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Preface

Quick Calculus is designed for you to learn the basic techniques of differential and integral
calculus with a minimum of wasted effort, studying by yourself. It was created on a premise
that is now widely accepted: in technical subjects such as calculus, students learn by doing
rather than by listening. The book consists of a sequence of relatively short discussions, each
followed by a problem whose solution is immediately available. One’s path through the book
1s directed by the responses. The text is aimed at newcomers to calculus, but additional topics
are discussed in the final chapter for those who wish to go further.

The initial audience for Quick Calculus was composed of students entering college who
did not wish to postpone physics for a semester in order to take a prerequisite in calculus.
In reality, the level of calculus needed to start out in physics is not high and could readily be
mastered by self-study.

The readership for Quick Calculus has grown far beyond novice physics students, encom-
passing people at every stage of their career. The fundamental reason is that calculus is empow-
ering, providing the language for every physical science and for engineering, as well as tools
that are crucial for economics, the social sciences, medicine, genetics, and public health, to
name a few. Anyone who learns the basics of calculus will think about how things change and
influence each other with a new perspective. We hope that Quick Calculus will provide a firm
launching point for helping the reader to achieve this perspective.

Daniel Kleppner
Peter Dourmashkin
Cambridge, Massachusetts
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CHAPTER ONE
Starting Out

In spite of its formidable name, calculus is not a particularly difficult subject. The funda-
mental concepts of calculus are straightforward. Your appreciation of their value will grow as
you develop the skills to use them.

After working through Quick Calculus you will be able to handle many problems and be
prepared to acquire more elaborate techniques if you need them. The important word here is
working, though we hope that you find that the work is enjoyable.

Quick Calculus comprises four chapters that consist of sections and subsections. We refer
to the subsections as frames. Each chapter concludes with a summary. Following these chapters
there are two appendixes on supplementary material and a collection of review problems with
solutions.

The frames are numbered sequentially throughout the text. Working Quick Calculus
involves studying the frames and doing the problems. You can check your answers immedi-
ately: they will be located at the bottom of one of the following pages or, if the solutions are
longer, in a separate frame. Also a summary of frame problems answers start on page 273.

Your path through Quick Calculus will depend on your answers. The reward for a correct
answer 1is to go on to new material. If you have difficulty, the solution will usually be explained
and you may be directed to another problem.

Go on to frame 1.

1.1 A Few Preliminaries

Chapter 1 will review topics that are foundational for the discussions to come. These are:

« the definition of a mathematical function;
« graphs of functions;

(continued)
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2 Starting Out Chap. 1

« the properties of the most widely used functions: linear and quadratic functions, trigono-
metric functions, exponentials, and logarithms.

A note about calculators: a few problems in Quick Calculus need a simple calculator. The
calculator in a typical smartphone is more than adequate. If you do not happen to have access
to a calculator, simply skip the problem: you can master the text without it.

Go on to frame 2.

Here is what’s ahead: this first chapter is a review, which will be useful later on; Chapter 2
is on differential calculus; and Chapter 3 introduces integral calculus. Chapter 4 presents some
more advanced topics. At the end of each chapter there is a summary to help you review the
material in that chapter. There are two appendixes—one gives proofs of a number of relations
used in the book, and the other describes some supplementary topics. In addition, there is
a list of extra problems with answers in the Review Problems on page 277, and a section of
tables you may find useful.

First we review the definition of a function. If you are already familiar with this and with
the idea of dependent and independent variables, skip to frame 14. (In fact, in this chapter
there is ample opportunity for skipping if you already know the material. On the other hand,
some of the material may be new to you, and a little time spent on review can be a good
thing.)

A word of caution about the next few frames. Because we start with some definitions, the
first section must be somewhat more formal than most other parts of the book.

Go on to frame 3.

1.2 Functions

The definition of a function makes use of the idea of a set. If you know what a set is, go
to 4. If not, read on.

A set is a collection of objects—not necessarily material objects—described in such a way
that we have no doubt as to whether a particular object does or does not belong to it. A set
may be described by listing its elements. Example: 23, 7, 5, 10 is a set of numbers. Another
example: Reykjavik, Ottawa, and Rome is a set of capitals.



§1.2 Functions 3

We can also describe a set by a rule, such as all the even positive integers (this set contains
an infinite number of objects).
A particularly useful set is the set of all real numbers. This includes all numbers such as

5, =4, 0, 1, &, —3.482, \/5 The set of real numbers does not include quantities involving
the square root of negative numbers. Such quantities are called complex numbers; in this book
we will be concerned only with real numbers.

The mathematical use of the word “set” is similar to the use of the same word in ordinary
conversation, as “a set of chess pieces.”

Go to 4.

In the blank below, list the elements of the set that consists of all the odd integers between
—10 and +10.

Flements:

Go to 5 for the correct answer.

Here are the elements of the set of all odd integers between —10 and +10:
-9,-7,-3,-5,-1, 1, 3, 5, 7, 9.

Go to 6.

Now we are ready to talk about functions. Here is the definition.

A function is a rule that assigns to each element in a set A one and only one element in a
set B.

The rule can be specified by a mathematical formula such as y = x?, or by tables of associ-
ated numbers, for instance, the temperature at each hour of the day. If x is one of the elements
in set A, then the element in set B that the function f associates with x is denoted by the symbol
f(x). This symbol f(x) 1s the value of f evaluated at the element x. It is usually read as “f of x.”

The set A 1s called the domain of the function. The set of all possible values of f(x) as
x varies over the domain is called the range of the function. The range of f need not be
all of B.

(continued)



4 Starting Out Chap. 1

In general, A and B need not be restricted to sets of real numbers. However, as mentioned
in frame 3, in this book we will be concerned only with real numbers.

Goto 7.

7
For example, for the function f(x) = x?, with the domain being all real numbers, the range

is
Go to 8.

8

The range is all nonnegative real numbers. For an explanation, go to 9.

Otherwise, skip to 10.

9

Recall that the product of two negative numbers is positive. Thus for any real value of x
positive or negative, x” is positive. When x is 0, x? is also 0. Therefore, the range of f(x) = x*
is all nonnegative numbers.

Go to 10.

10

Our chief interest will be in rules for evaluating functions defined by formulas. If the
domain is not specified, it will be understood that the domain is the set of all real numbers
tor which the formula produces a real number, and for which it makes sense. For instance,

(@ f(x)= \/; Range =

0) f)=—  Range=
X

For the answers go to 11.

11

The function 4/x is real for x nonnegative, so the answer to (a) is all nonnegative real
numbers. The function 1/x is defined for all values of x except zero, so the range in (b) is all
real numbers except zero.

Go to 12.
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12

When a function is defined by a formula such as f(x) = ax® + b, x is called the independent
variable and f (x) 1s called the dependent variable. One advantage of this notation is that the value
of the dependent variable, say for x = 3, can be indicated by f(3).

Often, a single letter is used to represent the dependent variable, as in

y =f(.
Here x 1s the independent variable, and y is the dependent variable.

Go to 13.

13

In mathematics the symbol x frequently represents an independent variable, f often repre-
sents the function, and y = f(x) usually denotes the dependent variable. However, any other
symbols may be used for the function, the independent variable, and the dependent variable.
For example, we might have z = H(r), which is read as “z equals H of r.” Here r is the
independent variable, z is the dependent variable, and H is the function.

Now that we know what a function means, let’s describe a function with a graph instead
of a formula.

Go to 14.

1.3 Graphs

14
If you know how to plot graphs of functions, skip to frame 19.

Otherwise, go to 15.

15

We start by constructing coordinate axes. In the most common cases we construct a pair of
mutually perpendicular intersecting lines, one horizontal, the other vertical. The horizontal
line is often called the x-axis and the vertical line the y-axis. The point of intersection is the
origin, and the axes together are called the coordinate axes.

(continued)
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y-axis

10——

~10 ——

Next we select a convenient unit of length and, starting from the origin, mark off a number
scale on the x-axis, positive to the right and negative to the left. In the same way, we mark
oft a scale along the y-axis with positive numbers going upward and negative downward. The
scale of the y-axis does not need to be the same as that for the x-axis (as in the drawing). In
fact, y and x can have different units, such as distance and time.

Go to 16.
16

We can represent one specific pair of values associated by the function in the following
way: let a represent some particular value for the independent variable x, and let b indicate
the corresponding value of y = f(x). Thus, b = f(a).

y-axis
a |
\ P
- - - T - ——=-—-—- - - - -
N (@b
b 1
|
|
&— Xx-axis

We now draw a line parallel to the y-axis at distance a from the y-axis and another line
parallel to the x-axis at distance b from that axis. The point P at which these two lines intersect
is designated by the pair of values (a, b) for x and y, respectively.
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The number a is called the x-coordinate of P, and the number b is called the y-coordinate
of P. (Sometimes the x-coordinate is called the abscissa, and the y-coordinate is called the
ordinate.) In the designation of a typical point by the notation (a, b) we will always designate
the x-coordinate first and the y-coordinate second.

As a review of this terminology, encircle the correct answers below. For the point (5, —=3):

x-coordinate [-5] =33 5]
y-coordinate : [-5] =3 3] 5]
Go to 17.

17

The most direct way to plot the graph of a function y = f(x) is to make a table of reasonably
spaced values of x and of the corresponding values of y = f(x). Then each pair of values (x, y)
can be represented by a point as in the previous frame. A graph of the function is obtained
by connecting the points with a smooth curve. Of course, the points on the curve may be
only approximate. If we want an accurate plot, we just have to be very careful and use many
points. (On the other hand, crude plots are pretty good for many purposes.)

Go to 18.

18

As an example, here is a plot of the function y = 3x°. A table of values of x and y is shown,
and these points are indicated on the graph.

\ y-axis /
x|y
-3 27 \ Z: ,{P
2| 12 \ " /
-1 3 \ < /
0 0 \ N ){
1 3
2| 12 \\ 5 (/ _
3 27 X-ax1s

-3 2 -1 0 1 2 3

To test yourself, encircle the pair of coordinates that corresponds to the point P indicated

in the figure.
[(3, 27) | (27, 3) | none of these]

If incorrect, study frame 16 once again and then go to 19. If correct,
Go to 19.
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19

Here is a rather special function. It is called a constant function and assigns a single fixed
number ¢ to every value of the independent variable, x. Hence, f(x) = c.

y-axis

5

4

0,3
3@

2

1

X-axis

S5 4 3 2 1 0 1 2 3 4 5

This is a peculiar function because the value of the dependent variable is the same for
all values of the independent variable. Nevertheless, the relation f(x) = ¢ assigns exactly one
value of f(x) to each value of x as required in the definition of a function. All the values of
f(x) happen to be the same.

Try to convince yourself that the graph of the constant function y=f(x) =3 is a

straight line parallel to the x-axis passing through the point (0,3) as shown in the
figure.

Go to 20.
20

Another special function is the absolute value function. The absolute value of x is indicated
by the symbol | x |. The absolute value of a number x determines the size, or magnitude, of
the number without regard to its sign. For example,

| =31=13]=3

Answers: Frame 16: 5, =3
Frame 18: (3, 27)
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Now we will define | x| in a general way. But first we need to recall the inequality
symbols:

a > b means a is greater than b.
a > b means a is greater than or equal to b.
a < b means a is less than b.

a < b means a is less than or equal to b.

With this notation we can define the absolute value function, | x |, by the following two

rules:
x| = { x %foO,
-x ifx <0.
Go to 21.
21
A good way to show the behavior of a function is to plot its graph. Therefore, as an
exercise, plot a graph of the function y = | x | in the figure below.
y-axis
5
4
3
2
1
X-axis

S 4 3 2 -1 0 1 2 3 4 5

To check your answer, go to 22.




10 Starting Out Chap. 1
22

The graph for | x | is

y-axis

X-axis

-5 4 3 2 -1 0 1 2 3 4 5

This can be seen by preparing a table of x and y values as follows:

x | r=1Ix]
T 44
-2 +2

0 0
+2 +2
+4 +4

These points may be plotted as in frames 16 and 18 and the lines drawn with the results
in the above figure.

The graph and x, y coordinates described here are known as a Cartesian coordinate system.
There are other coordinate systems better suited to other geometries, such as cylindrical or
spherical coordinate systems, but Cartesian coordinates are the best known.

With this introduction on functions and graphs, we are now going to familiarize ourselves
with some important elementary mathematical functions.

These functions are the linear, quadratic, trigonometric, exponential, and logarithmic
functions.

Go to 23.
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1.4 Linear and Quadratic Functions

23

A function defined by an equation in the form y = mx + b, where m and b are constants,
is called a linear function because its graph is a straight line. This is a simple and useful function,
and you need to become familiar with it.

Here i1s an example: Encircle the letter that identifies the graph (as labeled in the
figure) of

y=3x—3. [A] B| C]

If you missed this or if you do not feel entirely sure of the answer, go to 24.

Otherwise, go to 25.
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24

The table below gives a few values of x and y for the function y = 3x — 3.

X y y-axis
2| o 5+
-1 | -6 4
0f -3 31
1 P
2 3 1
e
S-4 32 -1, | f 23 45
.
_37
44
-5+

A few of these points are shown on the graph, and a straight line has been drawn through
them. This is line B of the figure in frame 23.

Go to 25.

25

Here is the graph of a typical linear function. Let us take any two different points on the
line, (x5, y,) and (xy, y;). We define the slope of the line in the following way:

Y2 — V1
slope = ——.
Xy — Xy

Answer: Frame 23: B

y-axis (x5, ¥,)

} V2= Vi

X-axis

Gy, 1)

Xp— X
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The idea of slope will be important in our later work, so let’s spend a little time learning
more about it.
Go to 26.

26

If the x and y scales are the same, as in the figure, then the slope is the ratio of the vertical
distance y, — y; to the horizontal distance x, — x; as we go from the point (xy, y;) on the line
to (x5, y»). If the line is vertical, the slope is infinite (or, more strictly, undefined). Test for
yourself that the slope is the same for any pair of two separate points on the line.

y-axis
s (5, )
Al vertical
distance
3 =0
RIRCSY
horizontal distance
1 =X=X
o s
1 2 3 4 5

Go to 27.

27

If the vertical and horizontal scales are not the same, the slope is still defined by

vertical distance

slope = - - ,
horizontal distance

but now the distance is measured using the appropriate scale. For instance, the two figures
below may look similar, but the slopes are quite different. In the first figure the x and y scales

are identical, and the slope 1s /5. In the second figure the y scale has been changed by a factor
of 100, and the slope is 50.

y-axis
1000

y-axis

5+ 7 10 500

—+—+ x-axis \ —f—+ x-axis
0 5 10 15 20 0 5 10 15 20

(continued)
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Because the slope is the ratio of two lengths, the slope is a pure number if the lengths are
pure numbers. However, if the variables have different dimensions, the slope will also have a
dimension.

Below is a plot of the distance traveled by a car vs. the amount of gasoline consumed.

100
80
60
40
20

0

Distance (miles)

0 1% 1 12 2
Gasoline (gallons)

Here the slope has the units of miles per gallon (mpg). What is the slope of the line shown?
Slope = [20 | 40 | 60 | 80] mpg

If right, go to 29.
Otherwise, go to 28.

28

To evaluate the slope, let us find the coordinates of any two points on the line.

100
80
60
40
20

0

B

Distance (miles)

0 %3 1 1% 2
Gasoline (gallons)

For instance, A has the coordinates (2 gallons, 80 miles) and B has the coordinates

(1 gallon, 20 miles). Therefore, the slope is

(80 — 20) miles — 40 miles
(2—1/) gallon  gallon

= 40 mpg.

We would have obtained the same value for the slope no matter which two points we
used, because two points determine a straight line.

Go to 29.
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29

If the line is described by an equation of the form y = mx + b, then the slope is given by

Y2 — V1
slope = ——.
Xo = Xy

Substituting in the above expression for y, we have

_(mxy +b) = (mxy +b)  mxy —mx; m(x, —xy)

slope
Xy — Xy Xy — X1 Xp — X4

What is the slope of y = 7x — 5?
[ 1761 =51 -71517]

If right, go to 31.
Otherwise, go to 30.

30

The equation y = 7x — 5 can be written in the form y =mx+ b if m =7 and b = -5.
Because slope = m, the line given has a slope of 7.

Go to 31.

31

The slope of a line can be positive (greater than 0), negative (less than 0), or 0. An example
of each is shown graphically below.

y y
‘%x o%x e

Positive slope Negative slope Zero slope
Figure 1 Figure 2 Figure 3

——t <

T

UL

Note how a line with positive slope rises in going from left to right, a line with negative
slope falls in going from left to right, and a line of zero slope is horizontal. (It was pointed

out in frame 26 that the slope of a vertical line is not defined.)
(continued)
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Indicate whether the slope of the graph of each of the following equations is positive,
negative, or zero by encircling your choice.

Equation Slope
1. y=2x-5 {+1-10}
2 y=-3x  {+]-]0}
3 p=q-2 {(+1-103
4 y=4 (+1-10}

The answer 1s in the next frame.

32

Here are the answers to the questions in frame 31.
In frame 29 we saw that for a linear equation in the form y = mx + b the slope is m.

1. y=2x—>5. Here m = 2 and the slope is 2. Clearly this is a positive number. See Figure 1
below.
y = =3x. Here m = —3. The slope is =3, which is negative. See Figure 2 below.

3. p =g —2. In this equation the variables are p and ¢, rather than y and x. Written in the
torm p = mq + b, it is evident that m = 1, which 1s positive. See Figure 3 below.

4. y=4. This is an example of a constant function. Here m = 0, b = 4, and the slope i1s 0.
See Figure 4 below.

y y
+5 +5 +
x x L x
-5 +5 -5 +5 [ +5
_5 _5 [
Positive slope Negative slope Positive slope Zero slope
y=2x-5 y=-3x p=qg-2 y=4
Figure 1 Figure 2 Figure 3 Figure 4
Go to 33.

Answers: Frame 27: 40 mpg
Frame 29: 7
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33

Here is a linear equation in which the slope has a familiar meaning. The graph below
shows the position S of a car on a straight road at different times. The position S = 0 means

the car is at the starting point.

60—

40 4+

S (miles)
1
T

20 4

0 Iy 1 12 2
t (hours)

Try to guess the correct word to fill in the blank below:
The slope of the line has the same value as the car’s

Go to 34.

34
The slope of the line has the same value as the car’s speed (or, for this one-dimensional

motion velocity).
The slope is the ratio of the distance traveled to the time required. But, by definition, the

speed 1s also the distance traveled divided by the time. Thus the value of the slope of the line

1s equal to the speed.
Go to 35.

35

Now let’s look at another type of equation. An equation in the form y = ax® + bx + ¢,
where a, b, and ¢ are constants (a # 0), is called a quadratic function and its graph is called a

parabola. Two typical parabolas are shown in the figure.

y-axis y-axis

X X .
L 2 X-ax1s

X-axis

Go to 36.
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36
Roots of an Equation:

The values of x for which f(x) = 0 are called the roofs of the equation. The values at y = 0,
shown by x; and x, in the figure on the left in frame 35, correspond to values of x which
satisfy ax® + bx + ¢ = 0 and are thus the roots of the equation. Not all quadratic equations
have real roots. For example, the curve on the right represents an equation with no real value
of x when y = 0.

Although you will not need to find the roots of any quadratic equation later in this book,
you may want to know the formula anyway. If you would like to see a discussion of this, go
to frame 37.

Otherwise, skip to frame 39.

37

The equation ax? + bx + ¢ = 0 has two roots. These are given by

_ —b+ Vb* —4ac —b— Vb = 4ac

M= 24 2= 24

The subscripts 1 and 2 serve merely to identify the roots. The two roots can be summarized

by a single equation:
—b+ Vb —4ac

2a

X =

We will not prove these results, though they can be checked by substituting the values for x
in the original equation.

Here is a practice problem on finding roots: Which answer correctly gives the roots of
3x—2x% =12

@ 4 (3+V17) 14 (3= V17)

(b) =1; =14
(¢) Vi, =4
(d) 1; 14

Answers: Frame 31: 4+, —, +, 0
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Encircle the letter of the correct answer.
[a]b]cld

If you got the right answer, go to 39.
The answer is in the following frame.

38

Here is the solution to the problem in frame 37.
The equation 3x — 2x*> = 1 can be written in the standard form

2% =3x+1=0.

Here a=2,b=-3,c=1.

= |- Vi —ta = % -3 = V=7 - @)

2a

1
=-G3x1).

4(_)

1

1 1
XZZZ(:S_D:E

Go to 39.

39

This ends our brief discussion of linear and quadratic functions. Perhaps you would like
some more practice on these topics before continuing. If so, try working Review Problems
1-5 on page 277. At the end of this chapter there is a concise summary of the material we
have had so far, which you may find useful.

Whenever you are ready, go to 40.

1.5 Angles and Their Measurements

40

Elementary features of rotations and angles:

If you are already familiar with rotations, angle, and degrees and radians, you can jump to
frame 50.

(continued)
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B The concept of the angle is the bedrock of trigonometry. Although
the general idea of an angle is probably familiar, it is important to agree
on the conventions and units for describing angles. For two straight-line

‘\ 0 segments OA and OB that intersect at a point O, the angle between them
0 A 1s a measure of how far the line segment OA must be rotated about the
point O to coincide with the line segment OB.

If the two segments initially coincide, for instance, half a revolution of either segment will
leave them pointing in opposite directions and a full revolution will bring them back to their
original positions.

The Greek letter 0 (theta) symbolizes the rotation angle. The sense of rotation is shown
by the curved arrow. We will follow the convention that if the segment OA is rotated in the
counterclockwise direction to coincide with the segment OB, then the rotation is positive.
Conversely, a rotation in the clockwise direction is negative. The direction can be indicated
by a small arrowhead on the curve between the two segments. If the sense of rotation is
unimportant, the arrowhead is usually omitted.

Measuring the size of rotations:

There are two conventions used for measuring the size of rotation. The first divides one
revolution into 360 parts called degrees (not to be confused with degrees of temperature).
The number 360 has the attraction of being large—providing good angular resolution—and
possessing many divisors. The symbol for a degree of rotation is °; hence, a quarter turn is
90°. The degree can be subdivided into 60 minutes (60"), and the minute subdivided into
60 seconds (60”). Until recent years degrees, minutes, and seconds (DMS coordinates) were
commonly used in map-making and navigation. With advent of GPS and laser metrology, the
convention for subdividing the degree has been changed: instead of minutes and seconds, the
convention is to express the fraction of a degree by a decimal number, typically with four
digits.

Location on Earth: latitude and longitude:

Two numbers are needed to describe positions on a surface. Because Earth is spheri-
cal, Cartesian coordinates are not useful for specifying a position. Instead, a system based
on coordinates known as latitude and longitude is employed. One of the coordinates is based
on the idea of a meridian. This is an imaginary half circle on Earth that connects Earth’s

Answers: Frame 37: d



