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Preface
The origins of electrospinning technology dates back to the
days when Jean‐Antoine Nollett first electrosprayed water
with an electric charge generated from a Leyden Jar, back
in 1746. But it was not until 1902 that Cooley filed the first
patent on electrospinning based on that process. It took yet
another half a century before Geoffrey Taylor in 1969
modeled the deformation of a liquid droplet in an electric
field as the Taylor's cone. Electrospinning of nanofibers has
come a long way since then, thanks to the intensive burst of
research since the 1990s when academia got interested in
the process. Today, it is a popular and versatile technology
with several books published on electrospinning in recent
years, including The Science and Technology of Polymer
Nanofibers (Wiley 2008) by one of the present editors.
Nanofiber science has made impressive advances and
recently discovered a myriad of applications for this unique
nanomaterial. Most of these developments occurred during
the last two to three decades of research; the term
“electrospinning” itself came into common use only as
recently as 1995. Among the many different routes to
fabricating nanofibers, electrospinning remains the most
popular because of its simplicity, low‐cost, and scalability.
By definition, nanofibers are 1‐D nanomaterials that have
diameterd <100  nm. While there is scientific and regulatory
agreement on this size range, many research publications
as well as some regulatory organizations accommodate an
upper limit of a d = 1000  nm. Electrospinning is able to
fabricate nanofibers that fall within both size ranges.
The singular property that makes nanofibers so useful is
their very high specific surface area. For instance, at a fiber
diameter of 500  nm, the surface area per gram of resin can



reach a 1000  m2 that is larger than the floor area of two
basketball courts. Compared to other nanogeometries such
as thin films, this allows for relatively faster interaction of
nanofibers with chemicals, particles, or live cells in
applications such as chemical sensors, high‐efficiency
filters, biomedical scaffolding applications, and faster
release of bioactive compounds in controlled‐release
applications. Sub‐100  nm nanofibers, such as those of
carbon, display unique quantum size effects, obtain
exceptional strength, and high conductivity. Spider drag‐
line silk1, naturally occurring nanofibers that are ~20  nm in
size diameter, display a tensile modulus of 10.6 (GPa) at
25% RH. Optimized nanofibers for specific applications are
usually doped with other molecules, coated with an active
material or might be a nanofilled composite material. Also,
electrospun fiber mats allow easy handling of the
nanofibers in different application and their high porosity
helps easier access of reactants to fiber surface
functionalities. Industrially relevant nanofiber materials fall
into four broad classes: (i) carbon nanofibers; (ii) polymer
nanofibers; (iii) inorganic nanofibers; and (iv) composite
nanofibers. All four classes of these can be made in the
laboratory by electrospinning of a composition where the
crucial component for fiber‐forming is a polymer. Over 50
different types of polymers have been electrospun up to
date, and it is safe to assume that conditions allowing
electrospinning of almost any polymer can be identified.
Incorporating oxides, especially ZnO, TiO2, SnO2, and
Al2·O3 in nanofibers has been reported in nanofibers in
recent literature.
The promise of nanofibers as a particularly useful material
of the future is justified because of several observations.
The first has to do with the incredible diversity of nanofiber
morphologies fabricated under careful conditions. These
include exotic configurations including multichannel fibers



where the lacuna is divided into two to five sections, tube
in tube nanofibers, core–shell nanofibers, nanowire in
nanotube structures, and nanodots synthesized at junctions
where nanofibers overlap in a mat. A second observation is
the advancement in large‐scale nanofiber manufacture.
Development of flexible nanofiber mats that might be
integrated into fabric to support efforts at developing
wearable electronics is under way. Innovations of
nanofibers in textile science are discussed in Chapter 2.
Large‐scale fabrication of nanofiber mats using
electrodeless systems such as already‐ commercialized
Nanospider™ (ElMarco) will further advance to bring down
the cost of the material. Chapter 5 reviews the status of
commercial production of nanofibers.
Nanofiber mats are porous with up to 90% of the volume
being void spaces and their average pore diameters are
less than about ten times the fiber diameter. Because of
these features the mats are highly permeable and can be
readily adapted for air filtration. Multilayer filter media
with one layer being made of nanofiber mats has already
been commercialized. Applications of nanofibers in
filtration are discussed in Chapter 3. Even more porous
nanofiber materials are made of aerogel materials, a class
of nanomaterials that shows promise in several of the
application areas as discussed in Chapter 9. Nanofibers
significantly contribute to innovation in medical technology,
specifically in tissue engineering, wound healing and
controlled release applications. Nanofibers have a large
surface area to volume ratio and can be fabricated with
biodegradable polymers compatible with body tissue,
mimicking protein fibrils or the chemical structure of native
extracellular matrix as well as synthetic ‘protein’
nanofibers of polyamino acids. Chapters 6 and 7 discuss
their biomedical uses, including tissue scaffolding by
nanofibers that can also serve as highly compatible



implantable materials. An especially interesting application
in the biomedical aren a is controlled delivery of bioactive
agents such as proteins and DNA. Successful DNA delivery
with nanofibers holds the possibility of its use a as a vehicle
for clinically relevant gene‐delivery in genomic treatment
modes. A third related area is biological sensors based on
nanofiber materials with the surface functionalized to
specifically interact with a biomolecule. The reaction with
the biomolecule results in a physical or chemical change in
the fiber that allows the quantification of its concentration
in terms of a change in fluorescence or conductivity of the
fiber mat. Chapter 4 discusses the use of nanofibers in
sensor technology. Nanofibers are finding uses in energy
technology, especially in battery, fuel cell, and solar energy.
Chapter 5 of the book reviews these developments.
The book addresses the basic science behind fabrication
and nanofiber characterization with a clear emphasis on
practical aspects of electrospinning. An attempt has been
made to compile the more recent information and cover the
different application areas where novel uses will be found
for nanofiber materials.

Anthony L. Andrady
Saad A. Khan
Department of Chemical and Biomolecular Engineering
North Carolina State University

Note
1 Silk threads from spider species Nephila clavipes Vehoff,

T., Glisović, A., Schollmeyer, H., Zippelius, A. et al.
(2007). Mechanical properties of spider dragline silk:
humidity, hysteresis, and relaxation. Biophysical Journal
93 (12): 4425–4432.
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1.1 Electrospinning Overview
Electrospinning has been widely used to produce nonwoven
nanofibers for applications in biomaterials, energy materials,
composites, catalysis, and sensors (Agarwal et al. 2008, 2009;
Ahmed et al. 2014; Cavaliere et al. 2011; Chigome and Torto
2011; Ma et al. 2014; Mao et al. 2013; Yoon et al. 2008; Thavasi
et al. 2008). On a bench scale, it is a simple, inexpensive process.
To generate nanofibers by electrospinning, an electric potential
is applied between a capillary containing a polymer solution or
melt and a grounded collector (Figure 1.1). The applied electric
field leads to free charge accumulation at the liquid‐air interface
and electrostatic stress. When the electrostatic stress overcomes
surface tension, the free surface deforms into a “Taylor cone.”
Balancing the applied flow rate and voltage results in a
continuous fluid jet from the tip of the cone. As the jet travels to
the collector, it typically undergoes nonaxisymmetric instabilities
such as bending and branching leading to extreme stretching. As
the fluid jet is stretched, the solvent rapidly evaporates to form
the polymer fibers that are deposited onto a grounded target
(Reneker and Chun 1996; Helgeson et al. 2008; Rutledge and
Fridrikh 2007; Thompson et al. 2007; Teo and Ramakrishna
2006; Li and Xia 2004). As a complex electrohydrodynamic
process, the final fiber and mat/membrane properties depend on


