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Introduction

This book explores various popular methodologies in the field of computer
vision in order to unravel its mysteries. We use the PyTorch framework,
because it's used by researchers, developers, and beginners to leverage

the power of deep learning. This book explores multiple computer

vision problems and shows you how to solve them. You can expect an
introduction to some of the most critical challenges with hands-on code

in PyTorch, which is suitable for beginner and intermediate Python users,
along with various methodologies used to solve those business problems.

Production-grade code related to important concepts we present
over the course of the book will help you get started quickly. These code
snippets can be run on local systems, with or without GPUs (Graphics
Processing Units) or on a cloud platform.

We'll introduce you to the concepts of image processing in stages,
starting with the basic concepts of computer vision in the first chapter.
We'll also delve into the field of deep learning and explain how models
are developed for vision-related tasks. You'll get a quick introduction
to PyTorch to prepare you for the example business challenges we’ll be
presenting later in the book. We explore concepts of the revolutionary
convolutional neural networks, as well as architectures such as VGG,
ResNet, YOLO, Inception, R-CNN, and many others.

The book dives deep into business problems related to image
classification, object detection, and segmentation. We explore the
concepts of super-resolution and GAN architectures, which are used in
many industries. You learn about image similarity and pose estimation,
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which help with unsupervised problem sets. There are topics related to
video analytics, which will help you develop the mindset of using the
image and time-based concepts of frames. Adding to the list, the book
ends by discussing how these deep learning models can be explained to
your business partners. This book aims to be a complete suite for those
pursuing computer vision business problems.



CHAPTER 1

The Building Blocks
of Computer Vision

Humans have been part of a natural evolutionary pattern for centuries.
According to the Flynn Effect, an average person born in recent times has
a higher IQ than the average person born in the previous century. Human
intelligence allows us to learn, decide, and make new decisions based on
our learnings. We use IQ scores to quantify human intelligence, but what
about machines? Machines are also part of this evolutionary journey. How
have we moved our focus to machines and made them intelligent, as we
know them today? Let’s take a quick look at this history.

A breakthrough came in the 1940s when programmable digital
computers became available, followed by the concept of the Turing
test, which could measure the intelligence of machines. The concept of
the perceptron goes back to 1958, when it was introduced as a powerful
logical unit that could learn and predict. The perceptron is equivalent to a
biological neuron that helps humans function. The 1970s saw fast growth
in the field of artificial intelligence, and it has increased exponentially
since that time.

Artificial intelligence is the intelligence showcased by a machine, more
often when it is trained on historical events. Humans have been trained
and conditioned their whole lives. We know, for example, that going too
near a fire will cause us to be burned, which is painful and bad for our skin.

© Akshay Kulkarni, Adarsha Shivananda, and Nitin Ranjan Sharma 2022 1
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CHAPTER 1  THE BUILDING BLOCKS OF COMPUTER VISION

Similarly, a system can be trained to make distinctions between fire and
water, based on the features or on historical evidence. Human intelligence
is being replicated by machines, which gives rise to what we know as
artificial intelligence.

Artificial intelligence encompasses machine learning and deep
learning. Machine learning can be thought of as mathematical models that
help algorithms learn from data/historical events and formulate decision-
making processes. The machine learns the pattern of the data and enables
the algorithms to create a self-sustaining system. Its performance can
be limiting, such as in the case of huge complex data, which is where
deep learning comes into the picture. Deep learning is another subset of
artificial intelligence. It uses the concept of the perception, expands it to
neural networks, and helps the algorithms learn from various complex
data. Even though we have many modeling techniques at our disposal, it’s
best to find good and explainable results from the simplest of techniques,
as stated by Occam’s razor (the simplest answer is often the best).

Now that we have explored a bit of the history, let’s browse through
the applicable fields. There are two fields—Natural Language Processing
(NLP) and Computer Vision (CV)—that use an immense amount of deep
learning techniques to help solve problems. NLP caters to the problem
sets defined by our language, essentially one of the most important modes
of communication. CV, on the other hand, addresses vision-related
problems. The world is full of data that humans can decipher with their
senses. This includes vision from the eyes, smell from the nose, audio
waves from the ear, taste from the tongue, and sensations from the skin.
Using this sensory input, the connected neurons in our brains parse and
process the information to make decisions on how to react. Computer
vision is one field that addresses the visual side of the machine-learning
problem.

This book takes you through the fundamentals and gives you a working
knowledge of computer vision.
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What Is Computer Vision

Computer vision deals with specific problem sets that rely on images
and videos. It tries to decipher the information in the images/videos in
order to make meaningful decisions. Just like humans parse an image or
a series of images placed sequentially and make decisions about them,
CV helps machines interpret and understand visual data. This includes
object detection, image classification, image restoration, scene-to-text
generation, super-resolution, video analysis, and image tracking. Each
of these problems is important in its own way. Studying vision-related
problems has gained a lot of attraction after the power of parallel
computing came into play.

Applications

The applications of computer vision vary with respect to the industry being
discussed. The following sections look at a few of these tasks.

Classification

The simplest form of an image-related problem involving a decision-making
process is a supervised technique, called classification. Classification

simply involves assigning classes to different images. The process can be as
simple as an image having one class or it can more complex, when there are
multiple classes within the same image. See Figures 1-1 and 1-2.

Figure 1-1. The class in this case is a cat
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Figure 1-2. The class in this case is a dog

We can separate the content of such images based on whether they
have an image of a cat or a dog. This is an example of how our eyes
perceive differences. The background of the object we are trying to
classify does not matter, so we need to make sure that it doesn’t matter
in the algorithms as well. For example, if we included a logo of some car
company in front of all the dog images, the image classifier network might
learn to classify dogs based on that logo and use it as a shortcut. We later
describe in detail how to incorporate this information into the model.
Classification can be used to identify objects in a production line of a
manufacturing unit.

Object Detection and Localization

An interesting problem that is often encountered is the need to locate a
particular image inside another image and even detect what that might be.
Let’s say there is a crowd of people and some are wearing masks and some
are not. We can use a vision algorithm to learn the features of masks, then
use that information to locate a mask relative to the image and detect the
masks. See Figures 1-3 and 1-4.
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Figure 1-3. Class: No mask detected
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Figure 1-4. Class: A mask is detected in the image

This analysis can be helpful in detecting license plates of moving
vehicles from traffic cameras. Sometimes, due to the resolution of the
cameras and the moving traffic, the picture quality is not that great. Super-
resolution is one technique that is sometimes used to enhance an image’s
quality and help identify the numbers on the plate.

Image Segmentation

This process is used to determine edges, curves, and gradients of similar
objects placed together in order to separate different objects in an image.
A classic unsupervised technique can be used here without the worry of
finding good-quality, labeled data. The processed data can further be used
as an input to an object detector. See Figure 1-5.
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Figure 1-5. Separating terrains in topological maps

Anomaly Detection

Another classic, unsupervised way of determining changes is to compare
an image to the usual, expected patterns from some training data.
Anomaly detection can be used, for example, to determine imperfections
in steel pipes when compared to training data. If the machine finds
something odd, it will detect an anomaly and inform the line engineers to
take care of it. See Figures 1-6a and 1-6b.

Figure 1-6a. Perfect examples of steel pipes
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Figure 1-6b. Anomalies showing up in the pipes

Video Analysis

There are a lot of use cases for video or sequences of images. The task of

object detection on running images can help with CCTV footage. It can

also be used to detect abnormalities within the frames per video section.
We will be going through all of these applications in detail in

the upcoming chapters. Before that, let’s go through a few of the

intrinsic concepts that lay the foundation for further understanding

computer vision.

Channels

Figure 1-7. Playing musicians
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One of the most basic and quintessential ideas around computer vision
is the channel. Think of music being played with multiple instruments;
we hear a combination of all the instruments playing together, which
essentially constitutes the music in stereo (see Figure 1-7). If we break
the music into single components, we can break the sound wave into
individual sounds coming from the electric guitar, the acoustic guitar, the
piano, and the vocals. After breaking the music into its components, we
can modulate each component to get the desired music. There can be an
infinite number of combinations if we learn all the musical modulations.

255 | 255 | 255 | 255

255 | 255 | 255 | 255

255 | 255 | 255 | 255

255 | 255 | 255 | 255

Figure 1-8a. Pixel values corresponding to a white picture

Figure 1-8b. Sample white page

2 36 |40 | 200

195 1190 | 20 | 180

40 |54 | 200 | 200

30 |40 | 200 | 180

Figure 1-8c. Representational pixel values corresponding to a sketch



CHAPTER 1  THE BUILDING BLOCKS OF COMPUTER VISION

Figure 1-8d. Sample sketch represented in one channel

We can extrapolate these concepts to images, which we can break into
components of colors. Pixels are the smallest containers of colors. If we
zoom in on any digital image, we see small boxes (pixels), which make
up the image. The general range of any pixel in terms of the intensity of a
channel is 0-255, which is also the range defined by eight bits. Consider
Figure 1-8b. We have a white page. If we convert that page to an array;, it
will give us a matrix of all 255 pixels, as shown in Figure 1-8a. On the other
hand, Figure 1-8d, when converted to a matrix, will also have only one
channel, and the intensity will be defined by the numbers in the range of
0-255, as depicted in Figure 1-8c. Closer to 0 gives us black and closer to
255 gives us white.

Let’s consider a color image. We can break any full-color image into a
combination of three primary components (channels)—red, green, and
blue. We can break down any color image into some definite combination
of red, green, and blue. Thus, RGB (red, green, and blue) becomes the
channels of the colored image.

10
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Figure 1-9. Sample image to blue (left)=0, green (middle)=1, and red
(right)=2

The image in Figure 1-9 can be split into RGB, with the first channel
being blue, then green, followed by red. Each pixel in the image can be a
certain combination of RGB.

We are not restricted to using RGB as the color channels. We also have
HSV (Hue, Saturation, and Value), LAB format, and CMYK (Cyan, Magenta,
Yellow, and Black), which are a few representations of channels of an
image. Color is a feature and its container is a channel, so every image is
made of edges and gradients. We can create any image in the world with
just edges and gradients. If you zoom in on a small circle, it should look
like a combination of multiple edges and straight lines.

To summarize, channels can be called in as the container for a feature.
The features can be the smallest individual characteristics of the image.
Color channels are a specific example of channels. Since edges can be
features, a channel that only caters to edges can be a channel too. Food for
thought—if you were to create a model that would identify a cat or a dog,
does the color of the animal affect the model behavior as much as edges
and gradients can?

11
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Convolutional Neural Networks

You now know that images have features, and those features need to be
extracted for a better understanding of the data. If we consider a matrix
of pixels, the pixels are related in all four directions. How do you do the
extraction efficiently? Will the traditional methods of machine learning or
deep learning help? Let’s go through some problems:

1. Images can have huge dimensions. For example, a
2MP image, if it is allowed to capture a 1600x1200
image, will have 1.9 million pixels per image.

2. Ifwe are capturing the data via the images, the
data is not always centrally aligned. For example,
a cat can be in one corner of one image, and on
the next image, it can be in the center. The model
should be able to capture the spatial changes in the

information.

3. Acatin animage can be rotated along the vertical
dimension or the horizontal dimension and still it
remains a cat. Thus, we need a robust solution to
capture such differences.

We need major upgrades from our regular tabular data approach. If we
can break down a problem into smaller manageable pieces, anything can
be solved. Herein, we use convolutional neural networks. We try to break
the image into several feature maps via kernels and use those in sequence
to build a model that can then be used for any downstream or pretext task.

Kernels are feature extractors. Features can be edges, gradients,
patterns, or any of the small features discussed earlier in this chapter.

A square matrix is generally used to operate a convolution task in the
image on the first step and on feature maps from the second step. The
convolution tasks performed by the kernels can be thought of as the
simplest tasks in a dot product. See Figures 1-10a and 1-10b.
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2 3 4
2 3 2
3 4 1

0 1 0
0 1 0
0 1 0

Figure 1-10b. 3x3 kernel

Figure 1-10a is the image or feature map and Figure 1-10b is the kernel.

The kernel is the feature extractor, so it will do a dot product on the feature

map, resulting in the value 10. This is the first step of our convolution. The

images or feature maps are going to be large and so the kernel might not
operate on just a 3x3 matrix, but it will take a stride forward to calculate
the next convolution operation. Let’s look at an extrapolated example of

this idea.
2 3 4 2 3
2 B 2 4 N v 8 9 9
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7 T h 18 1o o 1 0 12 |13 |17

Figure 1-11. Feature map, kernel, and resulting output

As shown in Figure 1-11, a 5x5 feature map was convolved by a 3x3

kernel and that resulted in a 3x3 feature map. That map will again be
convolved or converted to some features for a downstream task.
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The convolution process also contains a concept of stride, which is
a hyperparameter telling the kernel how to move around on the feature
maps. Given our convolutional neural network, we have a stride of 1. A
stride greater than 1 can cause a checkerboard issue in the feature map,
with a few pixels getting more attention than the others. We might want or
not want this effect, based on our business requirements. A higher stride
value can also be used to lower the feature map dimensions.

There is an inherent problem with this convolution. The dimension
keeps on shrinking when the convolutions happen. This can be desirable
in some sense or some particular use cases but in a few use cases, we
might want to retain the original dimensions. We can use the concept of
padding on the image or the subsequent feature maps to avoid the issue
of dimensionality reduction. Padding is another hyperparameter. We add
layers around the images or feature maps.

Figure 1-12b shows how the padding essentially increases the space
as well as allows the edge pixel values to be better noticed by the kernels.
The convolution process will go through the edge values more than once,
thus the information is being carried forward to the next feature maps with
more effect. In the case of edges having pixel values, the convolution from
kernels will take that value only once, whatever the stride values are on
that occasion.

0 3 1
0 3 0
0 4 0

Figure 1-12a. An edge detector
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0 0 0 0 0
0 4 1 4 0
0 5 1 2 0
0 5 1 1 0
0 0 0 0 0

Figure 1-12b. A zero-padded feature map

It is quite interesting how simple padding can change the identification
of edges by a kernel. If we assume there is an important edge near the
corner of the feature map and don’t pad it, the edges won’t be detected.
This is because, to detect a line or an edge, the kernel or the feature
extractor needs to have a similar pattern. In the case of the kernel in
Figure 1-12a, which is an edge detector, it needs to find a proper gradient
to detect an actual edge. It is because of the gradient from 0 to 4, 0 to 5,
and 0 to 5, now it detects the edge. If the padding wasn'’t there, this
gradient wouldn’t be there and the kernel would have missed out on an
important part.

Receptive Field

When we were working on the concepts of convolutions, there was a
feature map and kernel stride. The kernel was extracting features in the
space such that the model could interpret the information to its ease. Now
we'll consider with an example an 56x56 image with one channel. (This is
also written as 56x56x1.) If we try to convert the entire image to features,
the entire span of pixels needs to be read. Let’s look at a graphic example
to sort out this concept.
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