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Preface

The conversion of low-energy photons into high-energy photons, known as
“frequency upconversion,” using advanced optical materials has become an emerg-
ing research field with wide consequence and impact in various scientific areas
ranging from healthcare to energy and security. The materials showing frequency
upconversion properties are known as upconversion (UC) materials. UC materials
reveal variety of applications in different fields, viz. color display, two-photon
imaging in confocal microscopy, WLEDs, high-density optical data storage, upcon-
vertors, under sea communications, solid-state lighting, sensors, photovoltaics,
photocatalysis, food industry, indicators, anti-counterfeiting, bioimaging, cancer
therapy and other biological fields. It is known that in comparison to ultraviolet
(UV) and visible light the near-infrared (NIR) light is abundant and non-destructive
in nature. It has deep penetration in the organisms and less harmful quality.
UC luminescent materials in nanosize range are known as UC nanomaterials
or UC nanoparticles (UCNPs). UCNPs excited with non-destructive NIR light
are a better choice than the conventional downconversion nanoparticles because
they are free from autofluorescence, have low light penetration, and cause less
severe photo-damage to living organisms. It is notable to mention that the low
efficiency of UC materials definitely becomes a major barrier for their application
in a wide range. For researchers, it is a top priority to overcome this problem.
Several engineered UCNPs, e.g. organic, inorganic, hybrids, and thin films, have
been explored widely to obtain highly efficient UC luminescent materials. Usually,
organic luminescent materials suffer poor stability under harsh conditions and have
poor long-term reliability, but have a greater ductility than inorganic materials.
The inorganic luminescent materials are more durable and possess high thermal
stability. So, the hybrid materials consisting of both inorganic and organic compo-
nents, namely, metal organic frameworks (MOFs), have attracted researchers with
enhanced luminescence properties as compared to the bare organic and inorganic
materials. To enhance the upconversion efficiency, spherical metal nanoparticles
showing plasmon resonance in close proximity of the UCNPs are utilized. The
plasmonic nanostructures are widely used to evolve the UCNPs with improved
electronic, metallic, and optical properties. When the surface plasmon resonance
wavelength of the metallic nanostructure matches with the excitation wavelength
of upconversion mechanism, signal enhancement occurs. Usually, the coating of



xvi Preface

gold (Au) and silver (Ag) nanoparticles is used to tune the luminescence properties
of UCNPs, though the nanoparticles exhibit plasmon absorption in 400–600 nm
range.

The upconversion emission efficiency can be enhanced by several ways, includ-
ing doping with sensitizer, non-lanthanides, and coating with inorganic shell.
The non-lanthanide co-doping in UCNPs has also been used frequently in order
to get enhanced luminescence intensity along with the use of sensitizer ion.
The co-doping of activator and sensitizer ions with proper concentration in an
appropriate host matrix is essential to achieve highly efficient UC emission as
the concentration quenching has a prejudicial effect on the luminescence inten-
sity. The phonon frequency, stability, cost effectiveness, non-hygroscopic, and
non-toxic nature of the UC materials are of utmost importance. The security of any
important data, currency, etc. has become very crucial to prevent counterfeiting.
UCNPs with high luminescence intensity can be validated in anti-counterfeiting
applications. These materials are also utilized for visual exposure of fungicides,
thiram, etc., which can be broadly applied in soybeans, apples, wine farming,
etc., to avoid crop diseases and excessive use of pesticides. Rare-earth-ions-based
UC emission has tremendous advantages in terms of long excited lifetime, sharp
emission bandwidth, low autofluorescence, high photostability, high resolution,
low toxicity, etc. Rare-earth ions are found to be very sensitive to even small changes
in chemical surroundings. Therefore, it becomes essential to get information
about the symmetry, bonding of the probe ion, and how they change their optical
properties with chemical composition of the host materials. For getting the high
quantum efficiency, concentration of the dopants should be high, but it may cause
concentration quenching due to the interaction between the excited and unexcited
neighbors. Therefore, the nano-structured materials containing metallic nanopar-
ticles are of particular interest because the large local field around the rare-earth
ions positioned near the nanoparticles may increase the luminescence efficiency.
Among several strategies, the coating of upconversion nanoparticles with inorganic
materials shell is an effective method to get enhanced UC luminescence. The
core@shell approach offers shielding to the surface particles and thus reduces the
surface defects and possibility of quenching. This core@shell architecture is very
much beneficial in biomolecule conjugation and thus suitable for many biological
applications. Different coating strategies have been employed according to the
required application purposes. UCNPs probes can function as multiple contrast
agents for concurrent use in altered medicinal imaging modalities by providing
corresponding diagnostic information (i.e. MRI and CT). Bio-conjugation on the
surface of the UCNPs shows a much enhanced imaging performance in comparison
to the clinically used fluorescent dyes. Innovative bio-imaging methods are being
established by combining the conventional medical imaging modalities using
core-shell structured UCNPs.

The book entitled Upconverting Nanoparticles: From Fundamentals to Applica-
tions is completely different from the previously published books in all respects,
including the basics, scientific and technological demands. It is divided into
eighteen chapters. Chapter 1, authored by Mondal and Rai, introduces the basic
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concepts of upconversion, and upconversion of nano-particles. The introduction to
frequency upconversion and its various mechanisms, excitation and de-excitation
processes in hosts containing rare-earth ions along with the spectroscopic properties
of rare-earth ions/transition metals are described in this chapter. The rate equations
relevant to excited-state absorption and energy transfer processes with an overview
of the UCNPs have been introduced. Chapter 2, authored by Mukhopadhyay and
Rai, describes the synthesis protocol of upconversion nanoparticles. In this chapter
introduction to host materials and synthesis strategies of UC nanomaterials like
solid-state reaction, co-precipitation, sol–gel, hydrothermal, combustion, thermoly-
sis, microwave-assisted synthesis, core@shell synthesis techniques, etc. have been
described. Chapters 3 and 4, authored by Jain et al.; Ojha and Ojha, refer to char-
acterization techniques and analysis; Raman and FTIR spectroscopic techniques
and their applications, respectively. Various structural and optical techniques for
the characterization of UCNPs, viz. X-ray diffraction (XRD), X-ray photoelectron
spectroscopy (XPS), field emission scanning electron microscopy (FESEM), trans-
mission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS),
thermogravimetric analysis (TGA), ultraviolet–visible–near infrared (UV–Vis–NIR)
absorption spectroscopy, dynamic light scattering (DLS), photoluminescence,
Fourier transform infrared (FTIR), have been reported. Chapters 5, 6 and 7, authored
by Ranjan et al.; Prasad and Rai; and Pattnaik and Rai, summarize the fundamental
aspects of UCNPs based on their properties, frequency upconversion in UCNPs
containing transition metal ions, and frequency upconversion in UCNPs containing
rare-earth ions, respectively . Along with introduction the dynamics of UCNPs
on the basis of fluorescence decay times, quantum yield measurement of UCNPs,
frequency upconversion and its various mechanisms have also been interpreted.
The various routes to enhance the upconversion luminescence along with the
technological applications of UCNPs have been described.

Chapters 8, 9, and 10, authored by Singh; Dwivedi; and Ningthoujam et al., are
devoted to the smart and new type of upconverting nanoparticles; surface modi-
fication and (bio) functionalization of upconverting nanoparticles, and frequency
upconversion in core@shell nanoparticles, respectively. These chapters outline
the upconverting core@shell nanostructures, hybrid upconverting nanoparticles,
magnetic-upconverting nanoparticles, UC-based metal–organic frameworks, sur-
face modification, bio-functionalization of upconverting materials, synthesis of
core@shell and core@shell@shell UCNPs, and use of UCNPs for security, biological,
and sensing applications. Chapters 11, 12, 13, 14, and 15, authored by Kumar, Mishra
and Shwetabh; Singh et al.; Dey; Mahata, De and Lee; and Shahi and Rai, deal with
the UCNPs in solar, forensic, security ink, and anti-counterfeiting applications;
application of upconversion in photocatalysis and photodetectors; UCNPs in
lighting and displays; upconversion nanoparticles in pH-sensing applications and
upconversion nanoparticles in temperature-sensing and optical heating applica-
tions, respectively. Chapters 16, authored by Wang et al., throws the light on UCNPs
applications in degradation of organic and inorganic pollutants along with the
photocatalytic hydrogen generation. The visual detection of fungicides and plant
viruses along with the future challenges have been explained by Kesarwani and
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Rai in Chapter 17. Chapter 18, authored by Mukherjee and Sahu, involves the
application of UCNPs in bio-imaging, drug delivery, photodynamic therapy, and
photothermal therapy.

The present book is outcome of the untiring efforts of all the contributing authors.
It will be very much helpful to the researchers as well as the undergraduate and
post-graduate students studying physics, chemistry, materials science, biology,
engineering, etc. in gaining a proper understanding about the upconversion
luminescence. It was possible to complete this book only due to the great affection
and blessings of Gurudev Pt. Shri Ram Sharma Acharya and Gurumataji Mata Bha-
gawati Devi Sharma. Special thanks to all my family members and research scholars
for their motivation and kind support. I would also like to thank the Wiley team
involved from the beginning till the completion of the book proposal. As a large
number of topics related to the UCNPs and their applications have been covered in
this book, there could be the possibility that some of the minute glitches have been
missed out. Therefore, genuine suggestions and comments from the readers are
welcome. Overall, the research developments on UCNPs and their uses in different
fields starting from very basics to advanced level make the present book unique.

Department of Physics
Indian Institute of Technology
(Indian School of Mines),
Dhanbad, India

Professor (Dr.) Vineet K. Rai
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1

Introduction to Upconversion and Upconverting
Nanoparticles
Manisha Mondal1,2 and Vineet Kumar Rai1

1Indian Institute of Technology (Indian School of Mines), Department of Physics, Laser and Spectroscopy
Laboratory, Dhanbad 826004, Jharkhand, India
2Tezpur University (Central University), Department of Physics, Napaam, Tezpur, Sonitpur 784028, Assam,
India

1.1 Introduction

Spectroscopy almost deals with the interaction of light and matter. It provides infor-
mation about splitting of electromagnetic radiation into its constituent wavelengths.
The beginning of spectroscopy lies since the observation of light dispersion through
prism by Sir Isaac Newton. Among different spectroscopy techniques, optical spec-
troscopy delivers an exceptional tool by which one can find detailed information
regarding the absorbing and emitting atoms, ions, molecules, defects, their local
surroundings, etc. In a term, optical spectroscopy allows light to penetrate inside
materials. Optical spectroscopy can be characterized into four parts: absorption,
luminescence, reflection, and scattering. A marvelous dimension of research carried
out in finding novel luminescent materials plays an important role in optical com-
munication, lighting, medical diagnosis, etc. (Berthou and Jörgensen 1990; Cheng
et al. 2013; Jiang et al. 2016; Lin et al. 2016; You et al. 2016; Dey and Rai 2017; Mehra
et al. 2020). When an atomic system after absorbing the photons of appropriate
frequency transits upward to a higher state and then by the spontaneous emission
process, it may return to the ground state. This de-excitation route is familiar as the
luminescence process. The occurrence of luminescence due to excitation of light is
known as photoluminescence. On the other hand, luminescence due to excitation
of an electron beam is termed as cathodoluminescence, which helps to identify
impurities, lattice defects, and crystal distortions. Radioluminescence occurs due
to excitation through the highly energetic electromagnetic radiations (i.e. α rays,
β rays, and γ rays). The thermoluminescence phenomena are used in radiation
dosimetry, dating of minerals and old ceramics, materials characterization, biology,
forensic, etc. It occurs when a material radiates light as a consequence of release
of energy kept in traps by thermal heating. Electroluminescence occurs due to the
passage of electric current over a material. The emission of light due to mechanical
disturbance originates triboluminescence. Conferring to the diverse positions of
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the excitation and emission bands, the luminescent materials can be categorized
into Stokes- and anti-Stokes-type luminescent materials. These processes are
typically exemplified by the Jablonski diagram (Jablonski 1935; Jablonski 1993).
The luminescent materials are commonly known as phosphors, which means
“light bearer,” that consist of host and dopants. In these constituents, lanthanide
materials are mainly introduced into the host matrix. Lanthanides have the most
complicated electronic structures because of their large number of incomplete 4f
energy levels. The present chapter presents a brief outlook on understanding the
frequency conversion mechanisms, electronic energy levels of rare-earth (RE) ions,
transition metal ions, theoretical description of the optical characteristics of RE
ions, and Upconverting nanoparticles (UCNPs).

1.2 Frequency Conversion and Its Various Processes

The photoluminescent materials are able to display visible emissions via suitable
ultraviolet (UV) or near-infrared (NIR) excitations. In the majority of cases, excita-
tion energy is greater than emitted photon energy; this emission is called as Stokes
emission, and the corresponding energy loss is known as Stokes shift. In certain
circumstances, emitted energy is higher than absorbed energy; this is known as
anti-Stokes emission.

1.2.1 Stokes Emission

The Stokes-type emission process possesses two types of features such as downcon-
version and quantum cutting (Huang et al. 2013; Loo et al. 2019). In quantum cutting
process, two or more lower energy photons are emitted for each incident high-energy
photon absorption. In this process, two, three or four low-energy photons are emitted
because of the absorption of one NIR, visible, or ultraviolet photon. In this pro-
cess, the conversion efficiency is more than 100%. In current years, quantum cut-
ting has acknowledged considerable devotion as a budding method to improve the
photovoltaic conversion efficiency of solar cells. On the other hand, in the down-
conversion process, emission of one lower energy photon takes place because of the
absorption of one higher energy photon; thus, the conversion efficiency will not go
beyond 100%.

1.2.2 Anti-Stokes Emission

The anti-Stokes emission process occur via three processes: two-photon absorption
(TPA), second harmonic generation (SHG), and upconversion (UC) (Figure 1.1)
(Pollnau et al. 2000; Gamelin and Gudel 2000; Suijver 2008; Grzybowski and
Pietrzak 2013; Chen et al. 2015; Nadort et al. 2016). TPA is a type of nonlinear
absorption process that can be defined as the simultaneous absorption of two
photons of same or different frequencies by an atom, ion, or molecule. In this
process, the electron is promoted from low energy level (i.e. ground state) to excited



1.2 Frequency Conversion and Its Various Processes 3

Second harmonic generation

(SHG)

Upconversion

(UC)

Upconversion

(UC)

Two photon absorption

(TPA)

E1 Virtual

GG

ν

ν1

ν1>ν ν ≠ ν′ν

ν′
ν1

ν

E2

E1

G

E2

E1

G

Figure 1.1 Basic energy-level diagrams depicting typical anti-Stokes processes.

level, and the energy of the emission transition is equal to the sum of two-photon
energies. As this is a third-order nonlinear process, it is effective at precise high
intensities. TPA was initially anticipated by Maria Goeppert-Mayar in the year
1931. This was experimentally verified by the laser after its discovery. A number of
techniques are used to measure TPA, such as two-photon excited fluorescence, z-
scan, nonlinear transmission, etc. On the other hand, SHG, “an optical nonlinear
process,” occurs from a virtual state in a medium having second-order nonlinear
susceptibility. This was revealed and experimentally verified by Franken et al.
(1961). They detected the second harmonic light when an intense beam of 6943 Å
from the ruby laser was passed through the quartz crystal. In this process, two
photons of the same frequency interact with a nonlinear material (i.e. medium) and
give rise to a new photon of double the frequency or energy of the incident photons.
Furthermore, UC is also an anti-Stokes process that converts the lower energy
photons into high-energy photons, e.g. infrared to visible or UV light (Figure 1.1).
It is a stepwise absorption process involving intermediate states (Auzel 1966;
Ovsyakin and Feofilov 1966). Basically, among these three processes of converting
lower energy photons into higher energy photons, TPA and SHG need a coherent
beam as well as a very high excitation beam intensity. In the UC process, coherent
pumping and high intensity of the excitation beam are not necessarily required.
It occurs even at low intensity of the excitation beam because of the presence of real
intermediate states (generally, of metastable nature).

The materials that exhibit the UC properties are known as upconverting materi-
als. In recent years, these upconverting materials are extensively used in sensing,
infrared counters, solid-state lasers, solar cells, fingerprint detection, security ink,
upconverters, biological fields, etc. (Digonnet 1993; Wade et al. 2003; Rai 2007; Wang
and Liu 2009; Gu et al. 2013; Li et al. 2013; Wang and Zhang 2014; Chen et al. 2014;
Mondal and Rai 2020). Generally, the UC phenomenon observed in these materi-
als is not as simple as depicted in Figure 1.1. Several processes accountable for UC
mechanisms are as follows.

1.2.2.1 Ground/Excited-State Absorption (GSA/ESA)
Ground-state absorption (GSA) is one of the simplest routes for UC mechanism
(Auzel 1973, 2004; Garlick 1976; Rai et al. 2013; Reddy et al. 2018). The process in
which the ground-state ions (i.e. electrons) after absorbing the requisite energy from
the pump photons are promoted to the first intermediate level is known as the GSA
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Figure 1.2 Schematic representation of possible UC mechanisms: (a) GSA/ESA,
(b and c) ETU, (d) cooperative luminescence, (e) cooperative sensitization, (f and g) CR,
and (h) PA processes.

process. Conversely, sequential absorption of two light quanta by a particular ion is
known as ESA process (Auzel 1973, 2004; Garlick 1976; Rai et al. 2013). In the case of
ESA process, the ion present in the intermediate state absorbs the second photon and
transits upward to the next higher state. For example, the energy-level diagrams for
GSA and ESA mechanisms are presented in Figure 1.2a. Here at first, an ion absorbs
the pump photon of energy (=h𝜈, where “h” is Planck’s constant and “𝜈” is the fre-
quency of the incident photon) and reaches to the intermediate state E1 (exhibit
long lifetime) from the ground state G via the GSA process and then a second pump
photon (of the same energy) excites the ion from E1 state to the next higher state
E2. A radiative decay of the ion from the excited state (E2) to the ground state (G)
results in UC emission. Thus, a single ion is involved in the whole ESA process. For
getting proficient UC emission through the ESA process, a ladder-like energy-level
arrangement in ions is essential.

1.2.2.2 Energy Transfer Upconversion (ETU)
Like the ESA process, the energy transfer upconversion (ETU) process also involves
successive absorption of two energy quanta by the ions to occupy the intermediate
(i.e. metastable) state (Figure 1.2). As in the ESA process there is an involvement
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of single ion, however, ETU operates within two (similar or different) ions. In this
mechanism, the involved two dopant ions are termed as sensitizer and activator
(Heer et al. 2003; Boyer et al. 2007; Shan et al. 2007; Soni et al. 2015; Mukhopadhyay
and Rai 2020; Pattnaik and Rai 2020). At first, both the (different) ions absorb the
pump photons from the ground state and then moves to their respective metastable
states (E1′ and E1, where E1′ ≅ E1) through the GSA process (Figure 1.2b). After
that, the sensitizer ion (present in E1′ state) handovers its excitation energy to the
neighboring activator ion (present in E1 state) and relaxes back to the ground state.
The activator ion after gaining this excitation energy from the sensitizer reaches to
the next higher energy state (E2).

When the two involved dopant ions are similar, these two ions are initially
excited to the intermediate state (E1) after receiving the energy from pump photons
(Figure 1.2c). The two ions present in the E1 state exchange their energy in such
a way that one ion (i.e. donor), after transferring its excitation energy to the other
excited ion (i.e. acceptor), decays nonradiatively to the lower energy level (G).
The other ion (i.e. acceptor) after getting excitation energy from the first one (i.e.
donor) is promoted to the next higher energy state (E2). A radiative transition from
state E2 to the ground state (G) generates a photon of energy (=h𝜈1), which is higher
than the incident photon energy (=h𝜈) (Figure 1.2). This ETU process is the most
efficient UC emission process (Auzel 2004; Rai et al. 2007, 2008). In this process,
the dopant ion concentration (which regulates the average distance concerning
adjacent dopant ions) plays a key role in the UC emission intensity.

1.2.2.3 Cooperative Luminescence and Cooperative Sensitization
Upconversion (CSU)
UC emission by a cooperative energy transfer process involves two ions (one acts as
a donor and the other ion as an acceptor). In the cooperative luminescence process,
two ions absorb the pump photons successively and reach the higher (intermediate)
state E1 (Figure 1.2d). In this intermediate level, these two ions transfer their
energy in such a way that one ion (donor) transfers its excitation energy to the other
one (acceptor) and the donor returns to the ground state (G). The acceptor, after
gaining the excitation energy from the donor, transits upward to a higher energy
state, “which is a virtual state.” This virtual state is also known as the cooperative
energy state (Lee et al. 1984; Maciel et al. 2000; Diaz-Torres et al. 2005). From this
virtual state, it relaxes radiatively to the ground state (G) via emitting a photon of
energy larger than the incident photon energy (Figure 1.2d). On the other hand, in
the cooperative sensitization process, when the energy of the two excited ions are
transferred to a third ion (ion 2), then it goes from the ground state to an excited
state having energy equal to the sum of the energies of the two individual ions
(Martín et al. 2001; Salley et al. 2001, 2003). In Figure 1.2e, the excitation energy of
the two excited ions (ion 1) present in the state E1 is transferred to a third ion (ion 2).
The third ion (ion 2) present in the ground state (G), after absorbing the excitation
energy corresponding to the two excited ions (ion 1), moves to its higher state (E2).
After that, the third ion from the excited state (E2) relaxes radiatively to the lower
levels (say ground state) via emitting the photons of energy higher than that of
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the incident photon. This process is known as cooperative sensitization, and the
emitting state (E2) in this process is a real state (Figure 1.2e). Thus, the cooperative
sensitization is more effective than cooperative luminescence because it may
compensate the low UC emission efficiency (Dwivedi et al. 2007; Liang et al. 2009).

1.2.2.4 Cross-relaxation (CR) and Photon Avalanche (PA)
The cross-relaxation (CR) process occurs due to ion–ion interaction (ions may
be similar or different) (Chen et al. 2014; Pattnaik and Rai 2020) (Figure 1.2f,g.
The cross-relaxation between two identical ions/molecules is responsible for
self-quenching (Figure 1.2f). In the self-quenching process, the intermediate states
of both the ions (ion 1) have the same energy (E1). When the cross-relaxation occurs
between two different ions (Figure 1.2g), the first ion shares a part of its excitation
energy to the second ion by the process E2 (ion 1)+G (ion 2)→E1 (ion 1)+E1′

(ion 2) (Figure 1.2g). In this process, the first ion (ion 1) initially present in the
excited state (E2) interchanges a part of its excitation energy to the second ion (ion 2)
that is initially available in the ground state (G). By this way, the decrease in the
energy of the first ion (ion 1) is equal to the increase in the energy of the second ion.
This results in both the ions/molecules changing simultaneously to the excited state
(E1 and E1′ ). Among the other UC processes, the most exciting process is photon
avalanche (PA), which was first experimentally observed in Pr3+-doped infrared
quantum counters (Chivian et al. 1979). Generally, this PA process occurs when the
excitation energy exceeds its threshold limit. When the excitation energy is lower
than the threshold energy, the emitted intensity is very poor, but as it exceeds the
limit, the emitted intensity becomes enormously greater (Joubert 1999; Singh et al.
2011; Zhu et al. 2012; Mondal et al. 2016). For occurrence of PA process, at first,
the intermediate level and the upper excited level are populated by the GSA, ESA,
and ETU processes. By the CR process between these upper excited level and the
ground state of a neighboring ion, two ions are generated in the intermediate level
E1 (Figure 1.2h). Now, two ions are available in the intermediate state for the ESA
process. Thus, with the feedback looping of ESA and CR processes simultaneously,
the number of ions in the intermediate level increases, which give rise to strong UC
emission.

The PA process is an unusual pumping process because it may lead to strong
UC emission from the upper excited state E2 without any resonant GSA from the
ground state (G) to the intermediate state (E1) of ion 2 (Figure 1.2h). The frequency
of incident photon is in resonant with state E1′ of ion 1 and the upper excited state
E2 of ion 2. An efficient CR process, i.e. E2 (ion 2)+G (ion 1)→E1 (ion 2)+E1
(ion 1), occurs between ion 1 and ion 2. This results in both the ions to occupy the
intermediate state E1. These two ions readily populate the level E2 through ESA
to further initiate the cross-relaxation. With the feedback looping of these efficient
cross-relaxation and ESA processes, the number of ions in the intermediate state E1
increases rapidly, which results further an enormous increase in the population of
level E2. Thus, in the PA process, a strong UC emission from state E2 to the ground
state G (of ion 2) has been observed.
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1.3 Transition Metals and Their Properties

The optical centers are necessary for the perfect crystals to exhibit the optical
spectra. Depending on the absorption and emission bands of the optical centers
present in the pure crystals, they are pertinent for diverse applications, such
as optical amplifiers, solid-state lasers, color displays, absorbers, improving in
luminescence brightness, fibers, optical switches, etc. Any element in the periodic
table may act as a foreign element in the crystal. However, essentially, a few number
of elements can be ionized, which can generate energy levels and thus yield optical
features. For industrial applications, the two extremely important elements are
transition metals and REs in the periodic table. Transition metal ions are especially
used as optically active dopants in tunable solid-state lasers (Solé et al. 2005). These
ions belong to the fourth period of the periodic table with electronic configuration
1s22s22p63s23p63dn, where “n (varies from 1 to 10)” is the number of 3d electrons
present in the transition metal ions. Generally, valence electrons are responsible
for optical transitions; hence, in the case of transition metals, 3d electrons are
accountable. Because of the large radius of transition metal ions as compared to
lanthanides and no shielding of valence electrons, strong field effect occurs; hence,
they exhibit the broad bands.

The Sugano–Tanabe diagram explains the energy-level diagram for the transition
metal ions (Figure 1.3) (Tanabe and Sugano 1954a,b). The spectroscopic terms for the
free ion states of the transition metal ions due to the L-S interaction are described
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as 2S+1LJ , where, L, S, and J denote the total orbital angular momentum, total spin
angular momentum, and total angular momentum, respectively. The energy sepa-
ration among the 2S+1L states, i.e. the strength of the electron–electron interaction,
can be calculated with the help of Racah parameters (A, B, and C) (Solé et al. 2005).
On the basis of octahedral crystal lattice, Sugano and Tanabe explained the occur-
rence of energy levels in the case of transition metal ions, but by using this diagram,
one can also interpret the optical spectra arising from the transition metal ions in
different types of host lattices.

This diagram explains the splitting of 2S+1L free ion energy states with the ratio
between the strength of the crystal field and the electron–electron interaction
strength (symbolized as Dq/B) versus the free ion energy levels (E/B units). In this
diagram, the y-axis is in terms of energy “E” scaled by B (one of the Racah parame-
ters). The splitted terms for 2S+1L energy states are termed as A, T, and E levels. This
Sugano–Tanabe diagram also explains the nature of the optical bands for transition
metal ions. In the case of strong crystal field approximation, the crystal field effect
dominates over the electron–electron interaction among 3d ions. Accordingly, there
are three single-electron orbitals for each orbital. Furthermore, according to the
Sugano–Tanabe diagram, for low crystal field strength, the emission band is shifted
toward the lower energy side. For this specific nature, the emission wavelength
in the transition metal ions depends on a particular host material. Thus, doping
of transition metal ions in different host materials directed to the advancement of
countless varieties of tunable solid-state lasers. Most of the transition metal ions
are incorporated in the octahedral crystal host matrix, so their energy level can
be explained on the basis of Sugano–Tanabe diagram (Tanabe and Sugano 1956).
However, in some cases, such as Ni2+, Co2+, and Cr2+ ions, these transition metal
ions are incorporated in the tetrahedral crystal lattice for different applications;
therefore, the Konig and Kremer diagram (Konig and Kremer 1997) is applicable in
explaining the energy levels of transition metal ions other than the octahedral one.

1.4 Rare Earths and Their Properties

Most of the lasers, phosphors, amplifiers, etc., comprise RE elements. Surprisingly,
the global applications of RE-based materials are increasing from industry applica-
tions to medical applications. There are 15 lanthanide elements along with two more
elements i.e. scandium (Sc) and yttrium (Y). These 15 lanthanide elements are com-
monly named as lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium
(Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium
(Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb),
and lutetium (Lu). Most of the RE elements are entitled as per the name of the
inventors or the name of their revealed places. These RE elements are incorporated
in different host materials in their ionized (either divalent or trivalent) form.
The divalent RE ions {Eu (+2), Yb (+2), and Sm (+2)} possess one more electron
compared to the trivalent ions and thus exhibit different optical features and treat
differently.
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1.4.1 Trivalent Rare-Earth Ions

The outer most electronic configurations of divalent and trivalent RE ions are 5d
4f n 5s2 5p6 and 4f n 5s25p6, respectively, where n (varies from n = 0 to 14) specifies
the number of electrons in the unfilled 4f shell. These 4f n electrons are the valence
electrons that are accountable for the spectroscopic transitions.

1.4.1.1 Electronic Structure
The presence of valence electrons in the 4f shell makes the RE ions as luminescent
centers of any phosphor material. The group of 15 elements comprising atomic
number starting from 57 to 71 in the sixth period of the periodic table together with
scandium (Sc) and yttrium (Y) are known as RE elements. When these RE elements
are introduced into the hosts, they easily convert into their either doubly or triply
ionized states to acquire their stable electronic configurations. The outer most
electronic configurations of lanthanum (La, atomic number Z = 57) and the last
element lutetium (Lu, Z = 71) in their triply ionized state are 4f 0 5s2 5p6 and 4f14

5s2 5p6, respectively. There are fifteen possibilities for filling these 4f orbitals as the
f orbital contains seven suborbitals. Actually, these unfilled 4f valence electrons are
in control for optical transitions. Table 1.1 presents the electronic arrangements and
ground states of each triply ionized RE element. The actual electronic configuration
of the 15 RE elements (i.e. from La to Lu) is [Xe] 5d1 6s24f n (n = 0 to 14). However, in

Table 1.1 Electronic configuration of trivalent ionic states of RE elements (Shionoya et al.
1998).

Ion
Atomic
number

Number of 4f
electrons (n)
and electronic
configuration S = 𝚺s L = 𝚺l

J = L− S (n<7)
J = L+ S (n≥7)

Ground
state

La3+ 57 0 and [Xe]4f 0 0 0 0 1S0

Ce3+ 58 1 and [Xe]4f1 1/2 3 5/2 2F5/2

Pr3+ 59 2 and [Xe]4f2 1 5 4 3H4

Nd3+ 60 3 and [Xe]4f3 3/2 6 9/2 4I9/2

Pm3+ 61 4 and [Xe]4f4 2 6 4 5I4

Sm3+ 62 5 and [Xe]4f5 5/2 5 5/2 6H5/2

Eu3+ 63 6 and [Xe]4f6 3 3 0 7F0

Gd3+ 64 7 and [Xe]4f7 7/2 0 7/2 8S7/2

Tb3+ 65 8 and [Xe]4f8 3 3 6 7F6

Dy3+ 66 9 and [Xe]4f9 5/2 5 15/2 6H15/2

Ho3+ 67 10 and [Xe]4f10 2 6 8 5I8

Er3+ 68 11 and [Xe]4f11 3/2 6 15/2 4I15/2

Tm3+ 69 12 and [Xe]4f12 1 5 6 3H6

Yb3+ 70 13 and [Xe]4f13 1/2 3 7/2 2F7/2

Lu3+ 71 14 and [Xe]4f14 0 0 0 1S0
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the triply ionized state, these elements lose their 5d and 6s orbital electrons; hence,
the outer most electronic configuration of trivalent RE ions becomes 4f n 5s25p6

(Table 1.1). Therefore, due to the larger radii of 5s and 5p orbitals compared to the 4f
orbital, these 4f electrons are shielded by 5s and 5p orbitals. Unlike transition metals
when doped into solid materials, the outer 3d electrons are strongly affected by the
crystal field effect; in the case of RE ions due to this shielding effect when they are
incorporated into a solid host, the 4f electrons are weakly perturbed. Because of this
shielding of 4f electrons by the completely filled outer electronic shells (5s2 5p6),
the relative positions of 4f energy levels in the RE ions do not vary very much from
one host to the other. Owing to this exceptional property of the triply ionized RE
ions, they exhibit sharp absorption and emission spectra and thus have longer
lifetime.

1.4.1.2 Interaction of Rare-Earth Ions
The 4f–4f transitions are parity forbidden according to the Laporte selection rule,
but when incorporated into a host matrix, the electronic structure of the REs are
perturbed, and because of the intermixing of 4f n and 4f n−1 5d orbitals, the opti-
cal transitions become allowed. Because of this intermixing, the parity of levels is
changed and the transitions become allowed. These transitions are known as elec-
tric dipole allowed transitions. By using Schrodinger’s equation, the energy levels of
the RE ions responsible in optical transitions can be calculated as (Auzel 2004; Solé
et al. 2005)

HΨ = EΨ (1.1)

where “Ψ” is the eigenfunctions of the optical center and “H” denotes the Hamil-
tonian because of the diverse interactions of the 4f orbital electrons. Generally,
the crystal field theory and the molecular orbital theory (MOT) have been used to
describe the interaction between the RE elements and the host matrices.

Crystal Field Theory The crystal field theory was first described by Hans Bethe and
John Hasbrouck van Vleck in the year 1930. In the case of transition metal ions
when incorporated in a host material, the outer electrons are greatly affected by
the surrounding host environment. However, in the case of RE ions when doped
into a host material, the energy levels are only slightly perturbed because of the
shielding by the 5s2 5p6 orbitals. This breaking of degeneracy of the d and f elec-
tron orbitals can be described on the basis of crystal field theory (Wybourne 1965;
Wybourne and Meggers 1965; Carnall et al. 1989; Auzel 2004; Liu 2005, 2015; Solé
et al. 2005). The filled orbitals in the case of RE ions are 4d, 5s, and 5p, whereas 4f, 5d,
and 6s are valence electron shells in their triply ionized state. Because of the larger
radii of 5s and 5p orbitals, the 4f electrons of the RE ions are protected from the
surrounding perturbation. The energy levels of the RE elements can be represented
by some elementary quantum mechanical terms, total orbital angular momentum
L (sum of total quantum number l), total spin angular momentum S (sum of total
quantum number s), and the total angular momentum J (=L+ S). With the help of
Schrodinger’s equation, the interaction between the RE ions and the host element


