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xv

Foreword

Contrary to popular myth, models are not new to systems engineering. Mod-
els are the way engineers analyze both problems and solutions, so systems
models are as old as systems engineering itself. With the traditional focus on
written specifications as the “source of truth,” models were secondary and
descriptive – sometimes reflected as simple sketches, sometimes shown in formal
diagrams, partially captured in analysis packages, and often trapped in the
mind of the chief engineer. The transformation of systems engineering from
document-centric to model-centric practices is not about the introduction of
models. It is about making models explicit and moving them to the foreground
where they serve as the authoritative tool for design, analysis, communication,
and system specification.

Organizations today are investing heavily in representations, standards, method-
ologies, and technologies to transform the practice of systems engineering through
model-driven paradigms. To manage the complexity of today’s problems; to keep
pace with today’s rapidly evolving technologies; to capture the required knowl-
edge regarding the problem, solution, and rationale; to respond effectively to
change – all require that systems engineering join the other engineering dis-
ciplines in moving beyond document-centric techniques and embracing the
power of a model-based foundation. With energy and focus over the last 10
years has come notable progress. The industry has advanced in the area of
representations with the development of SysML as a standardized set of diagrams
to complement traditional systems representations. Numerous books – including
a frequently-cited guide by Tim Weilkiens – explain the details of using this
notation to capture and communicate system designs to improve explicitness
and alignment within the systems team. Alongside these representations have
emerged countless standards and frameworks to help engineering teams develop
high fidelity models reflecting key systems dimensions.

However, for all the industry discussion regarding SysML, representations,
standards, and tools, there remains a great deal of confusion. Understanding
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xvi Foreword

SysML notation and drawing SysML diagrams do not equate to doing model-based
systems engineering. Nor is the use of disjoint models and simulation in systems
engineering equivalent to integrated model-based systems engineering.

Effectively moving forward with the transition to model-centric techniques
requires that we step back to understand the bigger picture. Diagrams and other
representations do not live in isolation but are interrelated and overlapping,
communicating key aspects of the system model from specific viewpoints. System
architecture and detailed analytical models are not disjoint, nor is there a single
grand unified model to capture all dimensions of interest for all systems problems.
To move forward, we must embrace the holistic systems perspective and apply
it to model-based systems engineering, seeking out the interrelationships and
developing a robust toolbox of supporting practices.

In this book, Tim Weilkiens, Jesko Lamm, Stephan Roth, and Markus Walker
broaden our vision and expose us to a rich set of perspectives, processes, and
methods so that we can develop an effective unified framework for model-based
systems architecture. Building upon the existing industry library of textbooks on
SysML, this book looks beyond representation to address models, viewpoints, and
views as part of a modern approach addressing requirements, behavior, architec-
ture, and more. It connects to a larger framework of processes, methods, and tools
key to enabling model-centric practices. And it looks beyond the technical space
to the critical cultural dimensions, because the transformation to model-centric
techniques is far less a technical challenge than one of organizational change.
Addressing the broader framework, Tim, Jesko, Stephan, and Markus bring
model-centric practices together to help practitioners develop cohesive system
architectures – our one chance in the life of a program to manage complexity,
develop resilience, and design in critical concerns such as system security.

There is no doubt that the future of systems engineering is model-based.
Document-centric techniques simply are not enough as we grapple with the
challenges of today and tomorrow. Those practitioners and organizations who
are early adopters in developing a cohesive model-centric framework of pro-
cesses, methods, and tools will certainly be at a competitive advantage – whether
producing products themselves or delivering systems services for others. If, as
a profession, we can transform from document-centric to model-based systems
engineering and do so with the vision of enabling model-based engineering, we
can help transform the larger product lifecycle delivering radical improvements
in quality, cost, and time-to-market for the benefit of all.

June 2015 David Long
President, Vitech Corporation
INCOSE President (2014 and 2015)
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xvii

Preface

Reacting to market needs on time with systems of high quality and marketable
costs is a strong competitive advantage. Once a market need has been identified,
multiple disciplines are involved in developing a system toward it. They need to
collaborate closely and each according to a precise understanding of the own con-
tribution to the system development. Effective communication and the creation of
understanding for the whole system-of-interest are keys for the success. Organiza-
tions are facing a more and more dynamic environment and, at the same time, an
increasing organizational complexity of distributed teams and stakeholders and
an increasing technical complexity of more heterogeneous relationships between
system components and their environment. This context requests an explicit and
sustainable system architecture.

Each of the engineering disciplines contributing to system development needs
specific views for obtaining the needed insight. System models enable the creation
of consistent sets of stakeholder-specific views. People using them gain a fast and
comprehensible understanding of the system they are developing, which can help
them choose appropriate solutions for fulfilling the market needs. All the views
look at the same data baseline. There is no effort to consolidate redundant data or
to clarify misunderstandings of inconsistent information and the costs of resulted
errors.

A system architect needs to shape the system architecture well for realizing a
successful system. Multiple tasks have to be carried out, each using an effective
approach. This book provides a toolbox for the architects for their daily challenges.
The scope of the book is a model-based environment, that is either already estab-
lished and running or planned. The book explains how to use the SysML modeling
language in obtaining model-based architecture descriptions. Nevertheless, the
concepts are independent of SysML and could also be performed with other mod-
eling languages.
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xviii Preface

This book is about people, models, and better products, based on our belief that
model-based systems architecting produces better products by creating communi-
cation and insight for people involved in system development. The book presents
a collection of methods and approaches, which we see as ingredients for getting
the system architecture work done successfully. We present model-based systems
architecting, which we see as a required backbone for excellent system architec-
ture work together with the stakeholders. We will show that involving the stake-
holders means much more than running through a formalized review process.

A fundamental principle in system architecture is simplification. Without sim-
ple concepts to be communicated to the stakeholders, the system architect will not
be understood and thus will fail. We advise you, dear reader, to adopt the principle
of simplification and apply it to the multitude of approaches presented in the book.
Feel free only to choose the most suitable approaches for your daily work and dis-
regard the others until you are in a situation where they turn out to be the useful
ones. The book is a well-stocked toolbox and not a rigid all-or-nothing process for
system architects.

Our experience tells us that each organization will have a different focus area
and will need different approaches. This is why we have bundled a variety of
approaches we have observed being applied successfully in the industry, in the
hope that you will find some pieces of information that are suitable exactly to
your current activities. We have selected those approaches, which we find easy to
apply in daily work and which are important for common model-based system
architectures. We do not claim to provide a complete set. Every system architect
loves to go to a hardware store to extend her toolbox. And from time to time she
has to discard one of her tools when it is no longer appropriate.

The book addresses system architects and their managers as well as engineers
who are involved or interested in systems architecting. It is the first compre-
hensive book that combines the emergent discipline systems architecting with
model-based approaches with SysML and puts together puzzle pieces to a
complete picture. Highlighted puzzle pieces are:
● functional architectures and the Functional Architecture for Systems (FAS)

method by Lamm and Weilkiens to derive the architecture from common-use
case analysis

● the integration of the concept of layered architectures from the software disci-
pline in the context of system architectures

● the modeling of system variants
● the whole picture of different architecture kinds like functional, logical, and

product architectures and their relationships
● a brief description of SysML and
● a summary of the history of the V-model and recent thinking about it in the

appendix
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Preface xix

As a typical reader of this book, you may have no time to read all chapters in
sequential order. Therefore, we have made the chapters as independent from
each other as we could, in order to enable you to read them individually or out
of a dedicated sequence when you like inspiration about a certain topic. You
can find an on-demand reference about particular topics and get inspiration for
directly using the presented approaches in your daily business. The topics are
demonstrated using a fictitious robot-based solution for virtual exhibition or
other robot-based telepresence tours as an example system.

We like to write texts using gender-fair language. On the other hand, we avoid
cluttering the flow of reading by using always both genders in the same sentence.
Therefore, we have only used one gender where it was not appropriate to use
gender-neutral language. Feel free to replace “he” by “she” and “she” by “he” or
whatever is appropriate.

We like to thank the “FAS” and “MkS” working groups of GfSE, German chapter
of INCOSE, as well as the “Viewpoints” working group of the same chapter in
collaboration with Swiss Society for Systems Engineering (SSSE), Swiss chapter
of INCOSE. The work in these groups has provided us with new ideas that can
now be found in this book. We thank NoMagic for their support in working with
the Cameo tool family that we used to create the SysML models and diagrams we
used in multiple chapters of this book. We also thank Erik Solda for allowing us to
use the robot example, Martin Ruch for contributing ideas about the assessment
of organizational interfaces, and all the colleagues at work who have influenced
our way of thinking, helped us with foreign languages in both reading and writing
or recommended literature and web links that are today part of the foundations of
this book. We furthermore thank numerous people who provided us with advice
after we had shown or explained them little fragments of this book to listen to a
second opinion.

We like to thank all the supporters of MBSE who believe that MBSE enables the
successful development of complex systems – in particular, David Long, who is a
great expert of MBSE from the very beginning and has written the foreword.

Finally, we like to thank Brett Kurzman, editor at Wiley, Alex Castro, Kathleen
Pagliaro, Bhargavi Natarajan, Sarah Lemore, and Viniprammia Premkumar for
their support with the first and second editions of this book.

September 2021 Tim Weilkiens, Jesko G. Lamm, Stephan Roth, Markus Walker
Contributors: Matthias Dänzer, Oliver C. Eichmann,
Ralf God, Michael Leute, Sylvia Melzer
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About the Companion Website

This book is accompanied by a companion website:

www.mbse-architecture.com

The website includes:
● High resolution version of all the figures in the book.
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1

1

Introduction

Model-based system architecture (MBSA) combines the two key technologies
model-based and systems architecting. Both are major parts of the future state of
systems engineering [123].

Many systems result from a evolutionary development. They are driven by their
parts and do not emerge from the architecture. The parts could be anything that,
in combination, is assembled to a human-made purposeful system. System archi-
tecture is followed by a complete system. Often system architecture is referred
to the architecture from the perspective of a software architecture in combina-
tion with the hardware or the architecture of software-intensive systems [43]. We
understand system architecture more holistic and also consider systems without
any software, even though systems without any software, are rarely handled with
systems engineering processes and MBSA concepts like described in this book. A
system architecture is always present. In today and future systems engineering, it
is crucial to apply explicit systems architecting for the success of the system project
[123]. Chapter 5 defines the term “system architecture” within its context.

Studies clearly show that systems architecting is critical for the performance
and success of the system [68]. This is particularly evident for projects that require
significant architectural work or rework. Due to more and more dynamic and
complex markets and environments, the system architecture must more and more
support the changing requirements and requests for radical changes. Chapter 3
lists the benefits of systems architecting.

A system architecture is about establishing solutions that are in line with the
directions that guide the organization and checked for feasibility by the corre-
sponding experts, about designing interfaces that are agreed from both sides, and
about ensuring that the people who should know the architecture of a system have
a common understanding of it. MBSA uses models for enabling the creation of
healthy communication around the architecture of the system and for ensuring
that the architecture is validated from different points of view. Models are a key

Model-Based System Architecture, Second Edition. Tim Weilkiens, Jesko G. Lamm,
Stephan Roth, and Markus Walker.
© 2022 John Wiley & Sons, Inc. Published 2022 by John Wiley & Sons, Inc.
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tool to be capable of developing complex systems on time and in a feasible quality.
Chapter 6 defines the term “model” and MBSA and discusses related terms.

Models are more than graphics. There are even models without any graphical
representations. Just the graphics is not modeling but drawing. To create a model,
you need the concrete syntax, the abstract syntax, and the semantics, which you
find in a modeling language. We use the international standard Systems Modeling
Language (SysML) as a language for the system requirements and architecture
models. Appendix A gives an overview about SysML, including an outlook on
the next-generation modeling language SysML v2. Although we extensively use
SysML in this book, our methods and concepts are independent of SysML and
could also be implemented by any other modeling language.

The system architect is the one in charge of shaping the system architecture.
This is a big responsibility and a big challenge. Organizations developing systems
should carefully select people who are allowed to architect the system – and these
people’s work results will be tightly monitored by stakeholders everywhere in the
organization. Chapter 22 describes how systems architecting could be embedded
in an organization, and Chapter 12 discusses the interfaces to the stakeholders of
systems architecting. In particular, Chapter 10 introduces the adjacent discipline
requirements engineering that closely collaborates with the systems architecting.
The SYSMOD zigzag pattern presented in Chapter 9 shows the relationship
between requirements and architecture and clearly demonstrates the need for
a close collaboration. Artifacts of the model-based requirements and use case
analysis are important inputs for the system architects, especially to elaborate a
functional architecture using the so-called Functional Architectures for Systems
(FAS) method.

Chapter 17 is a comprehensive presentation of the FAS method. Functional
architectures are built of functions only and are independent of the physical
components that implement the functions. The functional architecture is more
stable than a physical architecture that depends on the frequently changing
technologies. The architecture principle to separate stable from unstable parts is
covered in Chapter 9 about architecture patterns and principles.

Besides the functional architecture, we define and discuss further system
architecture kinds. The base architecture that fixes the preset technologies and
adjusts the scope for innovation, the logical architecture that specifies the tech-
nical concepts and principles, and the product architecture that finally specifies
the concrete system. All three architecture kinds are physical architectures. The
layered architecture is an additional aspect to these architecture kinds and is
presented in Chapter 11.

Another additional aspect is the modeling of variants. Variability is increasingly
important. The markets are no longer satisfied by commodity products. The
market requests customized products that fit personal demands of the customers.
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Additionally, global markets with different local environments and policies
require different configurations of a system. Chapter 18 presents a model-based
concept to specify different product configurations and gives a brief introduction
to model-based product line engineering (MBPLE).

The architecture concepts are presented with a consistent example system.
The “Virtual Tour” system (VT system) provides virtual visits by driving with
camera-equipped robots through a real exhibition. The system is easy to under-
stand and, at the same time, sufficiently complex to demonstrate the systems
architecting concepts. The VT system is also part of a rescue and observation
system to illustrate a system of systems and cyber-physical systems. The systems
are introduced in Chapter 2.

The system architect who thinks that his job is to make a diagram and save it
on a shared network drive will most probably fail. Same for the system architects
who think they are the bosses of the development staff and can instruct the other
engineers. It is neither an archaeological job nor a chief instructor job. Systems
architecting is collaborative work that requires communication and soft skills. A
basis for a good communication is a common language and media to transport the
information. Chapter 8 covers the artifacts of the architecture documentations.
In Chapter 19, we extend our scope to system of systems and architecture frame-
works.

Typically, engineers are focused on the technology challenges of their job. As
mentioned, communication and more general soft skills are getting more and
more important capabilities. The engineering disciplines are growing together.
For instance, that could be seen by the modern discipline mechatronic. And the
worldwide humankind is growing together due to the internet other commu-
nication and transportation technologies. In consequence, an engineer has an
increasing number of communication relationships. She is no longer successful
when she only manages her technology tasks. It is also important to collaborate
well with team members, stakeholders, communities, and so on. Chapter 23 gives
an introduction about soft skills for engineers.
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An Example: The Scalable Observation and Rescue System

We need an example system for the demonstration of various techniques to be
presented in this book. The example shall be based on one single system with one
single purpose, but extensible to be explored in scenarios involving the interac-
tion of multiple systems for a purpose different from the one of the original single
system.

Our single-purpose system is based on the very old idea of telepresence robots
(e.g. [249]). The concrete system was inspired by an organization called “The
Workers.” They created a robot system that is called “After Dark” [36], because it is
intended to be operated at night, when it is dark – and when almost any museum
in town is closed. The system comprises robots that are driving through a closed
museum. They carry a lamp to shed light and a camera to capture pictures. When
sending the captured pictures to a remote user, the resulting offering is a virtual
museum tour (VMT). The described system was demonstrated on 23 August 2014
[139]: After Dark’s robots were driving through the gallery “Tate Britain”, and
people worldwide could watch the streamed camera images. A similar virtual
museum tour offering based on a robot was started in The Mob Museum, Las
Vegas, in 2016 [258], and the same technology was at least considered for several
art museums [41].

Inspired by these systems, we present the “Virtual Museum Tour system”
(VMT). Its central subsystem will be a robot as shown in Figure 2.1, intended for
realizing a remote user’s telepresence in a museum. The presented robot is based
on some really existing prototype that was created many years ago during a leisure
activity by two students (Erik Solda and Jesko G. Lamm) at Aachen university,
Germany. To get back from this historic robot prototype to the example system
considered here, please imagine the shown fictitious museum tour robot to be an
industrial product with today’s technologies onboard: It will use latest artificial
intelligence (AI) to be able to navigate autonomously in a museum. But of course
the system also comprises servers to control such robots, cloud services to offer

Model-Based System Architecture, Second Edition. Tim Weilkiens, Jesko G. Lamm,
Stephan Roth, and Markus Walker.
© 2022 John Wiley & Sons, Inc. Published 2022 by John Wiley & Sons, Inc.
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Figure 2.1 The museum tour
robot.

onboarding to people worldwide, and apps for mobile devices to schedule virtual
museum tours and watch the corresponding video streams.

A storyboard [152] in Figure 2.2 explains the system’s main use case: Currently,
John is controlling a museum robot to drive it through a museum of arts. He has
to write a report about modern art as a homework for school, and he has not had
time to go to the museum during its opening hours. John types “Andy Warhol” on
his smartphone and the robot starts driving to the pop arts division of the museum.
Once there, it stops in the middle of a room. John now selects a painting showing a
soup can. The robot moves toward the painting and stops in front of it. The camera
on the robot now transmits a picture of the painting to John’s smartphone. A little
notification box on the smartphone displays the title of the painting. John needs to
analyze the artist’s way of working in more detail. Via commands entered on his
smartphone, he moves the camera down. Then, he zooms in on a particular area
of the painting. Now he can see the necessary details via the video stream on his
smartphone. This enables John to complete his homework for school.

Unlike the initially mentioned systems at Tate Britain and The Mob Museum,
our own example system is purely fictitious and also the extensions to be presented


