




�

� �

�

Model-Based System Architecture



�

� �

�

WILEY SERIES IN SYSTEMS ENGINEERING
AND MANAGEMENT

William Rouse, Series Editor
Andrew P. Sage, Founding Editor

A complete list of the titles in this series appears at the end of this volume.



�

� �

�

Model-Based System Architecture

Second Edition

Tim Weilkiens
Hamburg, Germany

Jesko G. Lamm
Bern, Switzerland

Stephan Roth
Hamburg, Germany

Markus Walker
Ziefen, Switzerland



�

� �

�

This edition first published 2022
© 2022 John Wiley & Sons, Inc.

Edition History
John Wiley & Sons (1e, 2015)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by law. Advice on how to obtain permission to reuse material
from this title is available at http://www.wiley.com/go/permissions.

The right of Tim Weilkiens, Jesko G. Lamm, Stephan Roth, and Markus Walker to be identified
as the authors of this work has been asserted in accordance with law.

Registered Office
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley
products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some
content that appears in standard print versions of this book may not be available in other
formats.

Limit of Liability/Disclaimer of Warranty
In view of ongoing research, equipment modifications, changes in governmental regulations,
and the constant flow of information relating to the use of medicines, equipment, and devices,
the reader is urged to review and evaluate the information provided in the package insert or
instructions for each medicine, equipment, or device for, among other things, any changes in the
instructions or indication of usage and for added warnings and precautions. While the publisher
and authors have used their best efforts in preparing this work, they make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and
specifically disclaim all warranties, including without limitation any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by
sales representatives, written sales materials or promotional statements for this work. The fact
that an organization, website, or product is referred to in this work as a citation and/or potential
source of further information does not mean that the publisher and authors endorse the
information or services the organization, website, or product may provide or recommendations
it may make. This work is sold with the understanding that the publisher is not engaged in
rendering professional services. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a specialist where appropriate. Further, readers
should be aware that websites listed in this work may have changed or disappeared between
when this work was written and when it is read. Neither the publisher nor authors shall be
liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data applied for:
ISBN: 9781119746652

Cover Design: Wiley
Cover Image: © Ivan Bajic/Getty Images

Set in 9.5/12.5pt STIXTwoText by Straive, Chennai, India

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/permissions
http://www.wiley.com


�

� �

�

v

Contents

Foreword xv
Preface xvii
About the Companion Website xxi

1 Introduction 1

2 An Example: The Scalable Observation and Rescue
System 5

3 Better Products – The Value of Systems Architecting 9
3.1 The Share of Systems Architecting in Making Better Products 9
3.2 Benefits that can be Achieved 10
3.2.1 Benefit for the Customer 10
3.2.2 Benefit for the Organization 12
3.3 Benefits that can be Communicated Inside the Organization 14
3.4 Beneficial Elements of Systems Architecting 15
3.5 Benefits of Model-Based Systems Architecting 16

4 Systems, Systems of Systems, and Cyber-Physical
Systems 17

4.1 Definition of “System” 17
4.1.1 System Elements 19
4.1.2 System Context 20
4.1.3 System Characteristics 21
4.1.4 Purpose 22
4.1.5 System Evolution 23
4.2 Definition of “System of Systems” 23
4.3 Definition of “Cyber-Physical System” 26
4.4 Composition of a “Cyber-Physical System of Systems” 27



�

� �

�

vi Contents

5 Definition of System Architecture 31
5.1 What Is Architecture? – Discussion of Some Existing Definitions 31
5.2 Relations Between Concepts of “System,” “Architecture,” and

“Architecture Description” 33
5.3 Definition of “Architecture” 35
5.3.1 Interactions 36
5.3.2 Principles 37
5.3.3 Architecture Decisions 37
5.4 Functional and Physical Architecture 37
5.5 Taxonomy of Physical Architectures 39
5.5.1 Logical Architecture 40
5.5.2 Product Architecture 41
5.5.3 Base Architecture 41
5.6 Architecture Landscape for Systems 41
5.6.1 System Architecture 42
5.6.2 System Design 43
5.6.3 Discipline-Specific Architecture and Design 44

6 Model-Based Systems Architecting 45

7 Model Governance 51
7.1 Overview 51
7.2 Model Governance in Practice 52

8 Architecture Description 57
8.1 Architecture Descriptions for Stakeholders 58
8.2 Definition of “Architecture Description” 60
8.2.1 Architecture Viewpoints 62
8.2.2 Architecture Views 65
8.2.3 Architecture Decisions 67
8.2.4 Architecture Rationales 69
8.3 How to Get Architecture Descriptions? 69
8.3.1 Model-Based Vision 69
8.3.2 Forms and Templates 71

9 Architecture Patterns and Principles 75
9.1 The SYSMOD Zigzag Pattern 76
9.2 The Base Architecture 82
9.3 Cohesion and Coupling 85
9.4 Separation of Definition, Usage, and Run-Time 87
9.5 Separate Stable from Unstable Parts 89



�

� �

�

Contents vii

9.6 The Ideal System 89
9.7 View and Model 90
9.8 Diagram Layout 92
9.9 System Model Structure 93
9.10 System Architecture Principles 95
9.11 Heuristics 95
9.11.1 Heuristics as a Tool for the System Architect 95
9.11.2 Simplify, Simplify, Simplify: Strength and Pitfall 97

10 Model-Based Requirements Engineering and Use Case
Analysis 99

10.1 Requirement and Use Case Definitions 99
10.2 Model-Based Requirements and Use Case Analysis from the MBSA

Viewpoint 102
10.2.1 Identify and Define Requirements 103
10.2.2 Specify the System Context 104
10.2.3 Identify Use Cases 105
10.2.4 Describe Use Case Flows 109
10.2.5 Model the Domain Knowledge 110
10.3 The SAMS Method 112
10.3.1 SAMS Method Definitions 113
10.3.2 SAMS Method 114
10.4 Use Cases 2.0 117

11 Perspectives, Viewpoints and Views in System
Architecture 119

11.1 Introduction 119
11.2 The Functional Perspective 121
11.2.1 SysML Modeling of Functional Blocks 123
11.2.2 Architecture Views for the System Architect 124
11.2.3 Different Architecture Views for the Stakeholders of Different

Functions 124
11.3 The Physical Perspective 125
11.3.1 Logical Architecture Example 126
11.3.2 Product Architecture Example 127
11.4 The Behavioral Perspective 130
11.5 The Layered Perspective 130
11.5.1 The Layered Approach 130
11.5.2 The Layered Perspective in Systems Architecting 132
11.5.3 Relation to the Domain Knowledge Model 134
11.5.4 Architecting the Layers 136



�

� �

�

viii Contents

11.5.5 SysML Modeling of Layers 136
11.6 System Deployment Perspective 142
11.7 Other Perspectives 144
11.8 Relation to the System Context 146
11.8.1 Validity of the System Boundary 146
11.8.2 Using the System Context as a Part of the Stakeholder-Specific

Views 146
11.8.3 Special System Context View for Verification 147
11.9 Mapping Different System Elements Across Different Levels 148
11.9.1 Functional-to-Physical Perspective Mapping 149
11.9.2 Mapping More Perspectives 153
11.9.3 Mapping Different Levels 153
11.10 Traceability 155
11.11 Perspectives and Architecture Views in Model-based Systems

Architecting 155
11.11.1 Creating Different Architecture Views in a Model-Based

Approach 155
11.11.2 Using SysML for Working with Different Perspectives and Architecture

Views 157
11.11.3 The Importance of Architecture Viewpoints in Model-Based Systems

Architecting 159

12 Typical Architecture Stakeholders 161
12.1 Overview 161
12.2 Requirements Engineering 162
12.3 Verification 163
12.4 Configuration Management 166
12.5 Engineering and Information Technology Disciplines 167
12.6 Project and Product Management 171
12.7 Risk Managers 174
12.8 Development Roadmap Planners 174
12.9 Production and Distribution 177
12.10 Suppliers 178
12.11 Marketing and Brand Management 178
12.12 Management 180

13 Roles 185
13.1 Roles 185
13.2 The System Architect Role 186
13.2.1 Objective 186
13.2.2 Responsibilities 186



�

� �

�

Contents ix

13.2.3 Tasks 187
13.2.4 Competences 188
13.2.5 Required Skills of a System Architect 188
13.2.6 Required Skills for Model-Based Systems Architecting 190
13.3 System Architecture Teams 190
13.4 System Architecture Stakeholders 192
13.5 Recruiting System Architecture People 192
13.6 Talent Development for System Architects 194

14 Processes 199
14.1 Systems Architecting Processes 199
14.1.1 Overview 199
14.1.2 Example of Generic Process Steps 201
14.1.3 Example of Concrete Process Steps 202
14.1.4 Validation, Review, and Approval in a Model-Based Environment 203
14.2 Design Definition Process 207
14.3 Change and Configuration Management Processes 207
14.4 Other Processes Involving the System Architect 207

15 Tools for the Architect 209

16 Agile Approaches 213
16.1 The History of Iterative–Incremental Approaches 214
16.1.1 Project Mercury (NASA, 1958) 214
16.1.2 The New New Product Development Game (1986) 215
16.1.3 Boehm’s Spiral Model (1988) 216
16.1.4 Lean (1945 Onwards) 217
16.1.5 Dynamic Systems Development Method (DSDM, 1994) 219
16.1.6 Scrum (1995) 220
16.2 The Manifesto for Agile Software Development (2001) 221
16.3 Agile Principles in Systems Engineering 223
16.3.1 Facilitate Face-to-Face Communication 223
16.3.2 Create a State of Confidence 224
16.3.3 Build Transdisciplinary and Self-Organized Teams 225
16.3.4 Create a Learning Organization 225
16.3.5 Design, but No Big Design (Up-Front) 226
16.3.6 Reduce Dependencies 227
16.3.7 Foster a Positive Error Culture 228
16.4 Scaling Agile 228
16.5 System Architects in an Agile Environment 230



�

� �

�

x Contents

17 The FAS Method 233
17.1 Motivation 234
17.2 Functional Architectures for Systems 236
17.3 How the FAS Method Works 239
17.4 FAS Heuristics 242
17.5 FAS with SysML 244
17.5.1 Identifying Functional Groups 244
17.5.2 Modeling the Function Structure 246
17.5.3 Modeling the Functional Architecture 249
17.6 SysML Modeling Tool Support 250
17.6.1 Create Initial Functional Groups 251
17.6.2 Changing and Adding Functional Groups 254
17.6.3 Creating Functional Blocks and their Interfaces 254
17.7 Mapping of a Functional Architecture to a Physical Architecture 254
17.8 Experiences with the FAS Method 256
17.9 FAS Workshops 258
17.10 Quality Requirements and the Functional Architecture 259
17.11 Functional Architectures and the Zigzag Pattern 262
17.12 CPS-FAS for Cyber-physical Systems 263

18 Product Lines and Variants 269
18.1 Definitions Variant Modeling 270
18.2 Variant Modeling with SysML 271
18.3 Other Variant Modeling Techniques 276

19 Architecture Frameworks 279
19.1 Enterprise Architectures 280
19.2 Characteristics of System of Systems (SoS) 282
19.2.1 Emergence 283
19.3 An Overview of Architecture Frameworks 285
19.3.1 Zachman FrameworkTM 285
19.3.2 The TOGAF® Standard 286
19.3.3 Federal Enterprise Architecture Framework (FEAF) 288
19.3.4 Department of Defense Architecture Framework (DoDAF) 289
19.3.5 Ministry of Defense Architecture Framework (MODAF) 290
19.3.6 NATO Architecture Framework (NAF) 291
19.3.7 TRAK 292
19.3.8 European Space Agency Architectural Framework (ESA-AF) 293
19.3.9 OMG Unified Architecture Framework® (UAF®) 295
19.4 System Architecture Framework (SAF) 296

Together with Michael Leute 296



�

� �

�

Contents xi

19.4.1 SAF and Enterprise Frameworks 296
19.4.2 SAF Ontology 298
19.5 What to Do When We Come in Touch With Architecture

Frameworks 298

20 Cross-cutting Concerns 301
20.1 The Game-Winning Nonfunctional Aspects 301
20.2 Human System Interaction and Human Factors Engineering 303
20.3 Risk Management 304
20.4 Trade Studies 305
20.5 Budgets 306

21 Architecture Assessment 307

22 Making It Work in the Organization 313
22.1 Overview 313
22.2 Organizational Structure for Systems Architecting 314
22.3 Recipes from the Authors’ Experience 318
22.3.1 Be Humble 319
22.3.2 Appraise the Stakeholders 319
22.3.3 Care About Organizational Interfaces 319
22.3.4 Show that it Was Always There 321
22.3.5 Lead by Good Example 321
22.3.6 Collect Success Stories and Share them When Appropriate 322
22.3.7 Acknowledge that Infections Beat Dictated Rollout 323
22.3.8 Assign the System Architect Role to Yourself 324
22.3.9 Be a Leader 324

23 Soft Skills 327
23.1 It’s All About Communication 328
23.1.1 Losses in Communication 329
23.1.2 The Anatomy of a Message 330
23.1.3 Factors Influencing Communication 333
23.1.3.1 The Language 333
23.1.3.2 The Media Used 333
23.1.3.3 Spatial Distance 333
23.1.3.4 Various Connotations of Words 335
23.1.4 The Usage of Communication Aids and Tools 335
23.2 Personality Types 338
23.2.1 Psychological Types by C. G. Jung 338
23.2.2 The 4MAT System by Bernice McCarthy 340



�

� �

�

xii Contents

23.3 Team Dynamics 341
23.4 Diversity and Psychological Safety 342
23.4.1 Project Aristotle (Google) 342
23.4.2 Elements of Psychological Safety 343
23.5 Intercultural Collaboration Skills 344

24 Outlook: The World After Artificial Intelligence 347

Appendix A OMG Systems Modeling Language 349
A.1 Architecture of the Language 350
A.2 Diagram and Model 352
A.3 Structure Diagrams 353
A.3.1 Block Definition Diagram 354
A.3.2 Internal Block Diagram 357
A.3.3 Parametric Diagram 361
A.3.4 Package Diagram 362
A.4 Behavior Diagrams 363
A.4.1 Use Case Diagram 364
A.4.2 Activity Diagram 366
A.4.3 State Machine Diagram 369
A.4.4 Sequence Diagram 371
A.5 Requirements Diagram 372
A.6 Extension of SysML with Profiles 374
A.7 Next-Generation Modeling Language SysML v2 376

Appendix B The V-Model 381
B.1 A Brief History of the V-Model or the Systems Engineering Vee 381
B.2 A Handy Illustration but No Comprehensive Process Description 383
B.3 Critical Considerations 385
B.3.1 The V-Model as Process Description 386
B.3.2 The V-Model Does Not Impose a Waterfall Process 386
B.3.3 The V-Model Accommodates Iterations 387
B.3.4 The V-Model Permits Incremental Development 387
B.3.5 The V-Model and Concurrent Engineering 388
B.3.6 The V-Model Accommodates Change 388
B.3.7 The V-Model Permits Early Verification Planning 388
B.3.8 The V-Model Shows Where to Prevent Dissatisfaction 388
B.4 Reading Instruction for a Modern Systems Engineering Vee 389
B.4.1 The Vertical Dimension 389
B.4.2 The Horizontal Dimension 389
B.4.3 The Left Side 389



�

� �

�

Contents xiii

B.4.4 The Right Side 390
B.4.5 The Levels 390
B.4.6 Life Cycle Processes 390
B.4.7 The Third Dimension 390

Appendix C Glossary 391
C.1 Heritage of the Term “Glossary” 391
C.2 Terms with Specific Meaning 393

References 399
Index 417



�

� �

�



�

� �

�

xv

Foreword

Contrary to popular myth, models are not new to systems engineering. Mod-
els are the way engineers analyze both problems and solutions, so systems
models are as old as systems engineering itself. With the traditional focus on
written specifications as the “source of truth,” models were secondary and
descriptive – sometimes reflected as simple sketches, sometimes shown in formal
diagrams, partially captured in analysis packages, and often trapped in the
mind of the chief engineer. The transformation of systems engineering from
document-centric to model-centric practices is not about the introduction of
models. It is about making models explicit and moving them to the foreground
where they serve as the authoritative tool for design, analysis, communication,
and system specification.

Organizations today are investing heavily in representations, standards, method-
ologies, and technologies to transform the practice of systems engineering through
model-driven paradigms. To manage the complexity of today’s problems; to keep
pace with today’s rapidly evolving technologies; to capture the required knowl-
edge regarding the problem, solution, and rationale; to respond effectively to
change – all require that systems engineering join the other engineering dis-
ciplines in moving beyond document-centric techniques and embracing the
power of a model-based foundation. With energy and focus over the last 10
years has come notable progress. The industry has advanced in the area of
representations with the development of SysML as a standardized set of diagrams
to complement traditional systems representations. Numerous books – including
a frequently-cited guide by Tim Weilkiens – explain the details of using this
notation to capture and communicate system designs to improve explicitness
and alignment within the systems team. Alongside these representations have
emerged countless standards and frameworks to help engineering teams develop
high fidelity models reflecting key systems dimensions.

However, for all the industry discussion regarding SysML, representations,
standards, and tools, there remains a great deal of confusion. Understanding



�

� �

�

xvi Foreword

SysML notation and drawing SysML diagrams do not equate to doing model-based
systems engineering. Nor is the use of disjoint models and simulation in systems
engineering equivalent to integrated model-based systems engineering.

Effectively moving forward with the transition to model-centric techniques
requires that we step back to understand the bigger picture. Diagrams and other
representations do not live in isolation but are interrelated and overlapping,
communicating key aspects of the system model from specific viewpoints. System
architecture and detailed analytical models are not disjoint, nor is there a single
grand unified model to capture all dimensions of interest for all systems problems.
To move forward, we must embrace the holistic systems perspective and apply
it to model-based systems engineering, seeking out the interrelationships and
developing a robust toolbox of supporting practices.

In this book, Tim Weilkiens, Jesko Lamm, Stephan Roth, and Markus Walker
broaden our vision and expose us to a rich set of perspectives, processes, and
methods so that we can develop an effective unified framework for model-based
systems architecture. Building upon the existing industry library of textbooks on
SysML, this book looks beyond representation to address models, viewpoints, and
views as part of a modern approach addressing requirements, behavior, architec-
ture, and more. It connects to a larger framework of processes, methods, and tools
key to enabling model-centric practices. And it looks beyond the technical space
to the critical cultural dimensions, because the transformation to model-centric
techniques is far less a technical challenge than one of organizational change.
Addressing the broader framework, Tim, Jesko, Stephan, and Markus bring
model-centric practices together to help practitioners develop cohesive system
architectures – our one chance in the life of a program to manage complexity,
develop resilience, and design in critical concerns such as system security.

There is no doubt that the future of systems engineering is model-based.
Document-centric techniques simply are not enough as we grapple with the
challenges of today and tomorrow. Those practitioners and organizations who
are early adopters in developing a cohesive model-centric framework of pro-
cesses, methods, and tools will certainly be at a competitive advantage – whether
producing products themselves or delivering systems services for others. If, as
a profession, we can transform from document-centric to model-based systems
engineering and do so with the vision of enabling model-based engineering, we
can help transform the larger product lifecycle delivering radical improvements
in quality, cost, and time-to-market for the benefit of all.

June 2015 David Long
President, Vitech Corporation
INCOSE President (2014 and 2015)



�

� �

�

xvii

Preface

Reacting to market needs on time with systems of high quality and marketable
costs is a strong competitive advantage. Once a market need has been identified,
multiple disciplines are involved in developing a system toward it. They need to
collaborate closely and each according to a precise understanding of the own con-
tribution to the system development. Effective communication and the creation of
understanding for the whole system-of-interest are keys for the success. Organiza-
tions are facing a more and more dynamic environment and, at the same time, an
increasing organizational complexity of distributed teams and stakeholders and
an increasing technical complexity of more heterogeneous relationships between
system components and their environment. This context requests an explicit and
sustainable system architecture.

Each of the engineering disciplines contributing to system development needs
specific views for obtaining the needed insight. System models enable the creation
of consistent sets of stakeholder-specific views. People using them gain a fast and
comprehensible understanding of the system they are developing, which can help
them choose appropriate solutions for fulfilling the market needs. All the views
look at the same data baseline. There is no effort to consolidate redundant data or
to clarify misunderstandings of inconsistent information and the costs of resulted
errors.

A system architect needs to shape the system architecture well for realizing a
successful system. Multiple tasks have to be carried out, each using an effective
approach. This book provides a toolbox for the architects for their daily challenges.
The scope of the book is a model-based environment, that is either already estab-
lished and running or planned. The book explains how to use the SysML modeling
language in obtaining model-based architecture descriptions. Nevertheless, the
concepts are independent of SysML and could also be performed with other mod-
eling languages.



�

� �

�

xviii Preface

This book is about people, models, and better products, based on our belief that
model-based systems architecting produces better products by creating communi-
cation and insight for people involved in system development. The book presents
a collection of methods and approaches, which we see as ingredients for getting
the system architecture work done successfully. We present model-based systems
architecting, which we see as a required backbone for excellent system architec-
ture work together with the stakeholders. We will show that involving the stake-
holders means much more than running through a formalized review process.

A fundamental principle in system architecture is simplification. Without sim-
ple concepts to be communicated to the stakeholders, the system architect will not
be understood and thus will fail. We advise you, dear reader, to adopt the principle
of simplification and apply it to the multitude of approaches presented in the book.
Feel free only to choose the most suitable approaches for your daily work and dis-
regard the others until you are in a situation where they turn out to be the useful
ones. The book is a well-stocked toolbox and not a rigid all-or-nothing process for
system architects.

Our experience tells us that each organization will have a different focus area
and will need different approaches. This is why we have bundled a variety of
approaches we have observed being applied successfully in the industry, in the
hope that you will find some pieces of information that are suitable exactly to
your current activities. We have selected those approaches, which we find easy to
apply in daily work and which are important for common model-based system
architectures. We do not claim to provide a complete set. Every system architect
loves to go to a hardware store to extend her toolbox. And from time to time she
has to discard one of her tools when it is no longer appropriate.

The book addresses system architects and their managers as well as engineers
who are involved or interested in systems architecting. It is the first compre-
hensive book that combines the emergent discipline systems architecting with
model-based approaches with SysML and puts together puzzle pieces to a
complete picture. Highlighted puzzle pieces are:
● functional architectures and the Functional Architecture for Systems (FAS)

method by Lamm and Weilkiens to derive the architecture from common-use
case analysis

● the integration of the concept of layered architectures from the software disci-
pline in the context of system architectures

● the modeling of system variants
● the whole picture of different architecture kinds like functional, logical, and

product architectures and their relationships
● a brief description of SysML and
● a summary of the history of the V-model and recent thinking about it in the

appendix



�

� �

�

Preface xix

As a typical reader of this book, you may have no time to read all chapters in
sequential order. Therefore, we have made the chapters as independent from
each other as we could, in order to enable you to read them individually or out
of a dedicated sequence when you like inspiration about a certain topic. You
can find an on-demand reference about particular topics and get inspiration for
directly using the presented approaches in your daily business. The topics are
demonstrated using a fictitious robot-based solution for virtual exhibition or
other robot-based telepresence tours as an example system.

We like to write texts using gender-fair language. On the other hand, we avoid
cluttering the flow of reading by using always both genders in the same sentence.
Therefore, we have only used one gender where it was not appropriate to use
gender-neutral language. Feel free to replace “he” by “she” and “she” by “he” or
whatever is appropriate.

We like to thank the “FAS” and “MkS” working groups of GfSE, German chapter
of INCOSE, as well as the “Viewpoints” working group of the same chapter in
collaboration with Swiss Society for Systems Engineering (SSSE), Swiss chapter
of INCOSE. The work in these groups has provided us with new ideas that can
now be found in this book. We thank NoMagic for their support in working with
the Cameo tool family that we used to create the SysML models and diagrams we
used in multiple chapters of this book. We also thank Erik Solda for allowing us to
use the robot example, Martin Ruch for contributing ideas about the assessment
of organizational interfaces, and all the colleagues at work who have influenced
our way of thinking, helped us with foreign languages in both reading and writing
or recommended literature and web links that are today part of the foundations of
this book. We furthermore thank numerous people who provided us with advice
after we had shown or explained them little fragments of this book to listen to a
second opinion.

We like to thank all the supporters of MBSE who believe that MBSE enables the
successful development of complex systems – in particular, David Long, who is a
great expert of MBSE from the very beginning and has written the foreword.

Finally, we like to thank Brett Kurzman, editor at Wiley, Alex Castro, Kathleen
Pagliaro, Bhargavi Natarajan, Sarah Lemore, and Viniprammia Premkumar for
their support with the first and second editions of this book.

September 2021 Tim Weilkiens, Jesko G. Lamm, Stephan Roth, Markus Walker
Contributors: Matthias Dänzer, Oliver C. Eichmann,
Ralf God, Michael Leute, Sylvia Melzer



�

� �

�



�

� �

�

xxi

About the Companion Website

This book is accompanied by a companion website:

www.mbse-architecture.com

The website includes:
● High resolution version of all the figures in the book.

www.mbse-architecture.com


�

� �

�



�

� �

�

1

1

Introduction

Model-based system architecture (MBSA) combines the two key technologies
model-based and systems architecting. Both are major parts of the future state of
systems engineering [123].

Many systems result from a evolutionary development. They are driven by their
parts and do not emerge from the architecture. The parts could be anything that,
in combination, is assembled to a human-made purposeful system. System archi-
tecture is followed by a complete system. Often system architecture is referred
to the architecture from the perspective of a software architecture in combina-
tion with the hardware or the architecture of software-intensive systems [43]. We
understand system architecture more holistic and also consider systems without
any software, even though systems without any software, are rarely handled with
systems engineering processes and MBSA concepts like described in this book. A
system architecture is always present. In today and future systems engineering, it
is crucial to apply explicit systems architecting for the success of the system project
[123]. Chapter 5 defines the term “system architecture” within its context.

Studies clearly show that systems architecting is critical for the performance
and success of the system [68]. This is particularly evident for projects that require
significant architectural work or rework. Due to more and more dynamic and
complex markets and environments, the system architecture must more and more
support the changing requirements and requests for radical changes. Chapter 3
lists the benefits of systems architecting.

A system architecture is about establishing solutions that are in line with the
directions that guide the organization and checked for feasibility by the corre-
sponding experts, about designing interfaces that are agreed from both sides, and
about ensuring that the people who should know the architecture of a system have
a common understanding of it. MBSA uses models for enabling the creation of
healthy communication around the architecture of the system and for ensuring
that the architecture is validated from different points of view. Models are a key

Model-Based System Architecture, Second Edition. Tim Weilkiens, Jesko G. Lamm,
Stephan Roth, and Markus Walker.
© 2022 John Wiley & Sons, Inc. Published 2022 by John Wiley & Sons, Inc.



�

� �

�

2 1 Introduction

tool to be capable of developing complex systems on time and in a feasible quality.
Chapter 6 defines the term “model” and MBSA and discusses related terms.

Models are more than graphics. There are even models without any graphical
representations. Just the graphics is not modeling but drawing. To create a model,
you need the concrete syntax, the abstract syntax, and the semantics, which you
find in a modeling language. We use the international standard Systems Modeling
Language (SysML) as a language for the system requirements and architecture
models. Appendix A gives an overview about SysML, including an outlook on
the next-generation modeling language SysML v2. Although we extensively use
SysML in this book, our methods and concepts are independent of SysML and
could also be implemented by any other modeling language.

The system architect is the one in charge of shaping the system architecture.
This is a big responsibility and a big challenge. Organizations developing systems
should carefully select people who are allowed to architect the system – and these
people’s work results will be tightly monitored by stakeholders everywhere in the
organization. Chapter 22 describes how systems architecting could be embedded
in an organization, and Chapter 12 discusses the interfaces to the stakeholders of
systems architecting. In particular, Chapter 10 introduces the adjacent discipline
requirements engineering that closely collaborates with the systems architecting.
The SYSMOD zigzag pattern presented in Chapter 9 shows the relationship
between requirements and architecture and clearly demonstrates the need for
a close collaboration. Artifacts of the model-based requirements and use case
analysis are important inputs for the system architects, especially to elaborate a
functional architecture using the so-called Functional Architectures for Systems
(FAS) method.

Chapter 17 is a comprehensive presentation of the FAS method. Functional
architectures are built of functions only and are independent of the physical
components that implement the functions. The functional architecture is more
stable than a physical architecture that depends on the frequently changing
technologies. The architecture principle to separate stable from unstable parts is
covered in Chapter 9 about architecture patterns and principles.

Besides the functional architecture, we define and discuss further system
architecture kinds. The base architecture that fixes the preset technologies and
adjusts the scope for innovation, the logical architecture that specifies the tech-
nical concepts and principles, and the product architecture that finally specifies
the concrete system. All three architecture kinds are physical architectures. The
layered architecture is an additional aspect to these architecture kinds and is
presented in Chapter 11.

Another additional aspect is the modeling of variants. Variability is increasingly
important. The markets are no longer satisfied by commodity products. The
market requests customized products that fit personal demands of the customers.



�

� �

�

1 Introduction 3

Additionally, global markets with different local environments and policies
require different configurations of a system. Chapter 18 presents a model-based
concept to specify different product configurations and gives a brief introduction
to model-based product line engineering (MBPLE).

The architecture concepts are presented with a consistent example system.
The “Virtual Tour” system (VT system) provides virtual visits by driving with
camera-equipped robots through a real exhibition. The system is easy to under-
stand and, at the same time, sufficiently complex to demonstrate the systems
architecting concepts. The VT system is also part of a rescue and observation
system to illustrate a system of systems and cyber-physical systems. The systems
are introduced in Chapter 2.

The system architect who thinks that his job is to make a diagram and save it
on a shared network drive will most probably fail. Same for the system architects
who think they are the bosses of the development staff and can instruct the other
engineers. It is neither an archaeological job nor a chief instructor job. Systems
architecting is collaborative work that requires communication and soft skills. A
basis for a good communication is a common language and media to transport the
information. Chapter 8 covers the artifacts of the architecture documentations.
In Chapter 19, we extend our scope to system of systems and architecture frame-
works.

Typically, engineers are focused on the technology challenges of their job. As
mentioned, communication and more general soft skills are getting more and
more important capabilities. The engineering disciplines are growing together.
For instance, that could be seen by the modern discipline mechatronic. And the
worldwide humankind is growing together due to the internet other commu-
nication and transportation technologies. In consequence, an engineer has an
increasing number of communication relationships. She is no longer successful
when she only manages her technology tasks. It is also important to collaborate
well with team members, stakeholders, communities, and so on. Chapter 23 gives
an introduction about soft skills for engineers.



�

� �

�



�

� �

�

5

2

An Example: The Scalable Observation and Rescue System

We need an example system for the demonstration of various techniques to be
presented in this book. The example shall be based on one single system with one
single purpose, but extensible to be explored in scenarios involving the interac-
tion of multiple systems for a purpose different from the one of the original single
system.

Our single-purpose system is based on the very old idea of telepresence robots
(e.g. [249]). The concrete system was inspired by an organization called “The
Workers.” They created a robot system that is called “After Dark” [36], because it is
intended to be operated at night, when it is dark – and when almost any museum
in town is closed. The system comprises robots that are driving through a closed
museum. They carry a lamp to shed light and a camera to capture pictures. When
sending the captured pictures to a remote user, the resulting offering is a virtual
museum tour (VMT). The described system was demonstrated on 23 August 2014
[139]: After Dark’s robots were driving through the gallery “Tate Britain”, and
people worldwide could watch the streamed camera images. A similar virtual
museum tour offering based on a robot was started in The Mob Museum, Las
Vegas, in 2016 [258], and the same technology was at least considered for several
art museums [41].

Inspired by these systems, we present the “Virtual Museum Tour system”
(VMT). Its central subsystem will be a robot as shown in Figure 2.1, intended for
realizing a remote user’s telepresence in a museum. The presented robot is based
on some really existing prototype that was created many years ago during a leisure
activity by two students (Erik Solda and Jesko G. Lamm) at Aachen university,
Germany. To get back from this historic robot prototype to the example system
considered here, please imagine the shown fictitious museum tour robot to be an
industrial product with today’s technologies onboard: It will use latest artificial
intelligence (AI) to be able to navigate autonomously in a museum. But of course
the system also comprises servers to control such robots, cloud services to offer

Model-Based System Architecture, Second Edition. Tim Weilkiens, Jesko G. Lamm,
Stephan Roth, and Markus Walker.
© 2022 John Wiley & Sons, Inc. Published 2022 by John Wiley & Sons, Inc.



�

� �

�

6 2 An Example: The Scalable Observation and Rescue System

Figure 2.1 The museum tour
robot.

onboarding to people worldwide, and apps for mobile devices to schedule virtual
museum tours and watch the corresponding video streams.

A storyboard [152] in Figure 2.2 explains the system’s main use case: Currently,
John is controlling a museum robot to drive it through a museum of arts. He has
to write a report about modern art as a homework for school, and he has not had
time to go to the museum during its opening hours. John types “Andy Warhol” on
his smartphone and the robot starts driving to the pop arts division of the museum.
Once there, it stops in the middle of a room. John now selects a painting showing a
soup can. The robot moves toward the painting and stops in front of it. The camera
on the robot now transmits a picture of the painting to John’s smartphone. A little
notification box on the smartphone displays the title of the painting. John needs to
analyze the artist’s way of working in more detail. Via commands entered on his
smartphone, he moves the camera down. Then, he zooms in on a particular area
of the painting. Now he can see the necessary details via the video stream on his
smartphone. This enables John to complete his homework for school.

Unlike the initially mentioned systems at Tate Britain and The Mob Museum,
our own example system is purely fictitious and also the extensions to be presented


