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Preface

The reason and stimulation for this book was an application for a lecturer position
several years ago. I slightly panicked due to the fact that in case of success, I would be
totally unprepared in terms of lecturing material. So, I decided to write a script in order
to have at least something prepared. But, themore I got into the text and themore I tried
to collect content for a script on vibroacoustics, I came to the conclusion that there is
a need for a modern text book on the subject of vibroacoustic simulation focussing on
statistical energy analyses and hybrid methods.
There aremany excellent books on acoustics and vibration, but what ismissing tomy

opinion is an overall treatment of vibroacoustic simulation methods. Especially when
we are talking about statistical energy analysis (SEA) and the combination of finite ele-
ment methods (FEM) and SEA, the hybrid FEM/SEA method. In addition, the hybrid
FEM/SEA method allows a much clearer and more systematic approach to SEA com-
pared to the original literature andmight help to impart the knowledge to students and
professionals. It is my persuasion, that every acoustic simulation engineer shall mas-
ter these simulation techniques to be prepared for vibroacoustic prediction of the full
audible frequency range.
What is so special about vibroacoustics that so many methods are required? One

answer is that the dynamic properties of structure and fluid systems are so differ-
ent. This leads to distinct dynamic behavior. There may fit a lot of wavelengths of
acoustic waves into a chamber of a machine or a passenger compartment filled with
air, whereas the surrounding structure is often stiff and robust, and only a few wave-
lengths of the structural bending waves fit into the area of the surrounding walls. This
strongly influences how energy is transmitted via the walls into the cavity and how
small uncertainties affect the system response.
Additionally, there is often a great variety ofmaterials, like foams, fibers, rubbers, etc.

in the structure or applied as noise and vibration control, all having different orders of
magnitude in wavelengths or even completely different modes of wave propagation.
As a consequence, vibroacoustics is a complex engineering discipline or science

because the engineer has tomaster all thosemodes of wave propagation in the different
systems and media as far as the coupling between those waves for connected subsys-
tems. A thorough treatment of all wave types, couplings, and properties is not possible
in a typical lecture or textbook, but it is possible to explain the main idea of how to deal
with vibroacoustic phenomena and which means are required to solve the engineer-
ing problem. This book tries to extract the basic concepts, so that candidates are in a
position to determine, investigate and categorize vibroacoustic systems and make the
right decision on how to simulate them.
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The frequency range of interest is covering four orders of magnitude from 20 to
20 000Hz. That is one further reason why various methods for the description of these
phenomena are required. At low frequencies it makes sense to investigate the modal
behavior of a structure like the first modes of a string. In contrast to this, calculating all
standing waves at high frequencies for a large room is not reasonable, as small changes
at the boundaries or even temperature will lead to totally different wave forms in the
room. Both regimes are addressed by different approaches categorized as (i) determinis-
tic or (ii) statistic methods. The first occurs normally at lower frequencies, whereas the
latter is valid at high frequencies. Because of the different wavelengths, it often appears
that both cases occur in one vibroacoustic system, and both approaches are necessary.
The combination of the two methods is called hybrid FEM/SEA method.
As there are many books on the subjects of deterministic acoustics and vibration

available, this book focuses on SEA and hybrid methods. However, as FEM sys-
tems of equations are involved in the hybrid method, a minimum understanding of
deterministic systems is required.
How is the book organized? It starts with a simple but excellent example for a vibrat-

ing system: the harmonic oscillator. In chapter 1 phenomena such as resonances, off
resonance dynamics, and numerous damping mechanisms are explained based on this
test case. A first step towards complex and FEM systems is made by introducing mul-
tiple coupled oscillators as an example for multiple degree of freedom systems. Real
excitations often are of random nature. Hence, this chapter ends with tools and meth-
ods to describe random signals and processes as far as the response of linear systems to
such signals.
Chapters 2 and 3 deal with wave motion in fluids and structures, respectively. Both

chapters bring into focus the physics of sources, because the sourcemechanisms reveal
how energy is introduced into the wavefields and how the feedback to the excitation
can be characterized. Furthermore, the source dynamics are required when systems
are coupled. The dynamics of acoustic and structure systems are shown in chapters 4
and 5. This includes the natural resonances of such systems that will become impor-
tant for the classification of random systems. Based on analytical models, the low and
high frequency behavior of such systems is presented. One aim of the various exam-
ples is to illustrate that when sources are exciting those systems, the high frequency
dynamics become similar to the free field results from chapters 2 and 3. Chapter 6 deals
with the random description of systems. The concept of ensemble average and diffuse
fields is applied to typical example systems by usingMonte Carlo simulations. Based on
such randomized systems and averaged values, it is shown that we get similar results to
those you would get from deterministic methods when the uncertainty of dynamically
complex systems is considered. This opens the door to the statistical energy analysis
(SEA). Some typical one-, two-, and three-dimensional systems are presented in the
very detail, so that the reader gets a feeling when and under which conditions the SEA
assumptions are valid. The idea is to provide comprehensive examples for the rules of
thumb usually used to determine if random methods are valid or not.
In chapter 7 methods for coupling deterministic (FEM) and random (SEA) sys-

tems are presented, and the hybrid FEM/SEA method is introduced by describing
the coupling between FEM and SEA systems. Based on this, the effect of random on
deterministic systems as far as the impact of deterministic on random subsystems is
presented. The chapter closes with the global procedure of hybrid FEM/SEAmodelling
that calculates the joint response of both types of systems.
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Chapter 8 applies these coupling formulas to several options of connections. Espe-
cially the coupling sections are often missing in text books on SEA for a certain reason:
the calculation of coupling loss factors is not easy. However, as it is important to
understand the assumptions and limits, the coupling loss factors of point, area, and
line junctions are systematically derived. Since junctions are nothing else than noise
paths, this chapter is also useful for practical applications, for example the acoustic
transmission loss of plates that is an important quantity for airborne acoustic isolation.
The following chapters apply the theory to pure deterministic (chapter 9), pure

random (chapter 10), and hybrid FEM/SEA examples (chapter 11). All examples are
worked out in detail and show real engineering systems such as mufflers. In chapter
9 the transfer matrix method is introduced as an example of deterministic methods.
This allows the simulation of complex lay-ups of noise control treatments applied in
chapters 10 and 11.
The presented theory and the examples are calculated using Python scripts. The

scripts and the related toolbox are made available as open source code. The author
hopes that this toolbox helps to understand and to apply the presented topics. Fur-
ther contributions to the code of the toolbox are very welcome. The documenta-
tion of the toolbox and the GIT repository can be found on the authors website
www.docpeiffer.com.
As an acoustic engineer, I am in the somehow unique situation that I had the chance

to work on several means of transportation: trains, aircraft, helicopters, launchers,
satellites, and finally cars (mainly electric). Because of this experience I am convinced
that a deep knowledge of vibroacoustic simulation methods is mandatory to create
excellent and low-noise products. This know-how puts the acoustic engineer in the
position to apply the rightmethod in the right situation and frequency range. To under-
line this fact, chapter 12 presents models, basic ideas, pitfalls, and results of some
industrial examples from aerospace, automotive, and train industries. Special thanks
goes to my former colleague Ulf Orrenius who wrote the train and motivation section
of chapter 12. His great experience and knowledge strongly enriched the content of this
chapter.
This book is about simulation, but simulation is nothing without validation based on

tests. In my view both – simulation and tests – are required to perform a good acoustic
design and noise control engineering. Thus, chapter 13 briefly summarizes test and cor-
relation methods together with an outlook to further topics of simulation and ongoing
research in the field of acoustic simulation.
In most cases the life of an acoustic engineer means solving the target conflict

between the acoustic performance and costs, weight, and space requirements. This is
the reason why design engineers are not always the best friends of acousticians during
the design phase. The more important it is that you are able to calculate the effect of
your decisions for efficient application of the sometimes rare acoustic resources. I hope
that this book provides some support for this demanding task.
Coming back to my initial motivation: If I would have to hold a lecture on vibroa-

coustic simulation now, I would sleep much better.

Alexander Peiffer
Planegg, Germany
15 October 2021

www.docpeiffer.com
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1

Linear Systems, Random Process and Signals

Simple systemswith properties constructed by lumped elements asmasses, springs and
dampers are a good playground to understand and investigate the physics of dynamic
systems. Many phenomena of vibration as resonance, forced vibration and even first
means of vibration control can be explained and visualized by these lumped systems.
In addition, a basic knowledge of signal and system analysis is required to put the

principle of cause and effect in the right context. Every vibroacoustic system response
depends on excitation by random, harmonic or specific signals in the time domain and
we need a mathematical tool set to describe this.
An excellent test case to demonstrate and define the principle effects of vibration is

the harmonic oscillator. It consists of a point mass, a spring and a damper. The combi-
nation of many point masses connected via simple springs and dampers provides some
further insight into dynamic systems.
As those systems are described by components that have no dynamics in themselves

they are called lumped systems. In principle all vibroacoustic systems can by modelled
and approximated by this simplified approach.

1.1 The Damped Harmonic Oscillator

A realization of the harmonic oscillator is given by a concentrated point mass𝑚 fixed
at massless spring with stiffness 𝑘𝑠 as in Figure 1.1. The static equilibrium is assumed
at 𝑢 = 0 being the displacement in 𝑥-direction. A damper connectingmass and fixation
creates dissipation.

1.1.1 Homogeneous Solutions

Without external excitation as shown in Figure 1.1 a) themotion depends on the initial
conditions at time 𝑡 = 0with the displacement 𝑢(0) = 𝑢0 and velocity 𝑣𝑥(0) = 𝑣𝑥0. The
damping is supposed to be viscous, thus proportional to the velocity 𝐹𝑥𝑣 = −𝑐𝑣𝑢̇. The
equation of motion

𝑚𝑢̈ + 𝑐𝑣𝑢̇ + 𝑘𝑠𝑢 = 0 (1.1)

Vibroacoustic Simulation: An Introduction to Statistical Energy Analysis and Hybrid Methods,
First Edition. Alexander Peiffer.
© 2022 John Wiley & Sons, Inc. Published 2022 by John Wiley & Sons, Inc.



2 1 Linear Systems, Random Process and Signals

=

Equilibrium= 0

a) b)

Figure 1.1 Damped harmonic oscillator with initial conditions a) and external force
excitation b). Source: Alexander Peiffer.

is a homogeneous second order equationwith a solution of the form 𝑢 = 𝐴𝑒𝑠𝑡 . Entering
this into Equation (1.1) leads to the characteristic equation

𝑚𝑠2 + 𝑐v𝑠 + 𝑘𝑠 = 0 (1.2)

with the two solutions

𝑠1∕2 = − 1
2𝑚 [−𝑐v ±

√
𝑐2v − 4𝑚𝑘1∕2𝑠 ] (1.3)

Hence,

𝑢(𝑡) = 𝐵1𝑒𝑠1𝑡 + 𝐵2𝑒𝑠2𝑡 (1.4)

with 𝐵1 and 𝐵2 depending on the initial conditions. The root in Equation (1.3) is zero
when 𝑐𝑣 equals

√
4𝑚𝑘𝑠. This specific value is called the critical viscous damping

𝑐𝑣𝑐 =
√
4𝑚𝑘𝑠 (1.5)

We use the following definitions:

𝜔20 =
𝑘𝑠
𝑚

𝑐𝑣
𝑚 = 2𝜁𝜔0 𝜁 =

𝑐𝑣√
4𝑚𝑘𝑠

=
𝑐𝑣
𝑐𝑣𝑐

(1.6)

𝜔0 is the natural angular frequency, 𝜁 is ratio of the viscous-damping to the critical
viscous-damping. There are additional expressions for the period and frequency

𝑓0 =
𝜔0
2𝜋 𝑇0 =

1
𝑓0

(1.7)

where 𝑓0 is the natural frequency and 𝑇0 the oscillation period. Equations (1.1)–(1.3)
can now be written as

𝑢̈ + 2𝜁𝜔0𝑢̇ + 𝜔20𝑢 = 0 (1.8)

𝑠2 + 2𝜁𝜔0𝑠 + 𝜔20 = 0 (1.9)

𝑠1∕2 = −𝜁𝜔0 ± 𝜔0
√
𝜁2 − 1 (1.10)

The problem falls into three cases:

𝜁 > 1 overdamped
𝜁 < 1 underdamped
𝜁 = 1 critically damped.
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The first case leads to two real roots, and no oscillation is possible. The second case
gives two complex roots, whichmeans that (damped) oscillation occurs. The third case
is a transition case between the two other. Subsections 1.1.2–1.1.4 deal with each case
in detail.

1.1.2 The Overdamped Oscillator (𝜁 > 1)

Both roots in Equation (1.10) are real, distinct and negative. The motion is called
overdamped because introducing this into Equation (1.4) gives a sum of decaying
exponential functions:

𝑢(𝑡) = 𝐵1𝑒(−𝜁+
√
𝜁2−1)𝜔0𝑡 + 𝐵2𝑒(−𝜁−

√
𝜁2−1)𝜔0𝑡 (1.11)

The movement of such a system is illustrated in Figure 1.2. Using the above solution
and applying the initial conditions 𝑢0 and 𝑣𝑥0 we get for 𝐵𝑖:

𝐵1∕2 = ±
𝑢0𝜔0(𝜁 ±

√
𝜁2 − 1) + 𝑣𝑥0

2𝜔0
√
𝜁2 − 1

(1.12)

1.1.3 The Underdamped Oscillator (𝜁 < 1)

Here, the roots are complex conjugates and the solution of Equation (1.10) becomes:

𝑢(𝑡) = 𝑒−𝜁𝜔0𝑡
(
𝐵1𝑒𝑗(1−𝜁

2)1∕2𝜔0𝑡 + 𝐵2𝑒−𝑗(1−𝜁
2)1∕2𝜔0𝑡

)
(1.13)

= 𝑢̂0𝑒−𝜁𝜔0𝑡𝑐𝑜𝑠((1 − 𝜁)1∕2𝜔0𝑡 + 𝜙0) (1.14)

The motion is oscillatory with a frequency that is lower than in the undamped
configuration:

𝜔𝑑 = 𝜔0
√
1 − 𝜁2 = 𝜔0𝛾 (1.15)

Figure 1.2 Decaying components of the overdamped oscillator.
Source: Alexander Peiffer.
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Introducing the initial conditions 𝑢0 and 𝑣𝑥0 at 𝑡 = 0 the solution for the initial
amplitude 𝑢̂0 and phase 𝜙0 reads as:

𝑢̂0 =

√
𝑢20𝜔

2
𝑑 + (𝑣𝑥0 + 𝜁𝜔0𝑢0)2

𝜔𝑑
(1.16)

𝜙0 = −arctan (
𝑣𝑥0 + 𝜁𝜔0𝑢0

𝑢0𝜔𝑑
) (1.17)

The damped oscillatory motion is illustrated in Figure 1.3. It shows a decreasing
motion that never approaches the equilibrium.

1.1.4 The Critically Damped Oscillator (𝜁 = 1)

The last case is a transition between both systems. There is only one root 𝑠 = −𝜔0, and
the solution in Equation (1.4) becomes:

𝑢(𝑡) = (𝐵1 + 𝐵2)𝑒−𝜔0𝑡 (1.18)

This solution does not provide enough constants to fulfil the initial conditions, so
that we need an extra term 𝑡𝑒−𝜔0𝑡:

𝑢(𝑡) = (𝐵3 + 𝐵4𝑡)𝑒−𝜔0𝑡 (1.19)

Introducing the initial conditions again, the constants are:

𝐵3 = 𝑢0 (1.20)

𝐵4 = 𝑣𝑥0 + 𝜔0𝑢0 (1.21)

Figure 1.3 Damped, sinusoidal motion of the underdamped oscillator. Source: Alexander
Peiffer.
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Figure 1.4 Motion of the critically damped oscillator. Source: Alexander Peiffer.

Critically damped systems can be of practical relevance, because the motion returns
to rest in the shortest possible time, which is useful if periodic motion shall be pre-
vented. In contrast to the overdamped oscillator the equilibrium is reached as can be
seen in Figure 1.4.
Let us summarize some facts and observations about free damped oscillators:

1. Oscillation occurs only if the system is underdamped.
2. 𝜔𝑑 is always less than 𝜔0.
3. The motion will decay.
4. The frequency 𝜔𝑑 and the decay rate are properties of the system and independent

from the initial conditions.
5. The amplitude of the damped oscillator is 𝑢̂(𝑡) = 𝑢̂0𝑒−𝛽𝑡 with 𝛽 = 𝜁𝜔0. 𝛽 is called

the decay rate of the damped oscillator.

The decay rate is related to the decay time 𝜏. This is the time interval where the
amplitude decreases to e−1 of the initial amplitude. Thus, the decay time is:

𝜏 = 1
𝛽
= 1
𝜁𝜔0

(1.22)

1.2 Forced Harmonic Oscillator

When an external force 𝐹̂𝑥 cos(𝜔𝑡) is exciting the damped oscillator as shown in Figure
1.1 b), applying Newton’s second law we get for the equation of motion:

𝑚𝑢̈ + 𝑐𝑣𝑢̇ + 𝑘𝑠𝑢 = 𝐹̂𝑥 cos(𝜔𝑡) (1.23)

This is an inhomogeneous, linear, second-order equation for 𝑢. The solution of this
equation is given by a particular solution 𝑢𝑃(𝑡) and the solutions of the homogeneous
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Equation (1.1) 𝑢𝐻(𝑡).

𝑢(𝑡) = 𝑢𝐻(𝑡) + 𝑢𝑃(𝑡) (1.24)

Any linear combination of the homogeneous solution can be added to the particular
solution because it equals zero.

1.2.1 Frequency Response

There are several methods to determine the particular solutions, like Laplace and
Fourier transforms. Here, complex algebra will be used1. Amplitude and phase are
given by a complex pointer denoted by bold italic type as depicted in Figure 1.5.

𝐹̂𝑥 cos(𝜔𝑡 + 𝜙) = 𝑅𝑒(𝑭𝑥𝑒𝑗𝜔𝑡) (1.25)

𝑭𝑥 is the complex amplitude of the force, and the 𝑅𝑒(⋅) expression is usually omitted.
The displacement and velocity response is then given by

𝑢(𝑡) = 𝒖𝑒𝑗𝜔𝑡 𝑣𝑥(𝑡) = 𝑗𝜔𝒖𝑒𝑗𝜔𝑡 = 𝒗𝑥𝑒𝑗𝜔𝑡 (1.26)

with 𝒖 and 𝒗𝑥 as complex amplitudes of the displacement and velocity, respectively.
Introducing this into Equation (1.23).

−𝑚𝜔2𝒖𝑒𝑗𝜔𝑡 + 𝑗𝑐𝑣𝜔𝒖𝑒𝑗𝜔𝑡 + 𝑘𝑠𝒖𝑒𝑗𝜔𝑡 = 𝑭𝑒𝑗𝜔𝑡 (1.27)

= = cos +2

−

Figure 1.5 Complex pointer,
amplitude and phase relationship.
Source: Alexander Peiffer.

1 In this book the convention 𝑒𝑗𝜔𝑡 for the complex harmonic function is used. Literature that deals with
wave propagation often use 𝑒−𝑗𝜔𝑡 to have positive wavenumber for positive wave propagation. However,
as in every textbook in acoustics I denote the used convention on the first page to avoid confusion.


