle lifecycle layer puts on bundles that can be
dynamically started, installed, updated, stopped, and uninstalled. These
bundles depend on the module layer for class loading, but it will add an
API to manage modules at runtime. See Listing 1-1.

Listing 1-1. Bundle Activator Class
package com.handsonliferay.employee.osgi;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

CHAPTER 1 OSGI BASICS
public class Activator implements BundleActivator{

@Override
public void start(BundleContext context) throws
Exception {
System.out.println("Starting Hands On
Liferay");
}

@0verride

public void stop(BundleContext context) throws
Exception {

System.out.println("Stopping Hands on Liferay");

}

Bundle States

Now that you understand that the bundle is state-aware and uses the start
and stop methods of a BundleActivator, it’s time to look at all the possible
states that the OSGi bundle can traverse through (see Figure 1-3).

10

CHAPTER 1 0SGI BASICS

Starting

Policy

Resolved

Uninstalled Stopping

Figure 1-3. Bundle states

o Installed: This state depicts that the bundle has
entered the OSGi runtime. Nothing else; it’s not
available; running or resolving the dependencies
means a bundle is available in the OSGi runtime. If a
bundle stays in this state for a long time, that means
that it’s waiting for some of the bundle’s dependencies
to be met.

¢ Resolved: This state shows that the bundle has been
installed successfully, and the OSGi runtime resolves
all the dependencies with the help of the installed
bundles in the OSGi runtime. The bundle is available
for the next stage, which is Start. Sometimes, the
runtime will skip this state if a bundle is started by
getting all the required dependencies.

11

CHAPTER 1 0OSGI BASICS

o Starting: At this state, the entry-level classes are
initialized, and it’s a temporary state that the
bundle goes through while it is starting and once all
dependencies are met.

e Active: This state shows that the bundle is up and
running.

o Stopping: This is a temporary state similar to starting;
it goes through this when the bundle stops. All the
destructors are called during this state.

¢ Uninstalled: This states shows that the bundle has
been removed successfully from the OSGi container.

A bundle lifecycle state will be managed, meaning a bundle
can change its state by itself upon deployment, and developers and
administrators can manage its state. There are various GUI and command-
line tools available to do this. Gogo shell and Apache Felix are two of the
most popular tools. You'll see these tools in detail in later chapters.

This section has explained the OSGi bundle lifecycle; in the next
section, you explore the OSGi components.

0SGi Components

Any Java class inside a bundle can be declared a component. This can be
achieved with the help of declarative services (DS), which provide a service
component model on top of the OSGi services. A component can publish
itself as a service and make itself available to other components. Similarly,
it can consume services published by already installed components.

OSGi components have an independent lifecycle and are reusable,
which means you can stop them and start them again without reinstalling
them. They will traverse through their lifecycle events again and again.
They can have properties and activation policies. An OSGi bundle can have
lifecycle methods for activation, deactivation, and configuration.

12

CHAPTER 1 0SGI BASICS

DS service components are marked with the @Component annotation;
they implement or extend a service class. These service components can
refer to and use each other’s services. The Service Component Runtime
(SCR) registers component services and handles them by binding them to
other components that reference them.

There are two parts to this process—service registration and service
handling.

o Service registration: When a module containing
a service component is installed, the SCR creates a
config, binds it with the specified service type, and
makes a reference in the Service Registry.

e Service handling: When a module referencing a
service exposed from another module is installed, SCR
searches the Service Registry for a component whose
configuration matches the required service type. Once
the component is found, SCR binds an instance of that
service to the referring member.

Note To understand in a nutshell, you can say—when a module
with an exposed service is deployed, SCR registers it in the Service
Registry and when a module importing a service is deployed, SCR
searches for it in the Service Registry and returns its instance.

@Component annotation is a declaration to make the class an OSGi
component. @Referance annotation marks a field to be injected with
a service, and once the Service Registry finds the essential service,
itis injected with the resolved service. It can only be used in a
@Component class.

13

