
APPLICATIONS OF POLYMER NANOFIBERS

EDITED BY

ANTHONY L. ANDRADY SAAD A. KHAN

Table of Contents

Cover
<u>Title Page</u>
<u>Copyright Page</u>
<u>Dedication Page</u>
<u>List of Contributors</u>
<u>Prefacepreface</u>
1 Electrospinning Parameters and Resulting Nanofiber Characteristics
1.1 Electrospinning Overview
1.2 Effect of Process Parameters
1.3 Effect of Setup Parameters
1.4 Effect of Solution Parameters
1.5 Electrospinnable Systems
1.6 Advanced Fiber Characteristics
1.7 Process Scalability
References
2 Textile Applications of Nanofibers
2.1 Introduction of Nanofibers in Textile
<u>Applications</u>
2.2 Fabrication of Nanofiber Yarns
2.3 Structure and Properties of Nanofiber Yarns
2.4 Fabrication of Nanofiber Fabrics
2.5 Characteristics and Specialized Applications of
Nanofiber Fabrics
2.6 Summary and Future Trends
<u>References</u>

3 Nanofiber Mats as High-Efficiency Filters
3.1 Introduction
3.2 Filters Made with Nanofibers
3.3 Filtration Developments
3.4 Outlook
<u>Acknowledgments</u>
References
4 Nanofiber-Based Chemical Sensors
4.1 Introduction
4.2 General Features of Sensors
4.3 Nanofibers as a Sensor Material
4.4 Approaches to Nanofiber Sensor Design
4.5 Gravimetric Nanofiber Sensors
4.6 Optical Sensors
4.7 Electrochemical Sensors
References
5 Nanofibers in Energy Applications
5.1 Overview
5.2 Energy Storage Applications
5.3 Energy Conversion Applications
5.4 Concluding Remarks
References
6 Electrospun Nanofibers for Drug Delivery
<u>Applications</u>
<u>6.1 Introduction</u>
6.2 Methods for Encapsulation of Bioactive
Molecules in Electrospun Nanofibers
6.3 Conclusion
<u>References</u>

7 Interfacing Electrospun Nanofibers with
Microorganisms: Applications from Killing to Repelling
to Delivering Living Microbes
7.1 Introduction
7.2 Brief Background on the Electrospinning
<u>Process</u>
7.3 Electrospinning Process and Variables
7.4 Why It Is Important to Understand the
<u>Interactions Between Biomaterials and</u>
<u>Microorganisms</u>
7.5 Background on Antibacterial Surface
Engineering 7.6 P. J. J. A. 116 Ji. G. G. F. Ji. Ji.
7.6 Background on Antifouling Surface Engineering
7.7 Polymer Selection for Nanofibrous Biomaterials
7.8 Electrospinning Techniques Tailor the Location
of Active Agents
7.9 Blend Electrospinning Yields a Dispersed Active
Agent 7.10 Convint and Emploien Electronism - Emplo
7.10 Coaxial and Emulsion Electrospinning Enables the Controlled Delivery of Active Agents
7.11 Coating Electrospun Mats Tailors Their
Interactions with Cells
7.12 Antibacterial Nanofiber Mats
7.13 Multifaceted Delivery from Nanofibrous Mats
•
7.14 Antifouling Nanofiber Mats
7.15 Nanofibrous Mats Containing Living Cells
7.16 Conclusion

8 Advances in Functionalizing the Interior and Exterior of Polymer Nanofibers

<u>Acknowledgments</u>

References

8.1 Introduction
8.2 Nanofibers with Controlled Nanoparticle
<u>Distribution</u>
8.3 As-spun Nanofibers with Bioresponsive
<u>Properties</u>
8.4 Polymer Nanofibers with Postfunctionalized Surfaces
8.5 Nanofibers Produced by Directed Self-Assembly
8.6 Concluding Remarks
<u>Acknowledgments</u>
References
9 Nanofiber Aerogels
9.1 Aerogels
9.2 Nanofiber-Based Aerogels
9.3 Future Perspectives
<u>References</u>
10 Micro and Nanofibers
10.1 Electrospinning
10.2 The Melt-blowing Process
10.3 "Splittable" Bicomponent Fibers
10.4 Partially "Soluble" Bicomponent Fibers
10.5 Fibrillating Bicomponent Fibers
References
<u>Index</u>
End User License Agreement

List of Tables

Chapter 1

<u>Table 1.1 Key solvent properties for common electrospinning solvents.</u>

<u>Table 1.2 Nonpolymer electrospinning systems.</u>

Table 1.3 Comparison of fiber production methods.

Chapter 4

<u>Table 4.1 Selected examples of nanofiber-based</u> colorimetric and fluorescent ...

<u>Table 4.2 Selected composite n-p heterojunction</u> metal oxide nanofiber sensor...

Chapter 5

<u>Table 5.1 Summary of LMO cathode materials with</u> <u>the highest theoretical capa...</u>

<u>Table 5.2 Theoretical capacities of anode materials.</u>

<u>Table 5.3 Summary of fuel cell devices and their</u> <u>respective electrolyte, key...</u>

Chapter 9

<u>Table 9.1 Processing conditions and applications of NFA developed using var...</u>

List of Illustrations

Chapter 1

<u>Figure 1.1 Schematic of conventional</u> <u>electrospinning setup and overview of p...</u>

<u>Figure 1.2 Schematic of various electrodes used to control the electrospinni...</u>

<u>Figure 1.3 Specific viscosity as a function of polymer concentration to dete...</u>

<u>Figure 1.4 Overview of interesting electrospun</u> <u>structures: (A (a-d)) ribbons...</u>

<u>Figure 1.5 Overview of advanced electrospun</u> <u>nanofiber cross sections: (a) po...</u>

Chapter 2

<u>Figure 2.1 Schematic image of electrospinning</u> <u>setup.</u>

<u>Figure 2.2 Cross-section types of bicomponent fibers.</u>

<u>Figure 2.3 Photographic images of (a) twisting</u> machine and (b) PU nanofiber ...

<u>Figure 2.4 Schematic of a dual conjugate</u> <u>electrospinning setup.</u>

<u>Figure 2.5 Yarn-spinning setup with water bath</u> <u>collecting electrode.</u>

<u>Figure 2.6 Schematic images of (a) the fabrication process for nanofiber yar...</u>

Figure 2.7 Electrospun fiber yarns of (a) PVAc, (b) PVDF, and (c) PAN.

<u>Figure 2.8 Scanning electron microscope (SEM)</u> <u>images of (a, b) untreated and...</u>

<u>Figure 2.9 Surface morphology of PAN nanofiber</u> <u>yarn at a twisting air pressu...</u>

Figure 2.10 (a) Schematic of the experimental setup for preparing nanofibrou...

<u>Figure 2.11 SEM image of a typical ruptured end of the PA-6 hollow nanofiber...</u>

<u>Figure 2.12 Melt blowing process for producing nanofiber nonwovens.</u>

<u>Figure 2.13 Layered fabric structure containing</u> <u>electrospun PU nanofibers....</u>

<u>Figure 2.14 (a) Photograph of PLA/TSF nanofiber</u> woven fabric; SEM images of ...

Figure 2.15 Illustration of the fabrication process for the 3D woven fabric ...

Figure 2.16 (a) The weaving of the electrospun nanofibers in succession (fro...

<u>Figure 2.17 The structure of (a) three-layered and (b) five-layered PI nanof...</u>

Figure 2.18 (a-f) Schematic illustration of assembling flexible PLEDs by usi...

Chapter 3

<u>Figure 3.1 Number of patents and articles</u> <u>published worldwide per year. The ...</u>

<u>Figure 3.2 Illustration of the various aspects of processing polymer to nano...</u>

Figure 3.3 Schematic illustrating (a) nonslip flow and (b) slip flow of air ...

<u>Figure 3.4 Comparison of the expressions used to extrapolate filter pressure...</u>

<u>Figure 3.5 Conceptual illustration of the first three mechanisms involved in...</u>

<u>Figure 3.6 (a) Illustration of efficiency of an air filter vs. particle size...</u>

<u>Figure 3.7 A scanning electron micrograph</u> <u>comparing commercial fiberglass fl...</u>

<u>Figure 3.8 Example of a nanofiber layer on a spunbond substrate.</u>

<u>Figure 3.9 Example of an electrospun Polyurethane</u> <u>filter in a disposable fil...</u>

<u>Figure 3.10 Example of a filter media composed of a melt-blown fiber layer b...</u>

Chapter 4

<u>Figure 4.1 General response curve for a chemical</u> sensor.

Figure 4.2 Generalized diagram of a sensor.

Figure 4.3 (a) Fluorescence emission of the copolymer PNNR2 at different con...

<u>Figure 4.4 Conversion of {4-rhodamine hydrazonomethyl-3-hydroxy-phenyl metha...</u>

Figure 4.5 (a) Binding of formaldehyde by the amine groups in poly(ethylenei...

<u>Figure 4.6 (a) The frequency response to humidity, of a SAW sensor based on ...</u>

<u>Figure 4.7 (a) Reflectance spectra of the PANI-leucoemeraldine base nanofibe...</u>

<u>Figure 4.8 Typical response curves of glucose</u> oxidase coated electrospun fib...

<u>Figure 4.9 Dynamic response of PA6/TiO₂/PANI and PA6/PANI composite nanofibe...</u>

Figure 4.10 (a) A schematic diagram of the flowover and flow through geomet...

Chapter 5

<u>Figure 5.1 General operating mechanisms and</u> electrode materials of lithium-i...

<u>Figure 5.2 SEM micrographs of caterpillar-like</u> <u>LiMnNiO_x structures fabricate...</u> <u>Figure 5.3 Electrospun carbon-coated V₂O₅</u> nanofibers with a hollow, porous s...

<u>Figure 5.4 (A) Illustrations and SEM cross-sections</u> of PI-PVDF-PI sandwich m...

<u>Figure 5.5 Operating mechanisms of (a) EDLCs and (b) pseudocapacitors. The e...</u>

<u>Figure 5.6 Illustrations and SEM micrographs of core-shell nanofibers with a...</u>

<u>Figure 5.7 The chemical structure of poly(perfluorosulfonic acid), or Nafion...</u>

<u>Figure 5.8 General schematic of a photovoltaic</u> device based on a p-n junctio...

<u>Figure 5.9 Progress of each photovoltaic</u> <u>technology in terms of peak researc...</u>

<u>Figure 5.10 General operation of DSSC. An incident photon is absorbed by a d...</u>

<u>Figure 5.11 Effect of calcination of highly porous</u> <u>ZSO nanofiber scaffold to...</u>

<u>Figure 5.12 Diagram of an organic photovoltaic</u> (OPV). The photoactive layer ...

Chapter 6

<u>Figure 6.1 Therapeutic effect of the 5-FU patch in</u> an orthotopic tumor model...

Figure 6.2 A schematic illustrating the proposed mechanism responsible for t...

Figure 6.3 Chemical structure of (a) sulfisoxazole; (b) hydroxypropyl-beta-c...

<u>Figure 6.4 Disintegration of PVA/caffeine and PVA/riboflavin nanofibrous mat...</u>

Figure 6.5 (a) Schematic representation of CD/linalool-IC and CD-linalool-IC...

<u>Figure 6.6 (a) Synthesis of poly(VBA-co-VBTAC).</u> <u>Schematic representation of ...</u>

Figure 6.7 Illustration of possible diffusion and dissolution mechanism of h...

<u>Figure 6.8 (a) Schematic representation of coreshell electrospinning and (b...</u>

<u>Figure 6.9 TEM (bottom) images of</u> <u>PVP/polycaprolactone (PCL) core/shell nano...</u>

Figure 6.10 Preparation of silk fibroin (SF)/poly(ethylene oxide) (PEO)/gela...

<u>Figure 6.11 A schematic illustrating the strategy</u> <u>underlying the design of t...</u>

<u>Figure 6.12 A proposed mechanism underlying the thermoresponsive properties ...</u>

<u>Figure 6.13 Single and emulsion electrospinning.</u>
(a) <u>During the process of s...</u>

Figure 6.14 (a) The representative images of skin wounds after being covered...

Chapter 7

<u>Figure 7.1 (a) An electrospinning apparatus</u> consists of a spinneret, two ele...

<u>Figure 7.2 Schematic representation of how</u> <u>antibacterial materials and surfa...</u>

Figure 7.3 Antifouling surfaces delay bacterial adhesion through (a) steric ...

Figure 7.4 A sink-like flow pulls the bacteria toward the tip of the Taylor ...

Chapter 8

<u>Figure 8.1 Illustrations and signature</u> <u>characteristics of (a) UCST and (b) L...</u>

<u>Figure 8.2 (a) SEM image of PEO/P2VP nanofibers</u> composed of 80 wt% PEO. A se...

<u>Figure 8.3 XRD profiles acquired from PEO powder and electrospun PEO/P2VP na...</u>

Figure 8.4 In (a), the modified electrospinning setup designed to incorporat...

Figure 8.5 In (a-d), TEM images of GNRs aligned in electrospun PEO nanofiber...

<u>Figure 8.6 Absorbance spectra acquired from (a)</u> randomly arranged GNRs in a ...

Figure 8.7 In (a), a PAN film containing a charged Zn-containing porphyrin a...

<u>Figure 8.8 Schematic diagram of field-driven</u> <u>surface biofunctionalization du...</u>

<u>Figure 8.9 In (a-h), a series of SEM images of electrospun PEO/(SEE)₃-PEO na...</u>

<u>Figure 8.10 In (a-c), SEM images of PMMA nanofibers electrospun at different...</u>

<u>Figure 8.11 The surface PMMA content as a function of the bulk PMMA content ...</u>

<u>Figure 8.12 In (a-c), calculated electric-field maps</u> from three different ti...

<u>Figure 8.13 Surface modification strategy for synthesizing functional polyme...</u>

<u>Figure 8.14 XPS spectra, including high-resolution</u> <u>scans at the C 1s edge, a...</u>

<u>Figure 8.15 In (a, b), SEM images of PET</u> nanofibers modified with PDMAEMA an...

Figure 8.16 In (a), an illustration of the CoDSA method for fabricating hier...

Figure 8.17 In (a), a schematic representation of block comicelles that are ...

Chapter 9

<u>Figure 9.1 Schematic displaying various steps</u> <u>involved in the processing of ...</u>

<u>Figure 9.2 Different steps of phase change of water</u> and carbon dioxide (CO₂)...

<u>Figure 9.3 Schematic to display various stages</u> involved in NFA fabrication s...

<u>Figure 9.4 Structure and properties of hybrid</u> <u>aerogels produced from electro...</u>

Figure 9.5 Effect of change in the composition of solvent on NFA morphology....

<u>Figure 9.6 Homogenization of electrospun</u> <u>nanofibers. (a) Photograph showing ...</u>

<u>Figure 9.7 (a) CDA-silica hybrid NFA supported on a dandelion. SEM images di...</u>

<u>Figure 9.8 (a) The gravity-driven separation of oil-in-water emulsions using...</u>

Figure 9.9 Schematic illustration of particle filtration mechanisms by (a) a...

Figure 9.10 (a) Photographs of various dye solutions (100 mg/l) before and a...

Figure 9.11 (a) A fresh flower protected by NFA with a thickness of 2 cm und...

<u>Figure 9.12 Compression properties of PISGs. (a)</u> <u>Typical compressive curves ...</u>

Chapter 10

<u>Figure 10.1 Schematic of a typical melt-blowing equipment.</u>

Figure 10.2 Exxon die.

Figure 10.3 Melt-blown fiber stream.

Figure 10.4 Schematic of the air knives in an Exxon die.

<u>Figure 10.5 Cross section view of Biax die and air distribution design.</u>

Figure 10.6 The multirow die.

Figure 10.7 Schematic of a Hills die.

Figure 10.8 Schematic representation of bicomponent fibers: (a) tipped trilo...

<u>Figure 10.9 Typical bicomponent segmented pie</u> <u>fiber: (a) solid; (b) hollow....</u>

Figure 10.10 Schematic diagram of open bicomponent spun-bond process with be...

<u>Figure 10.11 Spun-bonded fiber diameter as</u> <u>function of the number of segment...</u>

<u>Figure 10.12 Cross sections of the segmented pie</u> <u>fibers made of: (a) 8 segme...</u>

<u>Figure 10.13 Typical bicomponent islands-in-the-sea fiber.</u>

Figure 10.14 The effect of the number of islands and polymer composition on ...

Figure 10.15 Effect of number of islands on fabric tensile strength.

Figure 10.16 Effect of number of islands on fabric burst strength.

Applications of Polymer Nanofibers

Edited by

Anthony L. Andrady

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA

Saad A. Khan

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA

This edition first published 2022 © 2022 John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Anthony L. Andrady and Saad A. Khan to be identified as the authors of the editorial material in this work has been asserted in accordance with law.

Registered Office

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-ondemand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other

commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data applied for:

ISBN: 9781119267683

Cover Design: Wiley

Cover Images: Image of silver-silica hybrid nanofibers courtesy of Tahira Pirzada; Images of Elecrospun fibers of polymers of intrinsic microposity

courtesy of Siyao Wang; Wiley (Advanced Functional Materials, Cellulose Silica

Hybrid Nanofiber Aerogels, 2020)

Tahira Pirzada

This volume is dedicated to the first responders and medical personnel worldwide, working tirelessly to contain the Covid-19 pandemic

List of Contributors

Anthony L. Andrady

Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh, NC USA

Zeynep Aytac

Department of Environmental Health Harvard T.H. Chan School of Public Health Center for Nanotechnology and Nanotoxicology Harvard University Boston, MA, 02115 USA

Jessica L. Barlow

Department of Chemical and Life Science Engineering Virginia Commonwealth University Richmond, VA USA

Emily Diep

Department of Chemical Engineering University of Massachusetts Amherst Amherst, MA USA

Caitlin Dillard

Boeing 1 S Stewart Ave, Ridley Park Philadelphia, PA, 19078 USA

Arzan C. Dotivala

Department of Chemical and Life Science Engineering

Virginia Commonwealth University Richmond, VA USA

David S. Ensor

Retired

ISO Technical Committee 209 Cleanrooms and Associated Controlled Environments Spokane, WA USA

Nataliya Fedorova

The Nonwovens Institute NC State University Raleigh, NC USA

Yeqian Ge

Wilson College of Textiles North Carolina State University Fiber and Science Program Raleigh, NC USA

Vibha Kalra

Department of Chemical and Biological Engineering Drexel University Philadelphia, PA USA

Saad A. Khan

Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh, NC USA

Irene S. Kurtz

Department of Chemical Engineering University of Massachusetts Amherst Amherst, MA USA

Shani L. Levit

Department of Chemical and Life Science Engineering Virginia Commonwealth University Richmond, VA USA

Benoit Maze

The Nonwovens Institute NC State University Raleigh, NC USA

Bharadwaja S.T. Peddinti

Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh, NC USA

Tahira Pirzada

Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh, NC USA

Behnam Pourdeyhimi

The Nonwovens Institute NC State University Raleigh, NC USA

Vahid Rahmanian

Department of Chemical and Biomolecular Engineering North Carolina State University Raleigh, NC USA

Kristen E. Roskov

Department of Chemical and Biomolecular Engineering North Carolina State University

Raleigh, NC

USA

and

BASF Agricultural Solutions

BASF Corporation

Research Triangle Park, NC

USA

Jessica D. Schiffman

Department of Chemical Engineering University of Massachusetts Amherst Amherst, MA USA

Richard J. Spontak

Department of Chemical and Biomolecular Engineering North Carolina State University

Raleigh, NC

USA

and

Department of Materials Science and Engineering

North Carolina State University

Raleigh, NC

USA

Xiaoyu Sun

Department of Chemical and Biomolecular Engineering North Carolina State University

Raleigh, NC

USA

and

Integrated Diagnostic Solutions

Becton Dickinson & Company

Franklin Lakes, NJ USA

Kathleen F. Swana

U.S. Army Combat Capabilities Development Command Soldier Center Natick, MA USA

Christina Tang

Department of Chemical and Life Science Engineering Virginia Commonwealth University Richmond, VA USA

Breland T. Thornton

Department of Chemical and Life Science Engineering Virginia Commonwealth University Richmond, VA USA

Tamer Uyar

Department of Fiber Science & Apparel Design College of Human Ecology Cornell University Ithaca, NY, 14853 USA

Howard J. Walls

Aerosol Control Group Lead Technology Advancement & Commercialization RTI International Research Triangle Park, NC, 27709-2194 USA

Xiangwu Zhang

Wilson College of Textiles North Carolina State University Fiber and Science Program Raleigh, NC USA

Jiadeng Zhu

Wilson College of Textiles North Carolina State University Fiber and Science Program Raleigh, NC USA

Preface

The origins of electrospinning technology dates back to the days when Jean-Antoine Nollett first electrosprayed water with an electric charge generated from a Leyden Jar, back in 1746. But it was not until 1902 that Cooley filed the first patent on electrospinning based on that process. It took yet another half a century before Geoffrey Taylor in 1969 modeled the deformation of a liquid droplet in an electric field as the Taylor's cone. Electrospinning of nanofibers has come a long way since then, thanks to the intensive burst of research since the 1990s when academia got interested in the process. Today, it is a popular and versatile technology with several books published on electrospinning in recent years, including *The Science and Technology of Polymer Nanofibers* (Wiley 2008) by one of the present editors. Nanofiber science has made impressive advances and recently discovered a myriad of applications for this unique nanomaterial. Most of these developments occurred during the last two to three decades of research; the term "electrospinning" itself came into common use only as recently as 1995. Among the many different routes to fabricating nanofibers, electrospinning remains the most popular because of its simplicity, low-cost, and scalability. By definition, nanofibers are 1-D nanomaterials that have diameterd <100 nm. While there is scientific and regulatory agreement on this size range, many research publications as well as some regulatory organizations accommodate an upper limit of a d = 1000 nm. Electrospinning is able to fabricate nanofibers that fall within both size ranges.

The singular property that makes nanofibers so useful is their very high specific surface area. For instance, at a fiber diameter of 500 nm, the surface area per gram of resin can reach a 1000 m² that is larger than the floor area of two basketball courts. Compared to other nanogeometries such as thin films, this allows for relatively faster interaction of nanofibers with chemicals, particles, or live cells in applications such as chemical sensors, high-efficiency filters, biomedical scaffolding applications, and faster release of bioactive compounds in controlled-release applications. Sub-100 nm nanofibers, such as those of carbon, display unique quantum size effects, obtain exceptional strength, and high conductivity. Spider dragline silk¹, naturally occurring nanofibers that are ~ 20 nm in size diameter, display a tensile modulus of 10.6 (GPa) at 25% RH. Optimized nanofibers for specific applications are usually doped with other molecules, coated with an active material or might be a nanofilled composite material. Also, electrospun fiber mats allow easy handling of the nanofibers in different application and their high porosity helps easier access of reactants to fiber surface functionalities. Industrially relevant nanofiber materials fall into four broad classes: (i) carbon nanofibers; (ii) polymer nanofibers; (iii) inorganic nanofibers; and (iv) composite nanofibers. All four classes of these can be made in the laboratory by electrospinning of a composition where the crucial component for fiber-forming is a polymer. Over 50 different types of polymers have been electrospun up to date, and it is safe to assume that conditions allowing electrospinning of almost any polymer can be identified. Incorporating oxides, especially ZnO, TiO₂, SnO₂, and $Al_2 \cdot O_3$ in nanofibers has been reported in nanofibers in recent literature.

The promise of nanofibers as a particularly useful material of the future is justified because of several observations. The first has to do with the incredible diversity of nanofiber morphologies fabricated under careful conditions. These include exotic configurations including multichannel fibers

where the lacuna is divided into two to five sections, tube in tube nanofibers, core-shell nanofibers, nanowire in nanotube structures, and nanodots synthesized at junctions where nanofibers overlap in a mat. A second observation is the advancement in large-scale nanofiber manufacture. Development of flexible nanofiber mats that might be integrated into fabric to support efforts at developing wearable electronics is under way. Innovations of nanofibers in textile science are discussed in Chapter 2. Large-scale fabrication of nanofiber mats using electrodeless systems such as already- commercialized Nanospider (ElMarco) will further advance to bring down the cost of the material. Chapter 5 reviews the status of commercial production of nanofibers.

Nanofiber mats are porous with up to 90% of the volume being void spaces and their average pore diameters are less than about ten times the fiber diameter. Because of these features the mats are highly permeable and can be readily adapted for air filtration. Multilayer filter media with one layer being made of nanofiber mats has already been commercialized. Applications of nanofibers in filtration are discussed in **Chapter 3**. Even more porous nanofiber materials are made of aerogel materials, a class of nanomaterials that shows promise in several of the application areas as discussed in <u>Chapter 9</u>. Nanofibers significantly contribute to innovation in medical technology, specifically in tissue engineering, wound healing and controlled release applications. Nanofibers have a large surface area to volume ratio and can be fabricated with biodegradable polymers compatible with body tissue, mimicking protein fibrils or the chemical structure of native extracellular matrix as well as synthetic 'protein' nanofibers of polyamino acids. Chapters 6 and 7 discuss their biomedical uses, including tissue scaffolding by nanofibers that can also serve as highly compatible

implantable materials. An especially interesting application in the biomedical aren a is controlled delivery of bioactive agents such as proteins and DNA. Successful DNA delivery with nanofibers holds the possibility of its use a as a vehicle for clinically relevant gene-delivery in genomic treatment modes. A third related area is biological sensors based on nanofiber materials with the surface functionalized to specifically interact with a biomolecule. The reaction with the biomolecule results in a physical or chemical change in the fiber that allows the quantification of its concentration in terms of a change in fluorescence or conductivity of the fiber mat. Chapter 4 discusses the use of nanofibers in sensor technology. Nanofibers are finding uses in energy technology, especially in battery, fuel cell, and solar energy. Chapter 5 of the book reviews these developments.

The book addresses the basic science behind fabrication and nanofiber characterization with a clear emphasis on practical aspects of electrospinning. An attempt has been made to compile the more recent information and cover the different application areas where novel uses will be found for nanofiber materials.

Anthony L. Andrady Saad A. Khan Department of Chemical and Biomolecular Engineering North Carolina State University

Note

1 Silk threads from spider species *Nephila clavipes* Vehoff, T., Glisović, A., Schollmeyer, H., Zippelius, A. et al. (2007). Mechanical properties of spider dragline silk: humidity, hysteresis, and relaxation. *Biophysical Journal* 93 (12): 4425–4432.

1 Electrospinning Parameters and Resulting Nanofiber Characteristics: Theoretical to Practical Considerations

Christina Tang¹, Shani L. Levit¹, Kathleen F. Swana², Breland T. Thornton¹, Jessica L. Barlow¹, and Arzan C. Dotivala¹

¹Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA

²U.S. Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA

1.1 Electrospinning Overview

Electrospinning has been widely used to produce nonwoven nanofibers for applications in biomaterials, energy materials, composites, catalysis, and sensors (Agarwal et al. 2008, 2009; Ahmed et al. 2014; Cavaliere et al. 2011; Chigome and Torto 2011; Ma et al. 2014; Mao et al. 2013; Yoon et al. 2008; Thavasi et al. 2008). On a bench scale, it is a simple, inexpensive process. To generate nanofibers by electrospinning, an electric potential is applied between a capillary containing a polymer solution or melt and a grounded collector (Figure 1.1). The applied electric field leads to free charge accumulation at the liquid-air interface and electrostatic stress. When the electrostatic stress overcomes surface tension, the free surface deforms into a "Taylor cone." Balancing the applied flow rate and voltage results in a continuous fluid jet from the tip of the cone. As the jet travels to the collector, it typically undergoes nonaxisymmetric instabilities such as bending and branching leading to extreme stretching. As the fluid jet is stretched, the solvent rapidly evaporates to form the polymer fibers that are deposited onto a grounded target (Reneker and Chun 1996; Helgeson et al. 2008; Rutledge and Fridrikh 2007; Thompson et al. 2007; Teo and Ramakrishna 2006; Li and Xia 2004). As a complex electrohydrodynamic process, the final fiber and mat/membrane properties depend on