Practical Linux
DevOps

Building a Linux Lab for Modern
Software Development

John S. Tonello

ApPress’

Practical Linux
DevOps

Building a Linux Lab
for Modern Software
Development

John S. Tonello

Apress’

Practical Linux DevOps: Building a Linux Lab for Modern Software
Development

John S. Tonello
Baldwinville, NY, USA

ISBN-13 (pbk): 978-1-4842-8317-2 ISBN-13 (electronic): 978-1-4842-8318-9
https://doi.org/10.1007/978-1-4842-8318-9

Copyright © 2022 by John S. Tonello

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on the Github repository: https://github.com/Apress/Practical-Linux-
DevOps. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8318-9

Table of Contents

About the AUthOrccciminmmmmsnsmssssssss s xi
About the Technical REVIEWETccccsmssemsmssnsmsssnsssssnsssssnsssssnsssssnnss xiii
INtroduction.........ccccnnsmmmnsmmmmsns s —————— Xv
Chapter 1: Gather Your Hardware.......cccccceernssssssssssnmsssssssssssssssssssssssssnes 1
The Basics: What You’ll Need to Build Your Linux Lab.........c.ccocvvvernsnnccneresennnnes 2
Using New Equipment for Your Lab..........c.cccvivnininennnnnne s sessessenens 3
CPU Core ConSiderations.........c.ouueserrssessssesessssesssssssssesssssssssssesssssssssssessssessnns 4
Memory ConSiderations...........ccvveevnnenenesesssesrsese s sranes 5
Storage Considerationsc.cuouvenernsesrnnessnnse s senns 6
Using Old PCs and Laptops for Your Linux Lab.........cccvvvvnvnininnincncnsvenienenn, 7
Raspberry Pis and 10T DEVICES........cccvreririrninneniersessee e sesses e sessesssessesaessenns 8
Building YOUr NETWOIK.......ccccereirriereresne e s s e sss e e sressssessesnens 10
Managed vs. Unmanaged SWItChesccucevrirrininnnennnnsenn e 11
USING YOUF ISP ROULEEcovrueireccrnerirs et se e 13
Deploy Managed and Unmanaged SWitChes........c.cccunerrinnrnscsnnenenssernnne, 14

Use Network Bridges and Bonds to Improve Connectivityccccevviernnne. 17

Tips for Avoiding Common Hardware Headaches............ccccocvivvnvnicncnniensennenn, 18
Reserve IP Address Pools Now, Not Later.......cccccevevevvrsennercerrenseesecerennes 19

Test and Document Your Configurations...........ccccuevvvnvneninnnsnseniennsensenens 19

[0 0 e 11 S 21

iii

TABLE OF CONTENTS

Chapter 2: Setting Up a Virtual Environment............ccccennssnnnnnnnsssnnnns 23
About the Proxmox Virtualization Environment (PVE).........cccccovvvinininncncennenn 24
Set UP PrOXIMOX.....ciiiicircrc et 25

Post-install Configurationscccocvvnininnnnnn e 30
Prepare a Single-NIC Network Setup: VLAN-AWArEcccrrervvnieniesenensensennens 33
Prepare a Dual-NIC Network Setup: VLAN-AWArEccccvverernnennensenesensensenaens 34
Additional Storage Considerations............ccuevrervrnieriennnensensese e seesessesse s 37

Thinking Ahead to CIUSTEIING......c.ccoivrirrriererrrrersere e ser s se s saens 39
Deploy YOUr FIrSTVMoivriiercr i sse s sae s s 41
Server Replication with Cloning and Templates.........cccccvrrerrnrrnreneriesernsenenns 46
Deploy an LXC Template Containerc.cccvivvninnniennsnseness s ssessssessessens 47
SELUP KVIM ...ttt st s s 52

Check for Virtualization SUPPOM ... 54

Install KVM and Related ULIlItieS........cocvovrrinrernnenenenesssesesesese e sessesesse e 55
Set Up Bridged Networking on AlmaLinux, Fedora, and openSUSE..................... 56
Set Up Bridged Networking on Debian and Ubuntu Desktopsc.cceevrvververennen 58

Set Up a Linux Bridge Using NetworkManager...........ccecveerererrersererensensensenns 59
Set Up a Bridge Network with Netplan (Ubuntu).......ccooeevvrierenenrenienienesensenennes 66

Run virt-manager and Create Your First KM VM.........cccceevrvrriniernnensenienns 68
Command-Line Deployments..........cccccvrerrrenrnscrniesene s ses e e sessesenns 70

The Proxmox qm CommaNcccoveernrrnieneneseseesesesesesessssesesesessenens 70

The KVM virt-install Command...........c.couvererenrenennnssesesesssssssesesessssssssssesens 71
0] T 1 S 71

Chapter 3: Set Up @ DNS Server.........ccuusmmssmsssmmsssmssssmssssssssssssssssssnsnss 73
WHY [t MAHEIS......coieereerrre s 73
Planning YOUr NEtWOrK........ccoueerenrnnenncsens s se s s e 74
Work with the Gear YOU Have..........ccoevnninssssssssese e 75

iv

TABLE OF CONTENTS

Will You Have Multiple Networks (Dual-Homed)?ccccvevvevvnnnenierenensensensenns 75
What Domain Name Will YOU USE?cccoerernenesererensesesese e sssssseens 76
Reserving Pools of Addresses for Static and DHCP IP Addresses.........cccucvveruene 77
Configure Your Routers and SWItChES..........cccorerrnsernnenmnissessseseseses e sesesenns 79
Add Internet Access to Your Private Network SWitChcccocvervirnscnennnnns 79

To DHCP OF NOt 10 DHCP ... sennnnens 82
Deploy @ VM to Host YOUr DNS SEIVEr........ccucuvrenernsessnesesesessssessssesessssessssesenns 84
Using a ProxmoX LXC TeMPIALE........cccevvverrerierinnenserenesessessessessssesessessesessessesaens 85
Install a Base Linux TeMPIAtecccvvrierennrniene e ese e sessese s 86
Enable a Second Network INterfaceccuvveeerrernsnsssssennsnssssesesessseas 87
SELUP BiNG ...t sese s ses s saese s s s sas e ssesaesaessssessesnesaesssnenaesees 88
Configure NAMEA.CONT........ccvcvierierr e ene e 89
Check Your DNS Configurations.........ccccveevevennerseriensssessessessssessessesessssessessenes 93
Create a Forward Zone File ... 94
Create a Reverse Zone File..........covvnnnnnssssessssssssse s 95
Set Up an Optional DNS SIaVve SErVEr........ccvvvrrevnsensenserssessessessessssessessenes 99
Create @ SECONU HOSE.........ccoriinnccrir s 99
Set Up the DNS Slave Zone ENtriescccvvvvvevernnensensesessssessesessssessessenses 101
TeSt YOUr DNS SIAVE.........ccccerererirrneisisesisss s sssssssssnsens 102
Graphical DNS Deployments and Managementcccccovvenrnvcrnvenenescnnnne, 104
0] T 1 ST 106
Chapter 4: Setting Up an Email Serverccccunemmmmmmnnnssssssssssssnsnnns 107
Set Up a DNS Server to Handle Email............cccovvvirennininennsnsenesesessenennens 108
Install Postfix and DOVECOL..........ccvcerrenmiescrnesnese s 112
INSTAll POSHIX ... 114
INSEall DOVECOLccveeieirircere s s 116
Mail Server Security Considerations...........ccovvvrieveriesernsenne s 117

TABLE OF CONTENTS

Initial EMail SErviCe TESt.........cuveeirrrnniir s 119
Install SENAMAIL.........coviiiirrrr e ——————— 119
Install MAIULIS ..o ———— 120
Test Sending and Receiving Mail.........ccccovvrierevnsensensesiesensessessesesessessessens 120

Set Up an Email Client to Use the Email Server.........cccoevevvrcvrccverescrenccnnns 121

Install Postfix and Dovecot in a Docker Containerccoveeeerencrersenerenerennes 124

0] T 1 ST 137

Chapter 5: Building a LAMP Stack: Apache and PHP..........cccccunnnnnns 139

WHY LAMP? ... bbbttt 140

Configure a Web Server VM and Install the Packagesccvevvvverevennenieraenns 140

Update Your DNS Settings to Add WebSIteScccvrervrrierierenensensenesessessensenes 141

Install the Core LAMP PaCKagesccccovererrnierireneresesinesesse e esesessesessesessenes 143

Create Two Web Server DireClOries.c.cvvcrrecrrnenerene s 144

Define Two Different Websites in Apache........ccccvvverivininnniennsnseniesssensensenns 145

Finalize Settings for the First Websiteccccoivvevnincnincnncsncsc e 148

Configure Apache to Serve Up the Website Properlyccccoeevvvrverieneniensernens 149

Create and Enable the Second WEDSItecccccvnrnnisnssnnnsssssesesesseenes 150

Take a Snapshot to Preserve Your Configurationcccceeeeverererenenescscsenennas 153

Use PHP with YOUr WEDSITEcoeecrereereerecrerees e 154
Test the PHP Installation............ccoeeernenneseresc e 154

Install RainLoop Webmail...........cccocerevninieniennsinsene s ns 157
Set Up RAINLOOPccceverericsirsere et s 157
Set RAiNLOOP PErMISSIONS......ccccvivviririerierissinse s s saes 158
Configure RainLoop via the Admin Panel...........ccococvvvenrrenenssennsenesenenennes 158

Deploy Apache, PHP, and RainLoop as Docker Containers............ccoevvererenernnen 161
How the Containers INteract...........ccueevrerrnssnnesniesesssesssesese s 161
Prepare the DOCKer HOSL..........ccooeeincncresc e 162

TABLE OF CONTENTS

Create a Docker Context for RAiNLOOP.........ccoerrererennerserensssensessersssessesenses 162
Add Additional Docker Containers to the RainLoop Application 165
Start the Multicontainer RainLoop Docker Applicationcccccoveevrivccrenccnn. 168
Troubleshoot the Docker Deployment..........c.ccocevvcnnnieniennsnsessese s sesennens 169
0] T 1 ST 170

Chapter 6: Installing MariaDB and Creating a Simple Web

APPlICAtioN ...ccovviisnemnnnnnnmnmsssssnssssnn s sssssnss s nnnnnn e e e e s s nnnnnns 171
Set Up and Log In to MariaDB..............ccccvverernnennenienesessensesessesessessessesessessessens 172
Basic SAL COMMANGS........coviierererisssssese e ssssseas 175
Create MariaDB Users and Set Permissions..........c.covvvenesenerenssnssesesessnsenenes 177
Create a Test MariaDB Database.............ccceerrerrnenerencrnserereses s 179
Create and Populate a Database Tableccccvririnininininnsnn e 181
Add Data 10 @ TADIEccveceeereeere s 184
Update Table ENTrEsccvcrvervirieriere s ses e se s s s sessessessesessessesseees 186
Delete Table ENLFIES ..o s 188
Read MariaDB Data with PHP ... 189
CONLAINEIIZE I.....eeeeeee e 192
Create the PHP CONTAINET..........cccoveernermrnnerssesesese e s ssesessssesnnnes 192
Create MariaDB and AUMINETccoveerrenernsesrnesese s s ssanes 193
Launch Your Containerized Stack............ccovrmnnncnnnnnsnsnssssesesesssens 197
Try QUL ADMINET «.vveeccre e sa e e s s a e s r e naennes 199
(00411 L1 0TS 200

Chapter 7: Web Server AHernatives.......cccucsssessssnsssassssassssnsssassssanssns 203
DEPIOY WOIAPIESScoveerereeereeereeesesse e e se s se s e se s se s ses e sss e ssenes 204

Create a WordPress SyStem USErccovrrererererenneneseseses e 207
Finish the WordPress Installationccoeevneenrennnccsnsenesese s 207
Install and Configure NGINX........c.cocvvermrnnmrnsesrseses s ssanes 209

vii

TABLE OF CONTENTS

Manually Install NGINXccuerreriernrerserensnsesseressssessesessessssessessessssessessens 209
Configure NGINXcooevievrrreriereresesseresessesesesse e sessessessessssessessesassessessesaes 210
Install NGINX Using a Proxmox Template..........ccccririnnsniniennsnscnenssensennens 213
When a Little HTTP IS Al YOU NEEUccoveoerercrereereeree e 216
Python 3 hHP.SEIVEN ..o 216
Use the PHP CLI BUilt-In SEIVEr ... 217
Run php-cli in @ Container........c..coovvvriniennsninissrsne s sessesnens 218

0] T 1o ST 220
Chapter 8: Containerizing and Automating Your Deployments......... 221
Thinking in terms of Containers and MiCrOSEIrViCescouvurrrererreseressesesenens 223
Deploy an NGINX CONtAINETccccvvererrenernsesrsesesssesssse s sessessssenens 224
Automate Your NGINX Deployment.........cccccvceriernrenieniennsensesessssessessessesessessenss 226
Automate With AnSIDIE.........cccorriiirr 227
Ansible Playbook EXaMPIE........cccccrrerrererensenseressssessessesessssessesessssessessessens 229
Apply the NGINX PlaybooK...........ccccveerernneninierienessensessesesessessessessesessessessens 233
Automate NGINX with Chef ... 234
Create a Chef COOKDOOK and RECIPES........cvverrererrrerserersensssensessessssessessenaes 235
Create @ Chef RECIPE ...civvrererrerererersere s ssesese s e sss e ssessesas s ssessesassessessesnes 237
Create TeMPIALES.....ccvveverrrrerrere st ra s ne s a e se e naennes 241
Create a Chef INSPEC Profile........cccvvvrerevnnensenerssessessese s sessesseseesessessesnes 244
Apply and Test Your Chef Configuration..........ccvevvrverieriennnensessesesessensensens 246
Test with Test KitChen.........ccivinrir s 249
(004 1110 O 252
Chapter 9: Server Management and Maintenancecossassssessses 253
A Closer Look at Webmincccovvneencnernneeese e sessssssssenens 254
Deploy Webmin With Chef ... 257
Verify Your Webmin Installation...........ccceverncnnnenenessnssesssesesesesss s 257

viii

TABLE OF CONTENTS

Set Up Webmin for Multiple-Server Managementccocveevvverversesesessensensens 260
Add Other WEDMIN SEIVETSccoveeerereresmssmsesesssssssssssssssssssssssssssssssssesens 260
Add Cluster Capabilitiesccvevverrerrerierererserserersssessessesessssessessessessssessessens 262
Test Some CluSter ACLIONS.........ccveererernsersre e 264

A More DevOps Way to Analyze SyStems.........ccccccvreeverenernsenenseneneseresseseseens 265
Use Chef InSpec to Scan Systems.........cccvcevvevrnvvniennnescse s 265
Apply a Linux Benchmark Profile.........cccovvnininninnnininsnsnsesse s 266
Create an InSpec Waiver File...........cccovvvnevrescrnse e ses e 267

Other Ways to Apply InSpec Profilesc.ccovvvnvrinnnnsns e 272
Apply an InSpec Profile via the Chef Supermarket...........cccvvriniiininiennens 272
Create and Apply Your Own InSpec Profileccocevvniriennincncnesencenennn, 272

Some Useful Backup TOOIS ..o s sessessens 274
Set Up Proxmox Replicationcccucriviininninnnsnne s sessesnns 274
Back Up MariaDB Datacccocervnrininennsneness s sessessessens 275
Use Git t0 Store YOUr COUE........ccouverrererrnsmrerererresersssesessesessssesessesessssessssessnnes 276

CONCIUSION ... e 277

Chapter 10: Extend Your DevOps Capabilities with Git.............cesuees 279

Get Started With Git...........ccccevniri e ———— 280
Create @ GitHub ACCOUNL........ccviiiirr s 280
The Advantage of SSH for PUSING..........ccvcvierievnnnsnie e sessennens 284
Create a NeW Git REPO........ccvcererererrerieresie e sas s sae e s sseenes 284
Create SOme CONteNt...........ccovrncnnr s 286
Share YOUr COUE ..o s 291

Create @ GitLabh HOSt ... 295
GENErate an SSL KEBYcvvververerererrerere s sesessessessssessessesssssssessesassessensesnes 298
Use Your NeW GitLab REPOccvevveverrerrerevenserseressssessessessessssessessessssessessesses 302

ix

TABLE OF CONTENTS

Other GitLab Capabilities.........ccvvrerrerrererserrerersnsersesessesessese s ssssessessessssessessenes 303

A Bit ON CI/CDucuiiiririrsrnrsissnssssssesese e sssssssssssssssssssssssssssssssssenes 303
Create a GitLab RUNNET.........ccoviiirr s 304
Register Your Runner with Your GitLab InStancecccevevvevvevierevensenienaens 305
Create @ PIPEIINEcccvcevevrrvercere et se e saennes 306
(00411 11O 310
Chapter 11: Automate System Deployments with Terraform 311
INStall TEITATOIM ... s 312

A Terraform Example With DOCKET..........cccvvrieininininn e 313
Use Git t0 Track YOUr WOrK.........ccoverernnmsenenesssersssesessesessse s sessssessssessnss 315
Terraform Your First Bit of Infrastructure..........ccccoovevrrennissnnscsenesernsenenns 316

Use Terraform with PrOXMOX.......ccoueevnenmrnnmsrnsesssesssesessssesessesessssessssessssssessens 317
Configure Proxmox to Work with Terraform........c.c.ccovvevnieccnnsennscsenesennnnes 317
Create a variables.tf File........ccovrerrnsnneninese s 319
Create Your LXC with Terraform.........ccuccvvrennenennsesnnessssssesssesesesssssessnnes 325
Make Updates or Destroy [t Allccooeernnnerienenensese e 326
CONCIUSION ...t 327
INA@X . iiiiisssnnnnnnnnnnnssssssssnnnnnnnnssssssssnnnnnnnnnnsssssssnnnnnnnnnnnssssssnnnnnnnnnnssssssnnn 329

About the Author

John S. Tonello writes about technology, software, infrastructure as code,
and DevOps and has spent more than 20 years working in and around the
software industry for companies like Tenable, HashiCorp, SUSE, Chef, and
Puppet. He’s spent more than 25 years building Linux-based environments
and regularly publishes a wide range of how-to guides and blogs about
DevOps, Linux, and software-defined infrastructure.

About the Technical Reviewer

Nathan Haines is an instructor and a computer technician who has been
using Linux since 1994. In addition to occasional programming projects
and magazine articles, he is a member of Ubuntu, where he helps spread
the word about Ubuntu and Free Software.

xiii

Introduction

The Power of Linux

When my mother gave me a cast-off x386 IBM-clone computer in the
mid-1990s, I wasn't entirely sure what I was going to do with it, but I felt
impelled to get it running. My biggest challenge in doing so was economic,
not technical. I was too cheap to buy a licensed copy of Windows 3.1 and
went hunting for an alternative. Fortunately, I came across a book titled
Linux Installation & Getting Started by Matt Welsh, which showed me
everything I needed to get started. I downloaded the Slackware Linux
installation files over a 56k modem, wrote them to a stack of floppy disks,
and literally gave an audible hoot when I got the system up and running.

The moment markedly changed my future, with Linux and open
source software becoming a key part of my life, first as a hobby and
ultimately as a career.

Other early Linux adopters have similar stories to tell, and like them,

I was fascinated by the ability to freely download and install a complete
operating system and do “real computing.” In the ensuing years, I bought
my share of thick Linux texts, installed hundreds (perhaps thousands) of
Linux systems, and learned how to use and rely on open source software.
That experience is encapsulated in this book.

Alot has changed in the technology world in the 30-plus years since
Linus Torvalds first released Linux (and the hard-working kernel) in 1991,
and much has been written about it. It’s no accident that Linux and the
Internet grew up together. Linux remains a critical component of the
technical landscape, spawning whole industries and many well-paying
jobs. It’s at the core of modern life, though few recognize that fact. Today’s

INTRODUCTION

software developers certainly have heard of it, but many have never had a
chance to really explore it.

Practical Linux DevOps is written to be a go-to Linux book for IT
practitioners—or those who want to be—who want to explore Linux
and the technologies that make modern software happen. It provides
real-world tutorials and examples centered around DevOps practices,
the concept of continuously building, testing, and deploying software
applications that bridge the development side (think software and security
engineers) and operations (think hardware administrators). DevOps is
how modern software is made, and Linux is in the midst of it all. This
book seeks to teach you practical Linux concepts within the context of
DevOps, giving you the knowledge you need to confidently continue your

exploration.

Learning to Fish

The chapters in this book represent the culmination of my experience
with Linux and open source software with new users in mind. I attempt to
explain concepts in terms anyone can understand, and provide enough
context to explain the whys, not just the hows. I want to leave you wanting
more and with the ability to reason out how to keep learning. The adage
goes, “If you give a man a fish, you feed him for a day. If you teach a man to
fish, you feed him for a lifetime.” The goal of Practical Linux DevOps is to
teach you how to fish (and not fear the command line).

Where can Linux take you? With Linux running on NASA’s
Perseverance rover that’s exploring Mars, the sky is no longer the limit.
This book will help you become part of it all.

INTRODUCTION

Tips for Setting Up Your Environment
Your Workstation

This book presumes you’ll use a Linux workstation for all the work you
do, not just the virtual machines and containers you create. As you'll
read in Chapter 1, you can make good use of older hardware for a Linux
workstation. The examples in this book mostly use Ubuntu (based

on Debian), and there are many flavors of Ubuntu and other Linux
distributions that can run on older Windows and Macintosh computers.
I recommend using an existing spare machine, but if money is no object,
feel free to get a new or used Intel- or AMD-based machine and install
Linux on it.

Environment Settings

After installing a fresh Linux desktop, there are a few steps I always take
to make the workstation environment comfortable to my way of working.
For example, when you run commands as a superuser (something you'll
do all the time), sudo requires a password. When you're running dozens
or hundreds of sudo commands a day, this can become tiring. I solve that
problem by creating a file in /etc/sudoers.d/ that gives me superuser
privileges without requiring a password.

To do this, create a new file in /etc/sudoers.d and add the
following line, replacing <username> with the username you use on your
Linux system:

$ sudo vi /etc/sudoers.d/<username>

<username> ALL=(ALL) NOPASSWD:ALL

xvii

INTRODUCTION

After you save this file, you'll be able to run sudo commands without
entering a password. Of course, this isn’t exactly secure and shouldn’t
automatically be added to production systems, but when you're working
on your Linux workstation, it saves a lot of time and hassle.

Terminal Look and Feel

You'll spend a lot of time in your Linux terminal, so take a moment to make
it comfortable. There’s no need to squint at tiny text or colors you don’t
like. Xterm and other modern Linux terminals allow you to easily adjust
the font, font size, text colors, and background. I recommend editing the
preferences to make your terminal suit your tastes.

Power Settings

It might seem like a little thing, but I hate when my workstation screen
goes to sleep too often. By default, many Linux desktops go to sleep

after just five minutes. You might look away for a few minutes to check
headlines or focus on another machine, and you’ll have to log back in.
Irecommend going into your system’s Power settings to adjust the screen
timeout to at least 30 minutes.

Multiple Computers, One Mouse and Keyboard

If you're running your Linux machine alongside another separate
workstation, such as Windows or Macintosh, it can be quite cumbersome
to have two different keyboards and mice. I resolve this by using a little tool
called Barrier, a fork of Synergy, that allows you to share your mouse and
keyboard with multiple systems on the same network. The machine with
your physical keyboard and mouse attached becomes the Barrier server;
every other machine becomes a Barrier client. You can set the geometry
(left, right, up, or down) relative to your server machine and seamlessly
control, copy, and paste (but not drag and drop) many different Linux,
Windows, and Macintosh computers with a single keyboard and mouse.

xviii

INTRODUCTION

SCP

There are times when you need to move files from one Linux machine to
another. You can email them to yourself, but I've found the tool SCP to
be the best way to move files. It uses SSH to copy files or folders from one
system to another. There’s no need to use FTP or other means:

$ scp /path/to/local_file username@remote_host:/path/to/
remote_file

You can copy whole directories using SCP by adding the -1
(recursive) flag:

$ scp -r /path/to/local folder username@remote host:/path/to/

remote folder

Set Up Passwordless SSH

When you're regularly SSHing or SCPing between machines, it can save a
lot of time if you set up SSH keys between them. This enables you to use
ssh and scp without having to always enter a password.

To set this up, start by creating an SSH key on your workstation:

$ ssh-keygen

Follow the prompts, but do not provide a password for the key.
Then copy the newly generated key to one or more target systems:

$ ssh-copy-id username@remote_host

You'll be prompted to enter a password when you first use ssh-copy-
id to copy the key, but never again after that. This simple setup makes for
a more seamless integration between multiple Linux (and Macintosh)
machines.

Xix

INTRODUCTION

Enjoy the Ride

With that, you're ready to start digging in. Be sure to take advantage of the
GitHub repo associated with this book for code examples. They’ll get you
moving quickly and help you avoid having to manually type out longer
code snippets.

CHAPTER 1

Gather Your Hardware

To start building your Linux lab for DevOps, you first need to assemble
some hardware. The idea is to be able to experiment without messing
up your workstation with applications and packages that could leave it
unstable or even unusable. In this chapter, you'll deploy everything for
your lab on a separate machine, or machines, where you can install what
you need without worrying about wrecking your daily driver.

Today, public cloud providers are a big part of DevOps, making it
relatively simple to spin up instances and get to work. Unfortunately,
services like AWS and Azure obscure some important aspects of the
environment itself and, of course, cost money. By building your own
local Linux lab, you'll get the benefits of speed and ease without having
to worry about costs. Along the way, you'll also learn a lot about the full
environment your servers and applications are living in, giving you a
greater insight—and greater abilities—to manage it all.

This book presumes you have access to the following:

o Atleast one separate physical computer system

o Atleast one basic network switch

e Perhaps a spare monitor, keyboard, and mouse

o Ethernet and peripheral cables to put it all together

If you're like most tech-curious pack rats, you probably have some
older equipment lying around that will do the job. If not, the goal is to get
you up and running without spending a lot of cash.

© John S. Tonello 2022
J. S. Tonello, Practical Linux DevOps, https://doi.org/10.1007/978-1-4842-8318-9_1

https://doi.org/10.1007/978-1-4842-8318-9_1

CHAPTER 1 GATHER YOUR HARDWARE

The Basics: What You’ll Need to Build Your
Linux Lab

The principles of building your lab environment are simple. Create a beefy
virtual machine (VM) host with as much memory and CPU resources as
possible so you can create as many VMs and Linux containers (LXCs) as
possible.

Here are the basics for each physical lab node, which will run the
Proxmox Virtualization Environment:

e A 64-bit-capable CPU, such as an Intel i3, i5, or i7 or
AMD Ryzen 3, 5, or 7

o Atleast 8GB of RAM

e A spinning disk or solid-state drive (SSD) that’s at
least 256GB

e An Ethernet port
¢ One VGA or HDMI video port
e One free USB port

For a more robust lab that will provide more speed, performance, and
flexibility, each physical node should have

e Atleast 32GB of RAM
e Multiple hard drives or SSDs
e Two Ethernet ports

When you're building your lab, it’s important to spend a little time
thinking about your ultimate goal. Will you be running dozens of virtual
machines or just a couple? How important is performance? Will you have
an intricate network layout or something simple? Even if you don’t know
the answers to these questions now, keep them in mind as you plan to

CHAPTER 1 GATHER YOUR HARDWARE

add capabilities. For example, when using Proxmox as your virtualization
environment (described in detail in Chapter 2), you can’t easily add
machines to a cluster if you've already added VMs to the running
environment. That means you need to set up two or more Linux lab hosts
before you start deploying any virtual machines.

Using New Equipment for Your Lab

Part of the fun of building a Linux lab is finding new ways to put older gear
to use, and you can certainly do that to accomplish most of the projects in
this book. Sometimes, however, old hardware can be more trouble than
it'’s worth, and starting with clean, modern systems can get you up and
running quickly and with less frustration.

It wasn’t so very long ago that if you wanted a computer with an
eight-core CPU, 32GB of RAM, and a 1TB drive, you needed to buy a big,
expensive blade server. Today, such systems are commonplace, much
smaller, and far cheaper than ever before. Some good candidates for
home-based Linux labs on a budget include products made by Intel,
Gigabyte, ASRock, Asus, and Kingdel.

For the most part, you'll want mini PCs or tower systems for your Linux
lab host servers. The former are small and compact and don’t consume
much power. The latter give you the most flexibility for CPU, RAM, and
storage. Laptops are effective also, but the price point is probably more
than you want to spend, although a laptop rig can mean fewer cables and
peripherals. No need to drag out a monitor, keyboard, and mouse when
you want to do initial configurations.

Something to keep in mind is that you'll access your Proxmox server
remotely via a browser-based dashboard and, occasionally, a remote shell.
Once it’s initially configured, you’ll manage the environment from your
workstation. The host machine will run headless.

CHAPTER 1 GATHER YOUR HARDWARE

CPU Core Considerations

All the mini PCs built by the vendors mentioned previously come in
various sizes and capabilities, including bare-bones systems without
memory or hard drives preinstalled. Shop for devices that have the fastest
x86_64 (Intel or AMD) CPUs and the most cores you can afford. The

more cores the underlying system has, the more virtual CPUs you'll have
available for your virtual machines. That’s particularly important as you
deploy solutions like Kubernetes or OpenStack, which require you to
have several machines running simultaneously. Without enough CPUs,
performance will suffer, which, in some cases, renders your Linux lab too
slow to use.

You can use ARM-based CPUs as well, but recognize that the
architecture still is not as robust a development environment as x86_64.
Yes, many applications will run fine on ARM-based processors, but some
bleeding-edge or legacy applications may not be available.

Another thing to keep in mind if you're planning to use a mini PC is
its limited expandability. Some of these small boxes come with the CPU
soldered to the motherboard, meaning you can’t remove it or replace it. If
you'd rather not go the mini PC route and prefer a tower-sized system that
can, say, accommodate a removable CPU or many internal hard drives,
opt instead for those systems. Just keep in mind that these systems are
generally noisier and consume more power.

Of course, be sure that any system you choose supports Linux, even if
it initially comes with a flavor of Windows installed. Traditional BIOS or
UEFI booting frameworks are fine. With Proxmox you can deploy systems
with SeaBIOS and OVME, an open source UFI implementation.

A CPU with multiple cores—typically four—is critical for running
multiple virtual machines at the same time. In the next chapter, you'll learn
about the virtualization platform, but for now, be aware that the faster the
CPU and the more cores each of your Linux lab machines has, the better.

CHAPTER 1 GATHER YOUR HARDWARE

Each virtual machine you create on top of your Proxmox system will
consume both CPU and RAM from the host system, so you can never have
too much of either. Some applications are CPU-intensive; others are RAM-
intensive. The host environment will share everything among the VMs,
so the more memory you have, the more systems you can create, and the
more robust they’ll be.

At the same time, the virtualization environment will commit only the
necessary CPU and RAM to your running VMs, so even though you might
assign, say, an openSUSE system 8GB of RAM, it might require only 2GB
most of the time it’s running. The rest of the Proxmox host’s RAM is free to
be used by other running systems.

Memory Considerations

As I mentioned earlier, the more memory you can afford, the better
when it comes to deploying a versatile Linux lab. Generally speaking,
mini computers like those listed previously may have a hard limit of
32GB. That’s nothing to sneeze at, but an affordable tower machine will
likely give you the ability to easily double or triple that amount.

If you come across a good deal on a mini computer with just 4GB of
RAM, don’t buy it with such little memory. Plan to add more. Since most
motherboards—large or mini—want memory chips installed in pairs, you
might be limited to adding just another 4GB chip, which would give you
only 8GB total in most mini PCs, which typically have only two RAM slots.
It's better to order the device with at least one 8GB RAM chip so you can
expand it later.

Remember, it can be tricky to buy the correct memory for a computer,
and some computers require RAM chips that are far more expensive than
others. Check the technical specs before buying.

CHAPTER 1 GATHER YOUR HARDWARE

Storage Considerations

The price of most storage devices continues to drop, and you shouldn'’t
have any trouble finding a 500GB SSD for about the price of this book.
SSDs and the newer NVMe solid-state drives are fast and come in many
different sizes. Plan on at least half a terabyte, but if you can afford more,
buy it. Proxmox itself doesn’t require much disk space at all. The disks you
use will be filled by your virtual machines.

If you're planning to mix and match new drives with old ones, that’ll
work fine. Just be sure to have a physical machine that can fit them all and
has enough motherboard connectors to accommodate them. One scenario
is to install Proxmox itself (the server runs a version of Debian Linux) on a
smaller drive and reserve additional drives for your VMs.

Some mini devices come with NVMe connectors and no SATA
connectors. You can get PCle adapters that plug into a device’s USB 3.0
port to add external storage, which can be an inexpensive option. Without
SATA interfaces, you won'’t be able to add an SSD as a secondary internal
drive, and in those situations, you'll want to install the biggest single drive
you can afford. Most towers, on the other hand, have motherboards with
six or more SATA drive connectors, ideal for your older spinning SATA
drives and most SSDs. NVMe drives are a different matter. They require a
special slot. Do your homework before shelling out.

You can make do with spinning hard disks, but recognize that they’ll be
slower than SSDs when it comes to reading and writing data. For example,
an operating system running on a spinning disk will take longer to boot
than one booting from an SSD. Depending on your use cases, an SSD’s
higher input/output (I/0) speed can make a big difference and make life
less tedious, but they’re not critical for your lab hosts.

If you have several older drives available and your lab host nodes have
the room, install as many as you can. You'll be able to take advantage
of those drives, even if they're relatively small. I've built nodes with a
laughably small 60GB drive that enabled me to run several VMs without

CHAPTER 1 GATHER YOUR HARDWARE

any trouble. That’s because the virtual machines you create all use thin
provisioning, which means they don’t consume any disk space until they
need it. If you install Ubuntu on a 32GB virtual disk, it initially uses only
5GB, but the virtual machine won'’t touch the other 27GB you committed
until it needs it.

A Linux lab based on a virtualization platform like Proxmox or
VMware gives you the ability to overcommit all the physical system’s
resources without requiring you to do any tricky math to make
everything work.

Using Old PCs and Laptops for Your
Linux Lab

Although it’s true that new computers and networking gear can save you
some time and frustration, there’s a lot to be said for older hardware you
might already have.

The first Linux lab I built was on an older tower desktop machine with
an Intel i3 quad-core processor with 8GB of RAM and a 1TB spinning drive.
It had two Ethernet ports and served my needs for years. In fact, I still have
it and fire it up from time to time. You may have similar older desktops or
laptops like mine gathering dust that can serve as nodes for your lab cluster.

The most important consideration for using older gear is the system'’s
underlying architecture. Though you can still install Linux distributions
on 32-bit systems, they don’t make good Linux lab hosts because
virtualization is limited or unavailable. For virtualization, you need the
multi-threading capabilities of 64-bit systems. How can you tell the
difference? Check the vendor’s website for the original technical specs on
the machines you have. That'll give you a good start.

CHAPTER 1 GATHER YOUR HARDWARE

An old laptop might be another good choice, particularly if portability
is important to you. You can take your lab on the road if necessary (or at
least to work).

If the system you're planning to use is running Windows, open the
file manager (or any folder) and right-click the This PCicon and choose
Properties. You'll see the system configuration there. If you have an Intel-
based Mac, you can click the apple in the top-left corner and choose
System Properties to see what it has under the hood. If there’s no OS
installed on the system, you can boot a live Linux USB and follow the
instructions in Chapter 2 to check the system.

It's tempting to want to build a Linux lab environment right on your
main workstation or perhaps set up a dual-boot configuration so you
can switch back and forth. That’s a workable option, particularly if you're
digging into containerized environments with Docker and the like.
However, I don’t recommend it as the single resource for your DevOps lab.
Later chapters will take you through container basics so you'll get a chance
to work with microservices, but the idea here is to have a fully independent
environment to work on and access from your regular workstation. Even
if you're someone who always keeps their workstation up and running,
this isn’t quite enough for a good lab. Instead, find at least one separate
machine to use.

Raspberry Pis and loT Devices

Internet of Things (IoT) devices are becoming an important part of the
hardware landscape, and you can definitely incorporate such devices into
your lab environment. One of the best and easiest ways to do that is to get a
few Raspberry Pis.

CHAPTER 1 GATHER YOUR HARDWARE

Though there are many, many single-board devices from which to
choose, including the Pine64 and Orange Pi, Raspberry Pi devices are a
good choice because they support a wide variety of Linux OSes (including
the Debian-based Raspbian default), they're inexpensive, and they have a
vast community of developers. This last point is important when it comes
time to deploy applications and services because chances are good that
someone else has tried what you want to do, and the Internet is full of
guides and information. No other single-board device has as much readily
available content for you to take advantage of when you're stuck.

When buying Raspberry Pis for your Linux lab, be sure to get a model
that’s at least version 3. RPi4 models are even better. These have faster
CPUs, more RAM, and onboard WiFi and Bluetooth. Check with the
vendor for the best storage options, armed with the knowledge that not all
SD cards are suitable (durable and fast enough) to run a Raspberry Pi.

If you buy your Raspberry Pis as standalone devices, and not as part of
a kit, be sure you get enough mini-USB and USB-C cables to power them.
The Raspberry Pi 4 uses USB-C for power and has micro HDMI ports, so
you’ll need an adapter to connect to monitors with full-size HDMI ports.
Most of the time, you'll run your Raspberry Pis headless—with no monitor
or keyboard—but initial configuration often requires these interfaces.

Something else that’s handy with RPis is a USB power hub. These
enable you to plug five or more mini-USB cables into a single device that
uses just one wall outlet. This is a much better option than adding power
strips to accommodate half a dozen wall warts.

Raspberry Pis are small, so you can fit a lot of them in very little space. I
like to buy inexpensive racks to hold four or more in a neat stack.

Once considered a mere plaything, the Raspberry Pi is now anything
but. They can power 4k monitors, and with the additional USB storage, you
can use them as media streaming devices. In your lab environment, they
are a great choice for deploying applications and containers, giving you the
option to expand your lab for very little money.

CHAPTER 1 GATHER YOUR HARDWARE

In my own lab, I've deployed a four-RPi cluster to host containerized
applications and even a full-fledged Ceph storage cluster. Of course, the
performance for storage isn’t something you’d use in production, but
for applications that require multiple devices, they provide an excellent,
inexpensive learning platform.

The capabilities of modern RPis make them even more useful for lab
environments, and it’s possible to build an entire Linux environment using
just them and your workstation. I won'’t go into a lot of detail of how to
accomplish this, but it's something to keep in mind if you're limited on
resources and cash. For the purposes of this book, consider them excellent
supplements, but not primary resources.

Building Your Network

In order for your Linux lab to be truly valuable for all the DevOps work
you want to do, it must connect to a network so you can install packages,
remotely access it via the shell, and have it serve up resources like web
pages and DNS information. That requires at least a single Ethernet
interface on the host machine itself.

Fortunately, you have a lot of choices and can get great performance
without having to spend much money. Well-known vendors, such as
NETGEAR, Dell, D-Link, Linksys, and TP-Link, make suitable 1GB
networking devices for your lab hosts, if they’re not built in already.

If you plan to use an older system, you can make do with a 100MB
Ethernet port, but a 1GB connection is better. Everything in your lab
environment will perform better with faster networking, and network
installations can really fly with the additional bandwidth. Of course, to take
advantage of a 1GB network interface on any Linux lab host, you'll need a
network switch capable of handling 1GB speeds. Many low-cost options
are available.

10

CHAPTER 1 GATHER YOUR HARDWARE

Running two separate networks is ideal for your lab environment,
and for lab purposes that requires two separate network interfaces on
your physical systems, including your separate workstation. Ideally, these
should be physical Ethernet ports or USB 3 dongles, but one physical port
and WiFi capability can be better than just a single port. Two separate
network interfaces enable you to isolate your network traffic and help
keep your lab secure. If you're relying solely on your home network that
everyone in your house uses for Netflix, having a separate lab network
allows you—and your family—to avoid slowdowns.

The principle here is to create one network for all your lab traffic
and one network for accessing the Internet. In a home environment, you
typically accomplish the latter via the router provided by your ISP. The
former would be a private network using a small gigabit Ethernet switch

or router.

WiFi is robust enough to support most of the applications and
deployments described in this book, but getting it to work can be
tricky, and it’s not always as robust as a wired network interface. If
you’re okay with spending a little more time and having a few more
hiccups, try it.

Managed vs. Unmanaged Switches

If you're just starting out, unmanaged switches are easy to use and cheap
to buy. They provide everything you need to get a simple network up

and running. Just plug in some Ethernet cables, connect them to your
workstation and lab hosts, and you're off and running. They move network
traffic well and are pretty foolproof.

11

