Software
Development
Activity Cycles

Collaborative Development,
Continuous Testing and
User Acceptance

Robert F. Rose

Software Development
Activity Cycles

Collaborative Development,
Continuous Testing and User
Acceptance

Robert F. Rose

Apress’

Software Development Activity Cycles: Collaborative Development,
Continuous Testing and User Acceptance

Robert E. Rose
Alexandria, VA, USA

ISBN-13 (pbk): 978-1-4842-8238-0 ISBN-13 (electronic): 978-1-4842-8239-7
https://doi.org/10.1007/978-1-4842-8239-7

Copyright © 2022 by Robert F. Rose

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter
developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Shiva Ramachandran
Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,

1 New York Plaza, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8239-7

Books, books! There are dozens of books, hundreds
of books, on every subject imaginable. So please,
if you must write a book, make it a small one.
—Anonymous Professor of History

Ifyou can’t describe what you are doing as a process,
you don’t know what you're doing.
—-W. Edwards Deming

Table of Contents

About the AUROFccccmmiemmmssmnmsssns s ssnnnnns Xv
AUthor’s Preface.........coueemssssmsmsssnsssssssssssnsssssnsssssnsssssnsssssnsssssnssnssnnss Xvii
Introduction........ccccmnsmmmnsmnmmsnsmssnnssssn s Xix
Chapter 1: The DPAC Modelccoorrmmmmmmmmmmmssssssssssssnssssssssssssssssssssssssnns
ADOUL the MOUEL......c.o oo
DPAC and PDCA ..ottt st s a s s st
DPAC Embraces Agile and DeVOPS........cccvvrrererersensesessesessessessessssessessessssessessesses
Activities Represented in the DPAC MOGEL..........cccevrrererennerseriesssensesesessssensesaens
Stages, Cycles, Phases, Parts, and SIEPSccvvvvrieveversenserevssessesesesessesessens
The Inception Stage of Application Development..........cccovvevvvnvriernsensenienns
The Elaboration Stage of Application Development........c.ccoovvvvrrerievensenienens 10
The Construction Stage of Application Developmentccocvcvverievensenierens 11
The Assembly Stage of Application Developmentcccvevvevvrierievensensenens 12
The Evolution Stage and Retirement...........ccoocvvrininsnnnnncsnsnene s 14
Paradigms as a Hindrance to Understanding.........c.c.ccovrererenernsenensenesescsensenenns 15
SUMMALION ... s 16
Chapter 2: Why Include Support in a Development Model? 17
Statement of the Problem...........ccccvvvricnns s 17
To Put This in Terms of Total COSt..........ccccvvrminnmnnnnses e 18
Regarding the Quality Payoff for the Adoption of DevOps and
Other DisCipling PracliCes.......ccuvurrnnrnininssnns s sens 19

Putting Support in the Equation...........cccccvvrinincnnnisncnrner e 20

TABLE OF CONTENTS

Freeing the Statue from the STONe.........ccvvirirvrrr s 24
Improving Maintainabilityccccviniininin s 25
Ameliorative Measures During Development to Improve Software
System “Maintainability” ..o 28
Political and Social Capital............ccccurevnrnsnininnnsnere e 32
SUMMALION ... e 33
Chapter 3: The Inception Stageccccuseemmmmssenmmmmssssssnmssssssnnmssssnnns 35
Vision Statement.........ccccrcrnirrs e —— 37
Requirements Traceability MatriXcccccevrenmnnninnennesnse e 38
Nonfunctional REQUIrEMENTScccereverrrnierin e ssesessessesnens 40
Planning for Information Security and System Securitycouvervrieriernsenierens 43
o 117 0 OSSO OPSSRPRS SN 45
R3] - L 1110 S 48
Four Things Every (Successful) Project Manager Must Know:...................... 48
1010110 0] o 52
Chapter 4: The Elaboration Stage........cccuccmmmmmssnmmmmssssssnmsssssssnsssssnsnns 53
Activities During EI@DOration...........c.coveeernsesnsesmsesssssesesesese s sessesessssessnnes 54
PLAN Phase of the Process Overview CyCIe.........ccevvrererenmrnsesensesessssenennes 54
Do Phase of the Process Overview CYCIe..........ccccvveerrrenereserensesessesessssesennes 55
Check Phase of the Process OVerview CYCle..........ccovvrererrenerenerensesessenensnnes 55
Act Phase of the Process Overview CYCIecccuoeererernsesesesesssesensesessnnens 55
ONQGOING ACTHIVITIES ..vevrreerrierrsese e 56
Database AdminiStrationccccvvcrnnnnenns s, 56
Other ACHVITIES.....cov i s 57
Additional Responsibilities........c.cccvvvrrininin 57
Data FIow Diagrams........ccccerennnnininnsinsese s s sesse e ssssessessssssssssesnens 58

Functional Requirements Specification (FRS) vs. System Requirements
SPECification (SRS)cccvveerrrrrrese s s 58

TABLE OF CONTENTS

DESIGN REVIBWccueiieiererer et n e s s e s s 59
Successful Requirements Prioritization Requires Knowledge of:.............cc......... 59
Determine Staffing, Roles, and Responsibilities. Begin the Hiring

Process for the Construction Stagec.ccovrevrerernsesnnenenesessseses s sessesenns 61
Initial Roles from INCEePLioN........c.cccv v 61
Roles Added During Elaboration (Start Recruiting During Inception)............. 61
Rules of the Road (Staffing).......c.ccccvrvrermresemnnesnsesnsesesesesese s sessesessesesenss 62

Design, Develop, and Document the System Architecture..........ccccvvrevvcncennens 67

Demonstrate an Operating Backbone for Shared System Functions.................. 68

Application Design ReqUIreMents..........cccvvrrrrieninsnnenensnnses e ssessessesssesessens 68

Introduction to Configuration Management Database (CMDB)cccccceveuene. 70
The CMDB Shall Comprise at Least the Following Information...................... 71
The Traceability MatriXcccovvririnninrirn s 74
On Joint Application Development (JAD)cccoceeverernrenenieneneserenseseseseseenes 74

On Workshops (IN GENEral)..........ccoeeerrerererererenereee e 75
SUMMALION ... 76

Chapter 5: The Construction Stage...........ccoimmsmmmmmmssssnnmmssssssnnmssssnsnns 77

The Process Detail CYCIe........coovererernsesneseresersse s sesnsnens 79
Process Detail Cycle: Roles and Responsibilitiesccccvevvrnvnienesnieniennn, 80

Business Rules May Take the Form of, But Are Not Restricted to,

LU LN 50110117 T 81
User interface (Ul) 1eStiNg......cccevievnrrvniere s sesse e ses e 81
Operational ReQUIrEMENTS........cccevrrerieriere s serese s e s sessessesae s 82
LOOKUP VAIUBS ...c.eveeerererie et se e s se s sa e s ne s s s sn e sne s 82
“Drop-DowWn” VAIUES........cceeierieriirniererienses s s s s s s sse s e s s s s s sse s 82
DECISION TADIES......c.cuccieririreree s 82
Process Flow and DependencCies.........ccvevererrerierenensessesessssessessessesessessesaes 83
Rule-Based CONSraintS.........ccccovermnnnmnmseninsssssse s sesssssseas 83

vii

TABLE OF CONTENTS

Business Definitions..........ccvvrimrnnnnn s 83
Data INtEQIitYcce v ———— 83
Compliance with Audit and Regulatory Requirements
(a Nonfunctional Requirement Shaping Code)...........cocvrrenrsererennnsseseserennnns 83
Compliance with External Requirements for Certification
(also a Nonfunctional Requirement Shaping Code)cccvevverrervererensersersenes 84
Data Constraints........ccovrrnnnmnmsensss e 84
Business Rule Review (in the Act Phase of the Process Detail Cycle)................. 84
Roles for ReVIEW PaNEL...........ccoviereeerrcrereer e 84
Requirements Inspection CheckIist..........cccooeevevrninncccricsrrcerre e 85
PEISPECLIVE ..ot e e 86
Requirements Are NECESSArYcooeerereererererreneressesesesessesesessesessesessesessnns 86
The Unit Development CYCIEoovcvveerrererenersse s s sessesesssnens 88
Change Reports (CRPIS)....c.cuvrerrenmrrnsesmrseseresesesesesssse s sessssessesesessesessssessnnes 89
Keep Everything in Version Controlc.cooevenrnsennnesesssesnsesessesessesenenns 89
Configuration Management..........c.cccvvrerrnnrnnennnesess s 91
AQVANCEMENL........ccovicerrrererese s nennnnens 92
Unit DEVEIOPMENL ... e e 92
TESEPIANS ... nnn e 94
Iterative Development ... —————— 9
L0010 T T RS 94
Technical Review SUDCYCIEccoveeererernsernesesesesese s e sessssensnnens 94
Test-Driven Development (TDD).........ccvevrernnerensesesesessssesessesessesessssesessesessenens 95
True 10 ReQUIrEMENTScoevricircre e 95
INSPECLIONScveieie e e e 97
The Triad PrNCIPIEcoveeeereeerrere s sr e 101
Staffing for the Construction Stage..........cccocvrvrrinrnnnsnnes e 101
ESSential ROIEScccviverrieniiierse s 104
SUMMALIONeircerrcere e 104

viii

TABLE OF CONTENTS

Chapter 6: The Assembly Stage.......ccccrrrssmmnrrssssnnnnssssssnnsesssssnnnssssnnns 107
Service Assembly and System Integration Cyclescccooeerrverrierrescrencenens 108
SErVICE ASSEMDIY......ceceeeeer e 108

Continuous Integration (Cl), Continuous Delivery (CD), and

Al TRAL JAZZ... oo e 109
Disadvantages of Test Automationcccocecvvnininncnnnenn s 110
Roles and Responsibilities........c.cccovvrininiennnnine s sesennens 112
The Emerging Role of the DevOps ENgineercccucvievnsnsenienenensensennens 113
Systems of Record (SORs) and Systems of Engagement (SOE) 115
Test Data Management...........ccovcvninnnnnncne s 116
The AQIlE DBA ...ttt s 117
DevOps and the Database ... e 119
SUMMALION ..o 121

Chapter 7: The Evolution Stage..........cccccimmrrrmssssssnmmnnnnnnessssssssssssnnnnns 123

The Deployment CYCIEcccveeerrerrrenerene s s e sessssesssnens 124

Development of a Deployment Strategy.........ccocvverrrenrnsessnenesresesnsesenenens 125
The SUPPOIE CYCIEccererereer e 126
Specifically, the Activities of Support Include............ccoervervincnieninnnicnienne, 126
There Are a Number of Processes, Activities, and Practices That
Are Applicable to Software SUPPOM.........cccccvirirnrnrni e 127
About Software SUPPOI ... ———— 128
Having a Permanent Support Team Has Many Benefitsccccoeevvvniennens 129
Error COITECHIONcccevcereric et sn e nnen 130
Bureaucratic Impediments ..o 130
On the Difficulty of Correcting an Error During Supportcccvvvvvveniene. 132
Limited Understandingcocueevrenernnennennesessse s sessesessssessnses 135
The technical challenges can in large measure be addressed by............... 136
Forces for EVOIULION.......c..cocvvirienenersene s sessessesnens 137

ix

TABLE OF CONTENTS

LeNMAN’S LAWS.......cccoerierririnsse s s 138
DPAC Embraces Lehman’s Laws Completelyccoocvvrrerinrnsnienienensensenens 142
Model of the Software Support Life Cycle (SMLC)........cccvrvrerrerrererersersenaens 142
Version Staged MOGEL........ccueveverrrieriererensere e sessese e ssssesessessessssessessens 144
The Importance of “Tribal Knowledge™..........ccccvvvverininnnneninsensensessensenns 147
SUMMALION ... 148
Chapter 8: Risk Managementcccccnnmmmmmmmssssnnnmssssssssssssssssnsssssnns 149
General Mayhem ... e 149
Loss of Key Personnel: Missing a Window of Opportunityccccovenvenennnne. 150
Software Development Always Has a Political Dimension...........c.ccovrenerensenen. 151
Unrealistic Expectations. Lack of a Competent Project “Champion”................ 151
MiISSING MAN.......ccrieririrircere e e s e e a e e e e nne s 152
Keep Documentation Up-t0-Dateccccrvvnirininsnn e 153
Missing Tools: Loss of “Tribal Knowledge™..........c.cccrivvnnniriennsnsenienssensensenns 155
MiSSING OVEIVIBW........coveerereereee e se s 155
Lack of Quality Engineering Measures.........c.cucvrrenerenerensmsesesessssessssessssesessanes 156
Lack Of PrOPEr TOOIS.......ccuvererrenerrnesessesesssse s sessssesss e sessessssesessssessssessssssessenes 157
Overoptimistic Level of Effort........ccccovvrvriniennnnsnse s sesessesessessessens 158
“Man Month” Is a Unit of Cost, NOt Progress......cccuvvverrersererensensenseressssensessenes 158
No Tool Alone Will “Fix” Gaps in the Business Model.........c.ccccccevvrrierreccrnnne. 158
Learning What a Tool D0OES NOt DOcovreerericrerererese e 159
Lack of Appropriate SKillSccccurrinninininnsinine s ens 159
“Round Up the Usual Suspects!” (Claude Rains, Casablanca, 1942)........... 160
Boehm’s Risk Management-Driven Spiral Model..........ccucvvenrenernsesenenennnnes 162
Necessary EIBMENtS ...t 164
SUMMALION ... s 165

TABLE OF CONTENTS

Chapter 9: Engineering Software Quality.......cccocennrnssnnnnrssssnnnnnsssnnns 167
Software Quality Definedccccceereverrcerrerrr e 167
Meets the Needs 0f the USer ... 168

0] 11 S 168
Easy t0 Use (USEr-FHendly).........couuvrrerernnmrensesessssesssssesssssssssessssssesssssssssessenes 168
Easy t0 MaiNtainccccvvverninennesnessssse e s s ssanes 169
Software Quality ASSUrance (SQA)ccvvrrerrrrrrieresesserseresse s sesessesessesessens 171
0ngoing DoCUMENTALION........covverirere e e 172
Data Flow Diagram (DFD).........cccucrrrinnnncnesssinsese s sss e s s 174
Configuration Management (CM)cccoeeerrrncnnnenerese s 175
CIMIDBcttereeesee e ne et bbbttt 177
Change Reports (CRpts) and Discrepancy Reports (DRS).......ccocvvrvererensersersens 178
The Hardware Configuration Inventory (HWCI).........ccceovvrverevnnensenieneesensenennns 178

Change Control.........ccvevririrere s e 179
Status ACCOUNTINGccvevevierertrrerrere s re s s e saesae e snesne e s e naesnens 180
AUAIES .. 181
2] ST 183
Test-Driven Development (TDD)......cccuoueerenmrrnsesessesenesesessesessssesssessssesessssssssnens 183
PerfOrm TESE.....ccceeceeree st 185
Data-Related Quality ENQIiNEEriNG........ccververernrenserierssenserese s sessessesessesessens 185
(0041 0] 0 - T O 186
Measure TWICE CUt ONCE........ccceeerererrneeere e se e eas 187
Quality Engineering for Programming.........c.ccocucvvninnnnnnnneninnnsensenessssessessenns 187

1T L0 o 189

TABLE OF CONTENTS

Chapter 10: Final Remarksccccvusssemnmmssssssnsmsssssnssssssssssssssssssssssssnnns 191
TYPES Of SOTLWAIEcvreeerecrccc s 191
Types of Implementation...........ccccoovrininnnnr e ———— 192
DPAC ACHIVILY CYCIES ..cvvuererreerreerrssesessesesssse s sessese s sessese s sssesesssssssssessnnes 192
STAFFING .evereecese e —————————— 193
Tester and Programmer PAIrSccocvvvcerevnninsenienessssessese e sessessessessesessesseses 194
(0 0 195
Regarding Tools for Automated Testing..........cccoeevvririnnnsnrninsncnesr e 196
The Tool-Scape IS Changing.........cccevvnrrernnnnnenen e snes 197
NoO Silver Bullet (BrOOKS)cuourerrrsereseserrsnesessesessssssssssssssssssssessssesesssssssssessenes 198
Categories of ESSential TOOIScccccervvennenmnisesnse s s sens 199
Dr. Winston W. Royce vs. the “Waterfall”ccovvrrnnvniniennsnsenesessessensens 200

KUAOS......ceiiircere s 205
{0 T 11T (0] o O 205

Appendix A: Software Quality Defined..........cccennsemmnrnssnnnnnnsssnnnnnnns 207

Attributes of QUAIILYcceeercrrrr e 207
International Organization for Standardization (ISO)ccoceevrrerreccrnnne. 207

Appendix B: Summary of Standards, Guidelines, and

ProCeduresccossssemmsssnssssanssssanssssansssssnsssssnsssssnnssssnnssssnnsnssnnsnssnnssssns 217
Appendix C: Quality Engineering: By Area........cccuusssssmmesnnnssssssssssnnnns 223
Appendix D: Data Flow Diagrammingccccuseeesssssssssssssssssssssssssnnnns 227
Data FIOW Diagrams........c.cuccvrenernsmnrnensnssesssessssesssesssssssssssssessssessssessssssessenes 227
Y= 1 TR 230
Why Draw a Data FIow Diagramc.cccccvirvnneniensensennenessesssssessessesssesaesenns 231
A Fictitious Example (Reductio Ad Absurdum)........ccocevvvnireninnsnsenesensenenns 233
Our Goal Is to Improve Customer Service Regarding Claims Management234

xii

TABLE OF CONTENTS

Process Narrative (SyStem t0 BE)ccvvevvererinrensereresensesesesessessessessssessensenes 234
Data DiCtioNary ... 242
Resources by Categorycccummmsssssmsssnsesssnsssssnsssssnsssssnnssssnnssssansssas 245
Resources by Author...........ccccccnnnnmnnmnnnnnnmsnnmsssssssssssssssssssssssssssssssnnns 257
INA@X . iiiiiissnnnnnnnnnninssssssssnnnnnnnmsssssssssnnnnnnnssssssssssnnnnnnnsnsssssssnnnnnnnnnssssssnnn 267

xiii

About the Author

Robert F. Rose has provided services to both private and public sectors
including telecom and healthcare, NavAir, the Environmental Protection
Agency (EPA), and Housing and Urban Development (HUD). His
experience includes pioneering design and development of a warehouse
system for storing and analyzing medical records, design and development
of an early prototype logistics tracking system for the V22 Osprey, and
design and implementation of a complex enterprise-wide web-based
directory system. Among his accomplishments, he was Technical Project
Manager for the Presidential Commission’s Inquiry on the Challenger
Disaster. The DPAC model is the product of independent efforts both

in management and in preparation of the technical approach section

for various responses to requests for proposals (RFP). Now retired,
Robert has pulled together the sum of his experience with the process

of developing software into the DPAC framework. It is entirely original
work and not derived from other approaches. He can be contacted at
Robert.F.Rose.77@gmail.com

﻿Robert.F.Rose.77@gmail.com﻿

Author’s Preface

I should say from the outset, as of this writing, the DPAC model

has not been used in practice. This is a concept paper, applied to a
hypothetical example. That being said, I contend that the “Cycles of
Activity” represented in the DPAC paradigm are representative of human
activity in every information system development effort. DPAC makes

a clear separation between human activity and the progress of software
throughout the process.

While the model is entirely original, my interpretation of the cycles
has been informed by the long list of works contained in the Resources by
Category and Alpha Listings. I have included books only. There are only
a few articles cited in the book, most of them in Chapter 2. This belies the
very large number of articles that were reviewed to find the best of the best,
most relevant to the current discussion. Too many, in my opinion, to be
listed for productive assistance.

Regarding citations of materials found online, rather than using a
web address, which changes for a specific item even as we speak (so to
speak), I have cited “Google” which means Google the title to find the
item at its current location. Not only do web addresses change, but in
the current period companies are being gobbled up by other companies
such that entire .com addresses are changing. Every effort has been made
to contact the source of materials used herein - seeking permission for
use. Some have been unresponsive quite possibly due to the fog of a
merger. [apologize if I have given offense. Attribution has been provided
nonetheless.

xvii

AUTHOR’S PREFACE

In this interpretation, DPAC is a fully “shift left” model, taking current
trends to their “logical and absurd” conclusion. If nothing else, it should
have heuristic value, although I believe it has merit in and of itself.

I started building my technical library in 2012 and copyrighted the
DPAC model with the present Chapter 1 in 2015. My earliest versions of
the model stretch back to the mid-1990s. In the intervening years, my
library was built up following industry trends - an expensive endeavor at
best. I think we are now (2022) at a plateau where “stovepipe” thinking can
be reduced or eliminated. I hope DPAC will help turn our thinking about
software development around the corner.

I'would like to thank the folks at Apress - Jessica, Jim, and Shiva - for
stewarding the manuscript through the travails of creating a book and
for their patience with my occasional outbursts of panic as I leapt into
the unknown. And special thanks to my support group for their kindness
and encouragement over the years my “writing project” took to come
to fruition. Carolyn, Diane, Doran, Jim, Jolene, Pam, and Richard - you
helped more than you know.

xviii

Introduction

Intent and Purpose

The first computer I ever saw was playing Jingle Bells. It was 1958, on

the ground floor of the DuPont engineering building near Wilmington,
Delaware. The Univac computer was built around vacuum tubes and
solenoids that buzzed and hummed while computing. A group of
engineers, clearly making use of any free time, wrote a nonsense program
that matched the noises to Christmas carols. I was mesmerized.

My career in IT did not begin until a decade later in 1969 as a
FORTRAN programmer. I started building systems in 1976. My first system
was a small Management Information System (MIS) that was concluded
with great success. My second effort was a system an order of magnitude
more complex. After one flop at the start, it was completed but never
deployed - giving me a strong sense of project risk.

I started thinking about the process of developing software in the
1980s to respond to the technical approach section of various RFPs
(requests for proposals). The DPAC model has evolved from that process
through my direct participation over 35 years in six software development
projects. There was no direct influence from other models. DPAC reflects
my thinking since circa 1995; the DPAC model in its present form was
copyrighted in 2015.

Having also participated as a technical troubleshooter cleaning up
systems after the developers “left the building,” I experienced firsthand
that many issues in support are directly related to the quality of the
software development effort.

Xix

INTRODUCTION

The model described herein represents a continuum beginning with
inception into ongoing evolution. While retirement seems inevitable,

there are systems that are still going strong through decades of use. Legacy
systems may need to be enhanced to enjoy the delights of user-facing web

and mobile experiences.

Another thing the DPAC model is designed to address is the derivation

of functional requirements throughout the development process

beginning with a Vision Statement and continuing into the Support Cycle.

To that end, the cycles of activity in the DPAC model are represented as
recursive and re-entrant, nested contiguous ovals. Each activity cycle is
overlaid with an interpretation of the Deming quality control phases of
Plan, Do, Check, and Act (PDCA).

‘ Test / Review Mode

Analysis / Implementation Mo

Development Process Activity Cycles (DPAC)

< Check €*———

% Business Rule
Host Review
Organization = ,--————-\ SYSTEM
& SERVICE INTEGRATION
M ASSEMBLY ~ CYCLE
UNIT CYCLE \ DEPLOYHENT
VISION PROCESS DEVELOPHENT CYCLE SUPPORT
OVERVIEW CYCLE
STATEMENT CYCLE
=
=
=
Development |2
Team 4
&| Technical \““-‘_______V/
~ Review
0
g RETIREMENT
3 Pr— .
=
Plan ——» Do >
INCEPTION ELABORATION CONSTRUCTION ASSEMBELY EVOLUTION
© 2015, 2018 Ruberl F. Ruse
The DPAC Model

INTRODUCTION

The DPAC Model and Chapters at a Glance

A model, as used in this context, is a graphic representation of the
development processes. A tour through the DPAC model begins in
Chapter 1. The larger case for development to keep software support in
mind is presented in Chapter 2. Chapter 3 defines the Inception Stage,
while Chapters 4-7 are walk-throughs of the Elaboration, Construction,
Assembly, and Evolution Stages, respectively. Each of these chapters
begins with the model diagram at the top highlighting the part of the
model the chapter describes and where it fits in the overall process.

Chapter 8 presents a summary of personal experiences with risk.
Chapter 9 is a short exposition on Engineering Software Quality.
Chapter 10 contains Final Remarks.

Until now there has been no generalized model of the course of
activities over all the application life stages. The DPAC model brazenly
claims to fill that gap. In fact, I contend that it is the optimum model of
geometric efficiency. It also describes a singular path of development,
including recursive flows.

DPAC does for agile what Waterfall does for traditional
methods of development.

The Tower of Babel

5 But the LORD came down to see the city and the tower that
the men were building. 6 The LORD said, “If as one people
speaking the same language they have begun to do this, then
nothing they plan to do will be impossible for them. 7 Come,
let us go down and confuse their language so they will not
understand each other.”

Gen 11:5-7

New International Version

INTRODUCTION

Vocabulary informs our view of reality.

As used herein, the term “User Acceptance-Driven Development
(UADD)” is a superset of specification by example, behavior-driven
development (BDD), and acceptance test-driven development (ATDD).
Each of these methods has one thing in common. They are all dependent
upon agreement by the user that the subject of analysis is covered. They
all can use the triad approach of developer, tester, and client to achieve
those objectives (collaborative development). UADD contends that it is
user feedback that drives the development effort. Test-driven development
(TDD) and refactoring are techniques used to reduce error and produce
clean code.

Where, please, will the miracle occur?

The odds are low that the needs of the user will be satisfied by a single
meeting - no matter how long it may take, it is more likely than not that the
process of Plan, Do, Test, and Review will require more than one pass. This
is to say that the “little gray cells” need time to marinate on the problem.
The problem of meeting the needs of the user continues through the Unit
Development Cycle, Service Assembly, System Integration, and User
Acceptance Test (UAT) just before the system is deployed.

The lack of a consistent terminology creates, to some degree, a
waste of energy.

In writing this book, one of the things I want to accomplish is to use
a consistent vocabulary for describing a cyclical, iterative process. The
DPAC model begins with the concept of Stages. Within each Stage are one
or more cycles of activity. A Cycle is composed of phases, and a phase
may have more than one part. “Step” can be used colloquially for any
succeeding element.

xxii

INTRODUCTION

QE, QA, CM, and Test

There are a number of issues regarding vocabulary rooted deeply into

the thinking and practice of development. The first is to disambiguate
Software Quality Assurance (SQA) from test. Software Quality Assurance
in the domain of Quality Engineering (QE) is the maintenance of a desired
level of quality in a service or product, especially by means of attention to
every stage of the process of delivery and production. In the QE paradigm,
“Test” is an element of quality control (see breakout, SWEBOK v. 3, and
relevant ISO standards).

Software Quality Assurance (SQA) officers play a crucial role. The
most important of the Process QA tasks is to assure the integrity of the
traceability matrix by ensuring that work products are visible, traceable,
and accountable - including audits - and that standards are met.

Use of the Term “Quality Assurance” in the Pri-
vate and Public Sectors

All this is muddied by the difference in the use of the term Quality
Assurance (QA) between the private and public sectors. Many

federal agencies (e.g., Department of Defense (DoD), Small Business
Administration (SBA), NASA) as well as guidance from the General
Services Administration (GSA), Office of Management and Budget (OPM),
and Federal Acquisition Requirements (FAR) require a separate SQA
function.

Similarly, state (e.g., NV, CA, IA) and local governments may be obliged
to use the term QA for monitoring of the entire development process.
Private sector entities, on the other hand, which tend to be focused on the
Support Activity Cycle, may have a “QA Department” (meaning test) and
no dedicated Quality Engineering function.

xxiii

INTRODUCTION

Herein after, I will use Software Quality Assurance (SQA) to represent
Process Quality Control and will avoid the use of the term QA as a
synonym for test.

Configuration Management

Another clarification in thinking is to disabuse the notion that
configuration management (CM) is only about code version control. CM
applies to control of each class of work products from the evolution of
requirements, tracing test scripts, a traceability matrix, to maintenance
of “lookup” tables such as a personnel roster or task list. It is governed by
the “rule of immutability” - whereby each version of each work product
is regarded as unique and is stored accordingly. In most efforts, however,
code version control is under the supervision of the technical team.

Use of the Term “Service”

I have borrowed the term “service” to indicate a complete and
independent component of code. “Service” implies function, while the
term “module” is used from the perspective of the programmer. A service
may comprise one or more units of code where a unit is the smallest stand-
alone system component. For example, a web-based ecommerce site
might include (at least) four services: (1) catalog, (2) cart management, (3)
checkout, and (4) customer.

(The term “service” in this regard from Max Martynov and Kirill
Evstigneev, Continuous Delivery Blueprint, Grid Dynamics, np 2017-2018)

XXiv

INTRODUCTION

Units, Components, Services, and Systems

A unit is the smallest piece of stand-alone code. A component comprises
one or more units of code as a stand-alone generally with a GUI (graphical
user interface). One or more components comprise a service, and one or
more services comprise a system. All changes take place at the unit level
of code.

Systems of Record vs. Systems of Engagement

There is a significant difference between a System of Record (SOR) such
as a Management Information System (MIS) and a System of Engagement
(SOE) such as a mobile phone application. A SOR is developed from the
inside out, where requirements are unknown or only sparsely defined up
front, resulting in a set of user interfaces (or screens). A SOE is developed
(or should be developed) from the outside in, where the user interface is
described up front and the SOR to support it is defined therefrom. DPAC
as applied to the example used herein is for a System of Record. A System
of Engagement may be served by a data structure supplementing the
System of Record, or, for security purposes, may be isolated as a separate
system with available data updated from the SOR accessible to the SOE
on a periodic (even hourly) basis. Keep SOR data for the SOE separate
from the LAN and intranet. The mobile app will want to retrieve current
billing information. The SOE would have the means for the user to pay the

current bill.

INTRODUCTION

Qual

XxXVi

ity Assurance, Quality Gontrol, and Test. What’s the Difference?

June 23, 2016 - Blog Post - Functionize.com (Google)

Organizations throw around terms quite a bit and sometimes
interchangeably, even if they aren’t really synonymous. A
prime example of this is with such terms like Quality Assurance
(QA), Quality Control (QC) and Testing. Though they're
closely related, they are, ultimately, different.

If you work in the IT industry, you've probably come across
them. You've also probably noticed that many executives -
and customers - don’t understand the difference between these
terms. They most likely go as far as referring to them as the
same processes, which they’re definitely not. Let’s figure out
the difference.

Quality assurance is process oriented. It is all about prevent-
ing defects by ensuring the processes used to manage and cre-
atedeliverables works. Not only does it work, but is consistently
followed by the team. Moreover, QA is about engineering pro-
cesses that assure quality is achieved in an effective and effi-
cient way.

For instance, if a defect is found and fixed, there is no guaran-
teeing it won't pop back up. The role of QA is to identify the
process that allowed the error to occur and re-engineer the sys-
tem so that these defects won't appear for the second time. The
QA process verifies that the product will continue to function
as the customer expects.

Though QC is absolutely necessary, QA is perhaps more
important. By the time you reach the QC stage, for instance,
fixing bugs becomes an expensive issue. Because of that, focus-
ing efforts on improved QA processes is one of the best invest-
ments an organization can make.

Examples of QA include process definition and implementa-
tion, training, audits and selection of tools.

INTRODUCTION

Quality control, alternatively, is product oriented. It is the func-
tion of software quality that determines the ending result is what
was expected. Whereas QA is proactive, QC is reactive. QC detects
bugs by inspecting and testing the product. This involves check-
ing the product against a predetermined set of requirements and
validating that the product meets those requirements.

Examples of QC include technical reviews, software testing
and code inspections.

Testing is a subset of QC. It is the process of executing a system
in order to detect bugs in the product so that they get fixed.
Testing is an integral part of QC as it helps demonstrate that
the product runs the way it is expected and designed for.

To summarize, think of everything as an assembly line. QA can
be thought of as the process to ensure the assembly line actually
works, while QC is when the products coming off the assembly
line are checked to verify they meet the required specifications.

Ultimately, both QA and QC are required for ensuring a suc-
cessful product. When used together, they can help detect inef-
ficient processes and identify bugs in the product. Moreover,
QA and QC can help to develop and deliver a consistently
high-quality product to your customers.

Evolution vs. “Production”

The term “production” is another carryover from the manufacture of
“things” to “software” development efforts. It belies the true nature of
software development as a process of evolving requirements to meet a set
of generally defined objectives. “Turnover to Production” or “Transition to
Production” largely set the view that software is delivered in a complete and
final form. As anyone with experience in “Maintenance” is aware, this could
not be farther from the truth - if only to complete system parts that were left
unfinished by the development team. DPAC labels this “Stage 5. Evolution.”

XxXVii

INTRODUCTION

Support vs. “Maintenance”

One performs maintenance on a car to restore it to its original condition.
One supports the evolution of software. “Maintenance” is yet another
carryover from the manufacture of things.

The DPAC model recognizes software as an organic medium providing
a conduit for the processing and transformation of information. The
Evolution Stage is the same as the initial development stages except in
slow motion as the system continues to evolve. Requirements morph into
additional requirements and/or changes or additions to basic business
rules. Again as used herein, the Support Activity Cycle includes software
support (including evolutionary changes), operations (providing support
and provisioning for hardware, LAN, configuration, and access to the
system), and Database Administration (DBA).

Scrum is defined by Scrum.org as “a framework within which people
can address complex adaptive problems, while productively and creatively
delivering products of the highest possible value.” DPAC is an alternative
“framework,” although Chapter 5 may be used to explain what goes on
inside a “Sprint”

The “Application Life Cycle”

I have a problem with the term “application life cycle,” with phases, instead
of a linear model with “stages.” It's not really like we are going to start all
over again on the same ground. Lay the progress line flat. It's about one
system, not many. If the “application life cycle” does mean anything, it
means that the first one flopped so hard that another contractor was called
in to finish the job. And one after that, and one after that... ad nauseam
until somebody declares the project “Dead” and pulls the fiduciary plug.
So much for the Cycled Life of the Application.

xxviii

INTRODUCTION

Interestingly enough, the activities that emerged from each Activity
Cycle mostly “fell out” of the model as I have described them herein
(Chapters 3-7, the stages respectively). It may well be that the “tasks” to
which the model must respond define the most efficient course of the
activities of the developers of the system.

The Software Development Industry

DPAC proposes a different world view of software development activities
from that of the “Software Development Industry.” The System Development
Life Cycle (SDLC), a competing model, faces the same demise as the
“application life cycle,” that is, you do it over, and over, and over...” etc.

The SDLC model has, however, spawned a legion of serial “software
developers.” That is the essence of build/fail, build/fail, until either you
get it right or the Contracting Officer advises the Budget Director, and
funds are pulled from the project. Then as someone said on a failed federal
contract - “You don’t think the Government is going to take the blame for
this, do you?” And another contractor bites the dust.

The DPAC Model

I have picked up bits and pieces from a long list of “resources,” a set of
techniques from literature on the subject, and influences from the various
agile methods and methodologies. But it was ultimately the DPAC model
that has emerged from decades thinking about the process of developing
software that changed my own “world view” of the development process. It
is different in three ways:

(1) The moderation of words and references
emanating from the “production of things”

(2) The recognition that systems evolve, and software
support services need to support that activity

XXix

INTRODUCTION

(3) The DPAC model itself - which I posit as
the most efficient geometric representation,
including recursion, through the “software
development” maze

DPAC is a conceptual framework on which one can “hang the
ornaments,” that is, the techniques, methods, and procedures appropriate
to each stage or activity cycle of the model.

As interpreted herein, DPAC depends on inspections, exercised
in the Act Phase of the PDCA quality model, that cogent internal
documentation - in stream comments - exists. (Trust but verify.) The
external documentation comprises adherence to standards, guidelines,
and procedures which have the secondary importance of having a new
person come up to speed faster than without them.

All the rest is “tribal knowledge,” which can verbally tie up two people
in conversation to bring a new person up to speed. Put the standards
and procedures up on Wiki accessible to all. Demand that procedures
known only to developers by tribal knowledge be written down where it is
accessible to all. These are responses to risk mitigation, especially the loss
of a key person. See my experience with this matter in Chapter 9. “How do
I file a Change Report (CRpt)?” without a written procedure is a question
that could tie up two or more persons’ time. The “standard” need be no
longer than a few sentences: “Hand it to the Configuration Manager who
will log it in and turn it over to the Project Manager for evaluation. Expect a
response within two days.”

To be sure, the DPAC model is informed by my participation as the
Software Quality Assurance (SQA) officer, on a 50-55 person development
effort. Scrum thrives on a considerably smaller scale. But DPAC can also
work in smaller schemes such as several agile teams of about nine persons
each assigned to a specific service, but each following the methodology
suggested by the DPAC model. (See definition of a service above.) The
model can be iterated to accommodate larger projects.

INTRODUCTION

Developers vs. Support Personnel

Finally, software support personnel make poor developers. Development
is raising something from scratch and needs several specialized
skills - an architect, programmers, business analysts, and testers. Support,
on the other hand, builds “add-ons” like building a sun porch to an
existing structure. Something new to support might be the addition of a
Configuration Management Database (CMDB) to support a help desk, or a
new service: “inventory.” And developers make terrible support personnel.
Support is not the thrill of making something out of nothing other than of
the intent of the users.

I believe that the DPAC model, taken as a framework for developing
software, resolves the dissonances that cost time figuring out which way
to go. The interpretation of DPAC presented herein takes a Lean-Agile
Collaborative Development approach to these issues; test is built into each
activity cycle as part of the Check Phase of PDCA as is Review with User. So
that’s the broad description, but

From such crooked wood as that which man is made of,
nothing straight can be fashioned.

—Immanuel Kant

INTRODUCTION

All that being said:
Onward through the fog...

XxXXii

