Demgn Patterns
In .NET 6

Reusable Approaches in (# and F#
for Object-Oriented Software Design

Third Edition

Dmitri Nesteruk

Design Patterns in .NET 6

Reusable Approaches in C# and F#
for Object-Oriented Software Design

Third Edition

Dmitri Nesteruk

Apress®

Design Patterns in .NET 6: Reusable Approaches in C# and F# for Object-Oriented
Software Design

Dmitri Nesteruk
St. Petersburg, c.St-Petersburg, Russia

ISBN-13 (pbk): 978-1-4842-8244-1 ISBN-13 (electronic): 978-1-4842-8245-8
https://doi.org/10.1007/978-1-4842-8245-8

Copyright © 2022 by Dmitri Nesteruk

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit http://www.
apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8245-8

The forces of light shall overcome the forces of darkness.

Table of Contents

About the AULNOF ... XV
About the Technical REVIEWETcicuuseensrmssssnnnmsssssnsssssssssnsssssssssssssssssnsssssssnnssssssnns Xvii
LT LT] | Xix
Part I: Introductionccccciininnninssseeeeessnmnnn s s 1
Chapter 1: The SOLID Design PrincCiplescccuuuseemsmmmmmmmmsssssssssssnssssssssssssssssssssssssssnss 3
Single Responsibility PriNCIPIE........cucererireserncseseser s 3
0pEN-ClOSEd PriNCIPIE......cceitieeerreserisesese e nnne e s 6
Liskov Substitution PriNCIPIE........ccvcevivririere s se s s se e ssessessssessesaeseesesesaesaes 13
Interface Segregation PriNCIPIEcccovvevrcerevesersere s s e e s sse e sesaesaesesesaesaes 15

Lo 1111 1o (=T 0 =T R 20
Dependency INVersion PrinCIPIe..........ccu i s s 21
Chapter 2: The Functional Perspectivecccuuseerrmsssssnnssssssnssssssssnssssssssssnssssssnnssass 25
FUNCHION BASICS.....cviriirsnessissesssniss s 25
FUNCLiONal LItEralS iN GHcccveciciriir e rerses s sesssssessesese e s s sse s s e snesaessessassnesaesnssssesnssnnnnnes 27
Storing FUNCHIONS iN G ..o 28
Functional Literals in Fi..........ccciininncinns st ss e sens 30
{00111 10 LT3 32
Functional-Related Language FEatures.........coovvrinivnsnine s ssesessessesnes 33
Part II: Creational Patternsccuuusssseeeemmmmmnnnnnnnmmsssssssssssssssssssnnnnssssssssssssnnnas 35
Chapter 3: BUilder........oureeeemmmmmmmmisssssssssnnnmmssssssssssssssssssssssssssssssnsssssssssssssnnnnnssssssssnns 37
T3 T2 T 37
SIMPIE BUIIART.......eeeeeeeecce e r e n e 40
FIUENT BUIAETc.eeeeectecetr ettt e e 4

TABLE OF CONTENTS

Static INHAlZALIONcovvecr e ————————————— 41
Communicating INENL........couo e e 42
Nested Builder and Immutability...........cooeoreenneeeeee s 44
COMPOSITE BUIIEcceiererecir et e e e b 45
Builder Marker INTErfacesccvueernesnesirsse s s 49
Stepwise BUilder (WIzard)........c.ccveevevnrennererenenseresessssessessessesessessessessssessessesssssssessessesssssssesseses 51
BUIlder PArameter ... 56
Builder Extension with RECUISIVE GENETICScccceerererenmeesereresssssssesesessssssesesesessssssssesssessssensaes 58
Lazy FUNCHONAI BUIAET ... 62
2T [0 T L= (o SR 65
Scoping Builder Method.........ccoveeiiinnernese e 68
DSL Construction in F.........cocciinicisssssss s s sas 69
£ 11114 7R 70
Chapter 4: FACtOries ...ucccurrisssennmmsssssnsmmssssnsnssssssnsssssssssssssssssnsnssssssnnsssssssnnnsssssnnnnssss 73
BT 14T TS 73
Lt T (0] 111300 75
Asynchronous Factory Method ... e 76
(1] OSSPSR 77
Tl o o (0] o OSSP 78
PhySiCal SEPArAtiONcccvveierierererirsere e a e e s a e e s p e e e ne e 79

DAV 053 1= T B =T (0] S 79
Delegate FActorieS iNI0Gccoecrrerrcccrr st 83
Object Tracking and Bulk Replacements...........cccoeerrecrerenernncrnsese s 85
L0 1< e B U T 85
BUIK MOGIfICALIONScceeecereeer e 87
LTI (0] T2 o= T (0 S 90
SUMIMAIY ...ttt e e b e e e e e R e e e R e e a e e e Re e be e nrn e rnrenn s 91

TABLE OF CONTENTS

Chapter 5: Prototype......ccccvssemmmmmssssnnmmmssssnnsmssssssssmssssssssessssssssssssssssssssssnsnssssssnnnsnss 93
Deep VS. SNAIIOW COPYING....ccciierrierirerireneris e res e se s se s sas e se s e s e e e st se e ss e e sens 93
ICIONEADIE IS BAQeeeeereereeer e 94
Deep Copying via Copy CONSLIUCHONcccerreeerrrcsereser s s 96
Note 0N RECOIU ClASSEScovvrirerrierrnsenisreerrese s sr s 97
Deep Copying with @ Special INTErfaceccvvvrvririerrsrre e 97

Deep Copying and INNEHTANCE.........ccvcvvereriererrerere e s s r e sne e 98
Deep Copying GUIEIINEScovierverierrenerserersessssessessesssssssessessessssessessesssssssessesssssssessessesssssnsesaens 102
Trivially CoPYaDIE TYPES...cvcererrererrererrersesersersessessssessessesseses e s ssessssessessesaesssnessesaesssssssessesaes 103
4 1 S 103
CommMON COllECTION TYPES....erierrerrrrerrererressesersersessesessessessessssessessesssssssessesaessssessessesssnsssesseses 104
MemberwiseClone IS Not TErribDIE.........ccccvrriinenesrs e 105
£ 1T 1117 OO 106
SEHANZALION ... e e 107
Prototype FaCLOrY.......cccccveeerrrresiresese s s 109
SOUICE GENEIALONSveuerveeressesesrese s e s s r s sr e r e e e p e e e e nr e e 110
£ 1§14 OO 111

Chapter 6: Singleton........ccccuvvemmminnennnmnnsesnmmnsssnmmnsssssessssssessssssesssssssesssssnns 113

Singleton DY CONVENTIONcocvieriererirserere s re s s se e sae e s saessssessesaesaess s e saesnes 113
Classic Implementation.............ccccrrviriecnrrrr e 114

Lazy Loading and Thread Safety........cccccrerrnvnnienncscrnsesre s seenes 115

ReUSaDIE BASE ClaSSccverveueererererrnreeise e ss e sessssss e sessssssssssens 116
The Trouble With SINGIETON........cc.coi i ——————— 117
Per-Thread SINGIETONcco v 121
AMDIENT CONTEXL......covieeeecircce e e r e nr s 122

Uses in the .NET FrameWOrKcccucvvereiinernsesrnessssse s e sssssssssssessssssssssssssases 126
Singletons and Inversion of CONTIOL ... 127
MONOSTALE ... ———————————— 128
L0 (0] ST 129
£ 0T T 130

vii

TABLE OF CONTENTS

Part l1I: Structural Patternsccouemmmsmmmnesmmsenmmnsesmssssmssasmssssmssasssanns 131
Chapter 7: Adapterccccvinieennmmsssnnnmmssssnnmmsssssnnssssssssnessssssssssssssnnsssssnnnsssssnnnnnss 133
RS T4 1T PR 133
0 F=)] OSSR 135
Adapter TEMPOIAIIESccueiveierierere st e st b e b s b e b e e b s be e e e e aenne s 136
The Problem with Hashing.........ccueeericininncnnc s sessessssenens 140
Property Adapter (SUMTOQALe)ccvcerererreriererinserseresrs s s sese s sessesse e ssssessessessesesesaessesasssssesaens 142
GENENIC VAlIUE AUAPTET....c.eivireecersere s ser s r e s e sa e s e s ae e s e sae e e e e s aesae e e e naennen 144
Adapter in Dependency INJECHON ... 152
Bidirectional AdapIer.........ccoeviiicrirr e 155
Adapters in the .NET FramEWOIK ..ot ssessssessessesssssssesnessens 156
B30T 1117 o SO 157
Chapter 8: Bridge.......ccuccsmmsmmmssmmsesmssnsmssssmssnsnsssnnsnsans 159
CoNVENLIONAI BrOQE......ccccrereeierierere s sere s s s se s sse e e s e s s sae e s s sae s e e e saesaeses e saennes 159
Dynamic Prototyping Bridge ... s s sse s s ss e s naens 163
31111117 o OO 166
Chapter 9: COMPOSIEccrvserssmsesmsmsmsmsssssasssassss s s s sssn s s ssnssnsssnsnnnsnnns 167
Grouping GraphiC ODJECTSccvvierrrrsr 167
NEUFAl NETWOTKSeceeeeeriecreresere s 170
Shrink Wrapping the COMPOSILE.........ccuvrierieniinine s s snes 173
Composite SPECITICALIONcccvverere s s 175
£ 1134 R 178
Chapter 10: Decoratorccccuusemmsnmssanmssansssnsssassssssssssssssnssssssssnsssansssassssnsssansssans 179
The Basics of Delegation ... s 180
POINES AN LINES.......coeeeeereecrercsere e 182
AdAPLEr-DECOIATON........coeiecercre e 185
Simulating Multiple INNEMTANCEccoviecricrrerr s 185
Multiple Inheritance With INTErfacescccvrrrrrrirn e enens 186

viil

TABLE OF CONTENTS

Multiple Inheritance with Default Interface Members ... 189
Dynamic Decorator COMPOSILION..........ccovverrerrerern s 191
Decorator CYCIE POLICIESc..cocoererereecreeererese s 194
Static Decorator COMPOSIION ..o —————— 200
FUNCLIONAI DECOTALON.......ccveceereeririeir e e 201
£ 11134 R 202

Chapter 11: Fagade........cccusmmssmmmssmmsmsmssnsmsssssssssssssssssssssssssssssnsssasssssssssnsssassssansssns 209

MAGIC SAUAIES ..veueruerrererserersersssessersessessssessessesssssssessesssssssessesaesssssssessessessssessesssssssessessesssssnsessens 206
Building a Trading TErMINal..........ccccoiiiiininiennsrne e s s nnens 211
An Advanced TEIMINAL..........coceeererereree e se e se e e e nre e nrens 212
Where’s the FAagade? ... 214
JOC MOGUIBS ...ttt e R e e e ne e r s 216
BT 1134 R 218

Chapter 12: Flyweightccccinninmmmmmnnsemnmmmsssmmmmsssssmmsssssssssssssssssssssssssssssee 219

USEI NAIMES......ociiiiiriee iR ne e 219
TeXt FOrmatting........ccccvcerenisirnr e e e e e s 222
Using Flyweights for INTErop ..o e 225
£ 11T 1117 S 226
Chapler 13: ProXY .uuuccuumsssssssssmmmsssssssssssssnssssssssssssssnssnsssssssssssssnnnsnsssssssssssssnnnnnnnsess 227
ProteCION PrOXY....i oot 227
o (0L o (0D SRS PRS 229
ComPOSITE PrOXY: SOA/ADS......ccecererertrsereressssessessessessssessessessssssessessessssessesaessssessesaessessssessesaes 232
Composite Proxy with Array-Backed Propertiesccccccvrvvrenernscrnienenesenssesessesesesesesesenns 235
VIFEUBE PTOXY ...eeeeceeeceeseseseec e se e se s se e s e e sas e sse e sessesensnnens 237
COMMUNICALION PIOXY ...cveeerscserseessssesessesessssessssessssssessssesessnsssssssenns 240
Dynamic Proxy fOr LOGGINGcccureeerrenerrnsessnesesssssssssessssessssesessssessssesssssssssssssssssssssssssssssssssssnns 242
COMPOSITE PIOXY ..eiviieeererieriesessesseseessssese s ssesesessesaese s e ssessesssssssessesasssssessessessssessesaessessssessesses 245
£ 1134 7R 248

ix

TABLE OF CONTENTS

Chapter 14: Value Objectccccvviremmmmmssssnnnmmsssssnsssssssssnssssssssssssssssnssssssnsssssssnnnnnss 251
TwWO-DIimensional POINT ... e nne e 252
Percentage ValUE ... s s et 253
UNIES OF MEASUIE......cceeeeerrecreresese s nr s 255
11T 111 17 o OSSOSO 257

Part IV: Behavioral Patterns........cccuceemmmmmnssesmnmnmssssssssnnnsssssssssnesssssssssssesssns 259

Chapter 15: Chain of Responsibilityccccerrermmmmmsssmsssnmmmmmmmmsssssssssmmssmssssssssssnns 261
RS T4 4T S 261
T2 (L0003 T TSP 262
2T 0] T 1 T V1 265
Functional Chain of ReSPONSIDIlity........c.cccvrrererenmrnssnsere s 270
11T 111 1T o OSSOSO 271

Chapter 16: COMMANcccccmmmmisnnnmmmsssssnnmsssssssnesssssnsssssssssnnssssssnnssssssnnnssssssnnnnss 273
RS T 1T 273
Implementing the Command Patternccovvvrrniennnnnns s sesene s sesse s sessessessessssessesaens 274
0T [O I 0] 0T L 0] RS 276
Composite Commands (aKa MACI0S)cceeererrererereresererese s sesesenns 279
Functional CommMANGccoveiirenmrese s 283
Queries and Command-Query Separationcuceverrnsesnesnes s 285
L1114 R 285

Chapter 17: Interpreter..........ccoummmmmmmmmsnmmmmmmsmmssmssssssssssas s 287
INtEGEr ParSing.......ccouiiiin s ———— 288
Numeric EXpression EValuator ... snens 289

I3 o OSSOSO 290
PaISING ..veriiiirc e e e R e e nnn 292
USING LeXer and PAISENccocciivniiricness s s ss s s st s s ssesssssssesne s 296
Interpretation in the Functional Paradigm ..o 296
TRANSPIIET .. e e 300
11T 111 17 o OSSOSO 302

TABLE OF CONTENTS

Chapter 18: Heratorcccccusemrinsssnnnmmssssssnmmssssssnesssssssesssssssesssssssesssssss s ssnnnns 305
Array-Backed Properties. ... s ss e nnens 306
Let’s Make an HErator ... e 309
IMProved REration...........ccciniins e st 312
HErator SPECITICS....cii i s s eae 314
RErator AQAPIETco e e 315
{01010 TO T IR LT R 317
£ 11T 1117 OO 319

Chapter 19: Mediator......ccccuieemrrmmsssssnmmssssssnessssssssessssssssessssssssesssssnnsssssssnnssssssnnnnss 321
{081 L 20 321
Mediator With EVENTScccoveeereserese s ss s s ss s s sesssnenns 326
Introduction t0 MediatRcccveeericerninne e 330
Service Bus @s Medialor ... s 332
£ 11134 7R 333

Chapter 20: Mementoccuverssemmsnmssanmssansssnsssanssssssssnsssansssassssnsssansssansssnsssansssans 335
BaAnK ACCOUNL ... 335
L0100 o2 o N 2o (o T 337
Memento and COMMAN..........cccoeeerenrnnernesrre e 340
11T 111 1T o OSSOSO 341

Chapter 21: Null Object..........cccnimmnmmmssmmsmmmssnsmsssnssssss s s ssss s sssassssnsnsansnsass 343
RS T T 343
INTruSiVe APPIOACHESovciiiece it e s r e s e e a e s 345

Nullable Virtual ProXy ..o s s s sss e 346
L1000 R 347
NUIl ObjeCt SINGIETONccueeerr s nae 348
Dynamic NUIl OBJECT.......ccoeeeererreser s 349

DIAWDACKS....c.veeererseerseersesesrnesrsssse e s s sse e s e sas e ses e e s s e sse e sessssessssnssesessnsessnssnsnsanessnnes 350
11T 111 1T o ST 351

xi

TABLE OF CONTENTS

Chapter 22: ODSEIVEr....ccccurusssssssrsssssnssssssssnssssssssnssessssnnssssssssnnnssssssnnssssssnnnssssssnnnnss 353
Y=)3 353
Weak EVENt PALIEIN.........cooeeceeeeeeeee e 355
EVENT SrBAMS......coviicerecrec s ne e 357
Property ODSEIVELScccvicerrierinsesese e sesse s s n s nr s 361

Basic Change NOtIfiCation ..o s 361
Bidirectional BiNGiNGS........ccoiurerrenerinesnsesssesessse s s ssssessssssssssssssssesssssssssssessases 363
Property DEPENAEBINCIESccvverereririerere s se st s saese s eaes 366
VWS ... s e e e R R e e e e R e e e e e AR e e e e e Re R e e e e nns 372
Case Study: Quadratic EQUAtion SOIVETccucviernesernsesinesre s 374
Circular Recalculation Limitations..........cccuvernvernenennsenssesssese s sessessssssessnnes 376
0bServable COIIBCTIONS. ... s 377
0DbServable LINQ ... s 378
Declarative Subscriptions in AULOTACcccevererrerreriern s ses s s ssesese s ssessssessesaens 378
£ 11T 1117 O 382

(IR F: T 1 (=1 g | 383
State-Driven State TranSitionsccccoveerrerrrsrre e 384
Enum-Based State MaCKINE..........cccvvrernrernererese s s senns 387
Switch-Based State MaChine.........c.cocvvveiirinrnesre e 390
Encoding Transitions with SWitCh EXPreSSionS......c.ccvivvrvrrerienessenseniesssensessessesessesessessssessesaens 392
State Machines with Stateless...........ccvvrinnnn s —————— 394

Types, Actions, and Ignoring TranSitionS........c.ccucvrnn e 395
REENIIANCY AQAIN.......cceceerieririr e s s e e s a e s e e s ae e 396
Hierarchical STates ... 397
MOFE FEATUIES ... s 397
Concurrent State MaCRINES...........ocvverererernneesese e 398
Implicit State MaCKINES ..o 399
£ 1117 o 399

xii

TABLE OF CONTENTS

Chapter 24: Strategy......cccrmmssmnmmmsssnnnmsssssnnnmssssssnsssssssnssessssssnsssssssnnssssssnnnssssssnnnnss 401
DYNAMIC STrAtBOY.....ccerreeriecrire et e e e 401
B3] L[(=T) 404
Equality and Comparison StrategieS.......cccuvererenmrnsmsessesesesessssesessesssssessssesesssssssssessssessssssenns 406
FUNCLIONAL SErAtOYcveceereerrresire st 408
Declarative STratBgieS.....c.cverrrrieriere s s s ae e nne e 409
£ 11134 7P 410

Chapter 25: Template Method...........ccccvnnemmmmnnnnnnnnmmssnnmmssssn s —————— 411
GAME SIMUIALION........c.coeeeeereeeccrere e sena e 41
Template Method MiXin.........ccocvrinnini e 413
Functional Template Method.........c.ccoeviininninrr s 415
11T 111 1T o OSSOSO 416

Chapter 26: ViSItor.......uuiseeeeesmmmmmmsmssssssssssnsnmsssnnnnnnnnsness 417
INEFUSIVE VISITOT ...ttt 418
ReflCHIVE VISITONcviecericcrrcire e 419

EXENSion MEtNOGAS? ..o 422
Functional Reflective VISitor (CH)......c.ccuverrerrrerrerrernnensesessssssessessessssessessesssssssessesssssssessesses 424
Functional Reflective VIiSitor (FH#) ... sessessesssessessenns 426
IMPIOVEMENES... .. s 427
What IS DISPALCRT?ccueeeieeccerr sttt se e e ne e 428
DYNAMIC VISITON ... 430
[TS T] TS 432
Abstract Classes and Virtual Methods..........coouevrennenmrnsmsnsesesssessse s s sesssssssenens 435
Reducing BOIlerplatecooueeeerermrenernsesesesessse s sessesesssse s sessssesss e s s ssssssesssssssssensnns 437
Implementing an Additional ViSitor...........ccocovvnnnenenesennsesese s sesennes 437
Type Checks Are Unavoidable ... e sessenens 439
Y0 [T (0] O 441
Visitable NUIL OBJECT ..o s snas 443

xiii

TABLE OF CONTENTS

RS 0] o = 0]] S 447
Reductions and TrANSTOIMSc.eeveeeiireeiiseerssers e e rseersresssesssesssseessssesassessssesssesssessansessnsensnnes 450
FUNCTIONAI VISTTO N FAE...veiieei i rceerseessseessse s csseessssessse e ssssessssessasesssssesassessnsessssesssessansessnsensnnes 454
£ 10T 1117 S 455
IO X tteeeuunrrnmnnsssnsnnnsssssssnssssnssnsssssssnsssssssnsssssssnnssssssnnnsssssnnnssssssnnsnssnnnnnsnsnnnnnnnnnnnnnns 457

Xiv

About the Author

Dmitri Nesteruk is a quantitative analyst, developer, course
instructor, book author, and an occasional conference
speaker. His interests lie in software development

and integration practices in the areas of computation,
quantitative finance, and algorithmic trading. His
technological interests include C# and C++ programming
as well as high-performance computing using technologies
such as CUDA and FPGAs.

About the Technical Reviewer

As Microsoft Technical Trainer in Microsoft, Massimo
Bonnani’s main goal is to help customers empower their
Azure skills to achieve more and leverage the power of Azure
in their solutions. He is also a technical speaker at national
and international conferences, and public speaking is one

of his passions. He likes dogs (he has one beautiful female
Labrador that he loves), reading, and biking. He is Microsoft

Certified Trainer, former MVP (for 6 years in Visual Studio
and development technologies and Windows development),
Intel Software Innovator, and Intel Black Belt.

xvii

Introduction

The topic of design patterns sounds dry, academically dull, and, in all honesty, done

to death in almost every programming language imaginable - including programming
languages such as JavaScript that aren’t even properly object-oriented programming
(OOP)! So why another book on it? I know that if you're reading this, you probably have a
limited amount of time to decide whether this book is worth the investment.

I decided to write this book to fill a gap left by the lack of in-depth patterns books
in the .NET space. Plenty of books have been written over the years, but few have
attempted to research all the ways in which modern C# and F# language features can be
used to implement design patterns and to present corresponding examples. Having just
completed a similar body of work for C++,' I thought it fitting to replicate the process
with .NET.

Now, on to design patterns - the original Design Patterns book® was published with
examples in C++ and Smalltalk, and since then, plenty of programming languages
have incorporated certain design patterns directly into the language. For example, C#
directly incorporated the Observer pattern with its built-in support for events (and the
corresponding event keyword).

Design patterns are also a fun investigation of how a problem can be solved in many
different ways, with varying degrees of technical sophistication and different sorts of
trade-offs. Some patterns are more or less essential and unavoidable, whereas other
patterns are more of a scientific curiosity (but nevertheless will be discussed in this book,
since I'm a completionist).

You should be aware that comprehensive solutions to certain problems often result
in overengineering, or the creation of structures and mechanisms that are far more
complicated than is necessary for most typical scenarios. Although overengineering is a
lot of fun (hey, you get to fully solve the problem and impress your co-workers), it’s often
not feasible due to time/cost/complexity constraints.

' Dmitri Nesteruk, Design Patterns in Modern C++ (New York, NY: Apress, 2017).

2Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software (Reading, MA: Addison-Wesley, 1994).

Xix

INTRODUCTION

Who This Book Is For

This book is designed to be a modern-day update to the classic GoF book, targeting
specifically the C# and F# programming languages. My focus is primarily on C# and the
object-oriented paradigm, but I thought it fair to extend the book in order to cover some
aspects of functional programming and the F# programming language.
The goal of this book is to investigate how we can apply the latest versions of C# and
F# to the implementation of classic design patterns. At the same time, it’s also an attempt
to flesh out any new patterns and approaches that could be useful to .NET developers.
Finally, in some places, this book is quite simply a technology demo for C# and
F#, showcasing how some of the latest features (e.g., default interface methods) make
difficult problems a lot easier to solve.

On Code Examples

The examples in this book are all suitable for putting into production, but a few
simplifications have been made in order to aid readability:

o Tuse public fields. This is not a coding recommendation, but rather
an attempt to save you time. In the real world, more thought should
be given to proper encapsulation, and in most cases, you probably
want to use properties instead.

o I often allow too much mutability either by not using readonly or by
exposing structures in such a way that their modification can cause
threading concerns. We cover concurrency issues for a few select
patterns, but I haven’t focused on each one individually.

e Idon’tdo any sort of parameter validation or exception handling,
again to save some space. Some very clever validation can be done
using C# 8 pattern matching, but this doesn’t have much to do with
design patterns.

You should be aware that most of the examples leverage the latest version of C#
and generally use the latest C# language features that are available to developers. For
example, I use dynamic pattern matching and expression-bodied members liberally.

INTRODUCTION

At certain points in time, I will be referencing other programming languages such as
C++ or Kotlin. It's sometimes interesting to note how designers of other languages have
implemented a particular feature. C# is no stranger to borrowing generally available
ideas from other languages, so I will mention those when we come to them.

Preface to the Second Edition

As I write this book, the streets outside are almost empty. Shops are closed, cars are
parked, public transport is rare and empty too. Life is almost at a standstill as the country
endures its first “nonworking month,” a curious occurrence that one (hopefully) only
encounters once in a lifetime. The reason for this is, of course, the COVID-19 pandemic
that will go down in the history books. We use the phrase "stop the world” a lot when
talking about the Garbage Collector, but this pandemic is a real “stop the world” event.

Of course, it’s not the first. In fact, there’s a pattern there too: a virus emerges, we pay
little heed until it’s spreading around the globe. Its exact nature is different in time, but
the mechanisms for dealing with it remain the same: we try to stop it from spreading and
look for a cure. Only this time around it seems to have really caught us off guard, and
now the whole world is suffering.

What'’s the moral of the story? Pattern recognition is critical for our survival. Just
as the hunters and gatherers needed to recognize predators from prey and distinguish
between edible and poisonous plants, so we learn to recognize common engineering
problems - good and bad - and try to be ready for when the need arises.

Preface to the Third Edition

Design patterns are, for me, a subject of continuous research. Even though the core set
of patterns remains more or less unchanged (though I did include a new one, Value
Object, in this edition), the exact implementations keep varying as new framework and
language features are introduced. With C#, the language has recently made an effort

to focus on conciseness: getting more done with less. On the other hand, features such
as Source Generators also simplify some of the approaches where code repetition is
inevitable. Sadly, we've not yet reached the stage where we have a fully functioning
metaprogramming system, so we have to make do with what’s essentially plain-text code
generation.

xxi

INTRODUCTION

This edition also includes a lot of new material related to pattern interactions.
Normally, when using patterns, you're likely to use more than one anyway, and
sometimes these patterns interact in weird and wonderful ways. Sometimes it’s difficult
to determine exactly what pattern is represented by a particular code because it seems to
be covering so many at once. I've made explicit in the names of sections which patterns
are involved in an interaction.

Patterns are a fun topic to experiment with and delve into those “what if?”
questions regarding how an implementation can be improved - whether in terms
of maintainability, testability, thread safety, or some other criterion. On the other
hand, comprehensive solutions often result in overengineering, which can weigh
down implementations and make them more difficult to understand and maintain. I
encourage you to consider carefully how much engineering embedded into patterns you
actually need for your purposes. Do not be afraid to cherry-pick, experiment, and adjust
things to your needs.

Oh, and if you find some interesting approach that this book does not cover, be sure
to let me know!

xxii

PART |

Introduction

CHAPTER 1

The SOLID Design
Principles

SOLID is an acronym that stands for the following design principles (and their
abbreviations):

o Single Responsibility Principle (SRP)

e Open-Closed Principle (OCP)

e Liskov Substitution Principle (LSP)

o Interface Segregation Principle (ISP)

e Dependency Inversion Principle (DIP)

These principles were introduced by Robert C. Martin in the early 2000s - in fact,
they are just a selection of five principles out of dozens that are expressed in Robert’s
books and his blog.! These five particular topics permeate the discussion of patterns
and software design in general, so before we dive into design patterns (I know you're all
eager), we're going to do a brief recap of what the SOLID principles are all about.

Single Responsibility Principle

Suppose you decide to keep a journal of your most intimate thoughts. The journal is
used to keep a number of entries. You could model it as follows:

public class Journal

{

private readonly List<string> entries = new();

"https://blog.cleancoder.com/

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_1

https://blog.cleancoder.com/
https://doi.org/10.1007/978-1-4842-8245-8_1

CHAPTER 1 THE SOLID DESIGN PRINCIPLES

// just a counter for total # of entries
private static int count = 0;

}

Now, you could add functionality for adding an entry to the journal, prefixed by the
entry’s ordinal number in the journal. You could also have functionality for removing
entries (implemented in a very crude way in the following). This is easy:

public void AddEntry(string text)

{
entries.Add($"{++count}: {text}");
}
public void RemoveEntry(int index)
{
entries.RemoveAt(index);
}

And the journal is now usable as

var j = new Journal();
j.AddEntry("I cried today.");
j.AddEntry("I ate a bug.");

It makes sense to have this method as part of the Journal class because adding
ajournal entry is something the journal actually needs to do. It is the journal’s
responsibility to keep entries, so anything related to that is fair game.

Now, suppose you decide to make the journal persist by saving it to a file. You add
this code to the Journal class:

public void Save(string filename, bool overwrite = false)

{
File.WriteAllText(filename, ToString());

}

This approach is problematic. The journal’s responsibility is to keep journal entries,
not to write them to disk. If you add the persistence functionality to Journal and similar
classes, any change in the approach to persistence (say, you decide to write to the cloud
instead of disk) would require lots of tiny changes in each of the affected classes.

CHAPTER 1 THE SOLID DESIGN PRINCIPLES

I want to pause here and make a point: an architecture that leads you to having to do
lots of tiny changes in lots of classes is generally best avoided if possible. Now, it really
depends on the situation: if you're renaming a symbol that’s being used in a hundred
places, I'd argue that’s generally OK because ReSharper, Rider, or whatever IDE you use
will actually let you perform a refactoring and have the change propagate everywhere.
But when you need to completely rework an interface...well, that can become a very
painful process!

We therefore state that persistence is a separate concern, one that is better expressed
in a separate class. We use the term Separation of Concerns (sadly, the abbreviation SoC
is already taken?) when talking about the general approach of splitting code into separate
classes by functionality. In the cases of persistence in our example, we would externalize
it like so:

public class PersistenceManager
{
public void SaveToFile(Journal journal, string filename,
bool overwrite = false)
{
if (overwrite || !File.Exists(filename))
File.WriteAllText(filename, journal.ToString());

And this is precisely what we mean by Single Responsibility: each class has only one
responsibility and therefore has only one reason to change. Journal would need to
change only if there’s something more that needs to be done with respect to in-memory
storage of entries - for example, you might want each entry prefixed by a timestamp, so
you would change the Add() method to do exactly that. On the other hand, if you wanted
to change the persistence mechanic, this would be changed in PersistenceManager.

An extreme example of an anti-pattern?® that violates the SRP is called a God Object. A
God Object is a huge class that tries to handle as many concerns as possible, becoming a

2S0C is short for System on a Chip, a kind of microprocessor that incorporates all (or most)
aspects of a computer.

3 An anti-pattern is a design pattern that also, unfortunately, shows up in code often enough to be
recognized globally. The difference between a pattern and an anti-pattern is that anti-patterns are
common examples of bad design, resulting in code that’s difficult to understand, maintain, and
refactor.

CHAPTER 1 THE SOLID DESIGN PRINCIPLES

monolithic monstrosity that is very difficult to work with. Strictly speaking, you can take
any system of any size and try to fit it into a single class, but more often than not, you'd
end up with an incomprehensible mess. Luckily for us, God Objects are easy to recognize
either visually or automatically (just count the number of member functions), and
thanks to continuous integration and source control systems, the responsible developer
can be quickly identified and adequately punished.

Open-Closed Principle

Suppose we have an (entirely hypothetical) range of products in a database. Each
product has a color and size and is defined as

public enum Color { Red, Green, Blue }
public enum Size { Small, Medium, Large, Huge }
public record Product(string Name, Color Color, Size Size);

Now, we want to provide certain filtering capabilities for a given set of products.
We make a ProductFilter service class. To support filtering products by color, we
implement it as follows:

public class ProductFilter
{
public IEnumerable<Product> FilterByColor
(IEnumerable<Product> products, Color color)
{
foreach (var p in products)
if (p.Color == color)
yield return p;

Our current approach of filtering items by color is all well and good, though of course
it could be greatly simplified with the use of LINQ. So our code goes into production,
but unfortunately, sometime later, the boss comes in and asks us to implement filtering
by size too. So we jump back into ProductFilter.cs, add the following code, and

recompile:

6

CHAPTER 1 THE SOLID DESIGN PRINCIPLES

public IEnumerable<Product> FilterBySize
(IEnumerable<Product> products, Size size)
{
foreach (var p in products)
if (p.Size == size)
yield return p;

This feels like outright duplication, doesn’t it? Why don’t we just write a general
method that takes a predicate (i.e., a Predicate<T>)? Well, one reason could be that
different forms of filtering can be done in different ways: for example, some record
types might be indexed and need to be searched in a specific way; some data types are
amenable to search on a Graphics Processing Unit (GPU), while others are not.

Furthermore, you might want to restrict the criteria one can filter on. For example,
if you look at Amazon or a similar online store, you are only allowed to perform filtering
on a finite set of criteria. Those criteria can be added or removed by Amazon if they find
that, say, sorting by number of reviews interferes with the bottom line.

Okay, so our code goes into production, but once again, the boss comes back and
tells us that now there’s a need to search by both size and color. So what are we to do but
add another function?

public IEnumerable<Product> FilterBySizeAndColor(
IEnumerable<Product> products,
Size size, Color color)
{
foreach (var p in products)
if (p.Size == size 8& p.Color == color)
yield return p;

What we want, from the preceding scenario, is to enforce the Open-Closed Principle
that states that a type is open for extension but closed for modification. In other words,
we want filtering that is extensible (perhaps in a different assembly) without having to
modify it (and recompiling something that already works and may have been shipped to
clients).

CHAPTER 1 THE SOLID DESIGN PRINCIPLES

How can we achieve it? Well, first of all, we conceptually separate (SRP!) our filtering
process into two parts: a filter (a construct that takes all items and only returns some)
and a specification (a predicate to apply to a data element).

We can make a very simple definition of a specification interface®:

public interface ISpecification<T>

{
bool IsSatisfied(T item);

}

In this interface, type T is whatever we choose it to be: it can certainly be a Product,
but it can also be something else. This makes the entire approach reusable.

Next up, we need a way of filtering based on an ISpecification<T> - this is done by
defining, you guessed it, an IFilter<T>:

public interface IFilter<T>
{
IEnumerable<T> Filter(IEnumerable<T> items,
ISpecification<T> spec);

Again, all we are doing is specifying the signature for a method called Filter() that
takes all the items and a specification and returns only those items that conform to the
specification.

Based on this interface, the implementation of an improved filter is really simple:

public class BetterFilter : IFilter<Product>
{

public IEnumerable<Product> Filter(IEnumerable<Product> items,
ISpecification<Product> spec)

{

foreach (var i in items)

* At this point, an interesting question is whether you want to use interfaces or abstract classes.
If you do go for interfaces, you lose out on some options (such as custom operators), but you
get being able to use record structs, which absolutely make sense for specification inheritors.
Your choice.

8

CHAPTER 1 THE SOLID DESIGN PRINCIPLES

if (spec.IsSatisfied(i))
yield return i;

Again, you can think of an ISpecification<T> that’s being passed in as a strongly
typed equivalent of a Predicate<T> that has a finite set of concrete implementations
suitable for the problem domain.

Now, here’s the easy part. To make a color filter, you make a ColorSpecification:

public class ColorSpecification : ISpecification<Product>

{

private Color color;

public ColorSpecification(Color color)

{

this.color = color;

}

public bool IsSatisfied(Product p)
{

return p.Color == color;
}
}

Armed with this specification, and given a list of products, we can now filter them as
follows:

var apple = new Product("Apple", Color.Green, Size.Small);
var tree = new Product("Tree", Color.Green, Size.large);
var house = new Product("House", Color.Blue, Size.large);

Product[] products = {apple, tree, house};

var pf = new ProductFilter();

WriteLine("Green products:");

foreach (var p in pf.FilterByColor(products, Color.Green))
WritelLine($" - {p.Name} is green");

CHAPTER 1 THE SOLID DESIGN PRINCIPLES

Running this gets us “Apple” and “Tree” because they are both green. Now, the only
thing we haven’t implemented so far is searching for size and color (or, indeed, explained
how you would search for size or color or mix different criteria). The answer is that you
simply make a combinator. For example, for the logical AND, you can make it as follows:

public class AndSpecification<T> : ISpecification<T>

{

private readonly ISpecification<T> first, second;

public AndSpecification(ISpecification<T> first, ISpecification<T> second)
{

this.first = first;

this.second = second;

}

public override bool IsSatisfied(T t)

{
return first.IsSatisfied(t) && second.IsSatisfied(t);
}
}

And now, you are free to create composite conditions on the basis of simpler
ISpecifications. Reusing the green specification we made earlier, finding something

green and big is now as simple as

foreach (var p in bf.Filter(products,
new AndSpecification<Product>(
new ColorSpecification(Color.Green),
new SizeSpecification(Size.large))))
{
WriteLine($"{p.Name} is large");
}

// Tree is large and green

This was a lot of code to do something seemingly simple, but the benefits are well
worth it. The only really annoying part is having to specify the generic argument to
AndSpecification - remember, unlike the color/size specifications, the combinator isn’t
constrained to the Product type.

10

CHAPTER 1 THE SOLID DESIGN PRINCIPLES

Keep in mind that, thanks to the power of C#, you can simply introduce an operator
& (important: single ampersand here - 8& is a byproduct) for two ISpecification<T>
objects, thereby making the process of filtering by two (or more!) criteria somewhat
simpler. The only problem is that we need to change from an interface to an abstract
class (feel free to remove the leading I from the name):

public abstract class ISpecification<T>

{
public abstract bool IsSatisfied(T p);

public static ISpecification<T> operator &(
ISpecification<T> first, ISpecification<T> second)
{
return new AndSpecification<T>(first, second);
}
}

If you now avoid making extra variables for size/color specifications, the composite
specification can be reduced to a single line®:

var largeGreenSpec = new ColorSpecification(Color.Green)
& new SizeSpecification(Size.Large);

Naturally, you can take this approach to extreme by defining extension methods on
all pairs of possible specifications...

public static class CriteriaExtensions

{

public static AndSpecification<Product> And(this Color color, Size size)
{
return new AndSpecification<Product>(
new ColorSpecification(color),
new SizeSpecification(size));

®Notice we're using a single & in the evaluation. If you want to use &8, you'll also need to override
the true and false operators in ISpecification.

11

