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xix

Recent advances in sequencing technology and computational resources have accelerated 
genomics and translational research in crop science. The technological advances have pro-
vided many opportunities in genomics- assisted plant breeding to address issues related to 
food security. Among the several applications, genotyping- by- sequencing (GBS) technol-
ogy has evolved as one of the frontier areas facilitating high- throughput plant genotyping. 
The GBS approaches have proved effective for the utilization in genotyping- based applica-
tions like quantitative trait loci (QTL) mapping, genome- wide association study (GWAS), 
genomic selection (GS), and marker- assisted breeding (MAB). Considering the current 
affairs in plant breeding, we decided to compile the advances in GBS methods, statistical 
approaches to analyze the GBS data, and its applications including QTL mapping, GWAS, 
and GS in crop improvement.

Presently, the food produced around the world is adequate for the existing population. 
However, the constantly increasing population mounting pressure on a food production 
system. Hence efficient utilization of technological advances and existing knowledge is 
essential to enhance food production to match the growing food demand. In this direction, 
most of the countries around the globe have adopted advanced genomic methodologies to 
breed superior plant genotypes. Among such technological advances, the high- throughput 
genotyping using GBS has shown promising results in different crop plants. The GBS has 
predominantly been used for germplasm evaluation, evolutionary studies, development of 
dense linkage map, QTL mapping, GWAS, GS, and MAB. The cost- effectiveness and whole- 
genome coverage make GBS more reliable than other next- generation sequencing (NGS) 
techniques.

This book describes advanced molecular markers, high- throughput genotyping plat-
forms, whole- genome resequencing (WGR), QTL mapping using advanced mapping popu-
lations, analytical pipelines for the GBS analysis, advances in GWAS, advances in GS, 
application of GBS, GWAS, and GS in different crop plants. The different marker types 
including traditional and advanced markers used in plant genotyping have been presented 
in great detail. DNA extraction directly from seeds without germination can save time and 
effort. Several modified and crop- specific nondestructive seed DNA extraction protocols 
have been compiled and presented. Many advanced genotyping platforms are now  available 
which cater to specific research purposes because of the differences in terms of reaction 
chemistry involved, cost, method of signal detection, and flexibility in the protocols. 
Such  advanced platforms along with their principles have been discussed. The WGR 
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methodology and available resources have been covered in detail. The WGR has emerged 
as a powerful method to identify genetic variation among individuals. The recent advance-
ment in WGR includes pool- Seq which provides an alternative to individual sequencing 
and a cost- effective method for GWAS. Compared to biparental populations the multi- 
parental population provides an opportunity to interrogate multiple alleles and to provide 
an increased level of recombination and mapping resolution of QTLs. The use of such 
improved populations in the era of high- throughput genotyping has been presented in one 
of the chapters. The dedicated section focused on the basic principle of GWAS, the effi-
ciency of different markers, candidate gene identification, meta- GWAS, and statistical 
methods involved in GWAS analysis has been included. For genetic mapping, and marker- 
assisted selection, rapid and quality DNA isolation is mandatory to accelerate the whole 
process. A focused section about GS has been included which gives an account of the basic 
concept, advances, applicability, and challenges of GS. Similarly, a separate chapter is 
included which discusses the analytical pipelines used for GBS data. Application of tech-
nologies such as GBS, GWAS, and GS in different crop categories like cereals, pulses, oil-
seeds, and commercial crops has been discussed in different chapters.

Here, we have tried to compile basic aspects and recent advances in GBS, GWAS, and GS 
in plant breeding. We believe that the book will be helpful to researchers and scientists to 
understand and plan future experiments. This book will enable plant scientists to explore 
GBS application more efficiently for basic research as well as applied aspects in various 
crops improvement projects.

Editors
Dr. Humira Sonah

Dr. Vinod Goyal
Dr. S. M. Shivaraj

Dr. R. K. Deshmukh
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1.1  Introduction

Plant selection and systematic breeding efforts led to the development of present- day 
improved cultivars of crop plants. From a historical perspective, increased crop yield is the 
result of genetic improvement (Fehr 1984). Markers play an important role in the selection 
of traits of interest. Markers can be morphological, biochemical, or molecular in nature. 
Morphological markers are visual phenotypic characters such as growth habit of the plant, 
seed shape, seed color, flower color etc. Biochemical markers are the isozyme- based markers 
characterized by variation in molecular form of enzyme showing a difference in mobility 
on an electrophoresis gel. Very few morphological and biochemical markers are available 
in plants, and they are influenced by developmental stage and environmental factors. Since 
a large number of economically important traits are quantitative in nature, which are 
affected by both genetic and environmental factors, the morphological and biochemical 
markers- based selection of traits may not be much reliable. The subsequent discovery of 
abundantly available DNA- based markers made possible the selection of almost any trait of 
interest. DNA- based markers are not affected by the environment. Besides, these markers 
are highly reproducible across labs and show high polymorphism to distinguish between 
two genetically different individuals or species.

In the last four decades, DNA- based molecular marker technology has witnessed several 
advances from low throughput hybridization- based markers to high- throughput 
sequencing- based markers. These advances have been possible due to critical discoveries 
such as polymerase chain reaction (PCR) (Mullis et al. 1986), Sanger sequencing method 
(Sanger et  al.  1977), automation of Sanger sequencing (Shendure et  al.  2011), next- 
generation sequencing (NGS) technologies (Mardis 2008), and development of bioinfor-
matics tools. This chapter will briefly discuss different types of molecular markers while 
particularly focusing on recent developments in molecular marker technologies. These 
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developments have expedited the mapping and cloning of several loci governing important 
traits, precise trait selection, and transfer into elite germplasm.

1.2  What is a Molecular Marker?

DNA or molecular marker is a fragment of the DNA that is associated with a particular trait 
in an individual. These molecular markers aid in determining the location of genes that 
control key traits.

Generally, molecular markers do not represent the gene of interest but act as “flags” or “signs.” 
Similar to genes, all the molecular markers occupy a specific position within the chromosomes. 
Molecular markers located close to genes (i.e. tightly linked) are referred to as “gene tags.”

DNA- based molecular markers are the most widely used markers predominantly due to 
their abundance. They arise from different classes of DNA mutations such as substitution 
mutations (point mutations), rearrangements (insertions or deletions), or errors in replica-
tion of tandemly repeated DNA. These markers are selectively neutral because they are 
usually located in noncoding regions of DNA. Unlike morphological and biochemical 
markers, DNA markers are practically unlimited in number and are not affected by envi-
ronmental factors and/or the developmental stage of the plant.

DNA markers show genetic differences that can be visualized by using a gel electro-
phoresis technique and staining ethidium bromide or hybridization with radioactive or 
colorimetric probes. Markers that can identify the difference between two individuals are 
referred to as polymorphic markers, whereas those that do not distinguish the individuals 
are called monomorphic markers. Based on how polymorphic markers can discriminate 
between individuals, they are described as codominant or dominant. Codominant markers 
indicate differences in size whereas dominant markers reveal differences based on their 
presence or absence. The different forms of a DNA marker in the form of band size on gels 
are known as marker “alleles.” Dominant marker has only two alleles whereas codominant 
markers may have many alleles.

1.3  Classes of Molecular Markers

Based on the method of their detection, DNA markers are broadly classified into three 
groups: (i) hybridization- based, (ii) PCR- based, and (iii) DNA sequence- based molecular 
markers. Molecular markers have been discussed earlier in several reviews (Collard 
et al. 2005; Semagn et al. 2006; Gupta and Rustgi 2004) and book chapters (Mir et al. 2013; 
Singh and Singh 2015), which readers can also consult for more details. However, a brief 
description of each of these markers has been presented below.

1.3.1 Hybridization- based Markers

1.3.1.1 Restriction Fragment Length Polymorphism (RFLP)
These are the first molecular markers used by Grodzicker et al. (1975) in adenovirus and 
Botstein et  al. (1980) in human genome mapping. These were first used in plants by 
Helentjaris et al. (1986). In this type of marker, polymorphism is detected by cutting DNA 
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into fragments by the use of restriction enzymes followed by hybridization of radioactively 
labeled DNA probes which are single or low copy DNA fragments and visualized by auto-
radiography. DNA probes could be genomic clones, cDNA clones, or even cloned genes. 
The RFLP markers show co- dominance and are highly reliable in linkage analysis and 
breeding (Semagn et al. 2006). However, this technique requires a large quantity of DNA, 
labor- intensive, relatively expensive, and hazardous. RFLP shows polymorphism in two 
different species if they differ due to point mutations, insertion/deletion, inversion, trans-
location, and duplication.

1.3.1.2 Diversity Array Technology (DArT™)
This is a high- throughput DNA polymorphism analysis method which combines microar-
ray and restriction- based PCR methods. It is similar to AFLP where hybridization is used 
for the detection of polymorphism. It can able to provide a comprehensive genome cover-
age even in those organisms not having genome sequence information (Jaccoud et al. 2001). 
Diversity array technology (DArT) is a solid- state open platform method for analyzing 
DNA polymorphism. DArT procedure includes (i) Generating a diversity panel and (ii) 
Genotyping using a diversity panel. The diversity panel is generated using a set of lines 
representing the breadth of variability in germplasm (~10 lines). An equal quantity of DNA 
from each representative line is pooled followed by restriction with two to three restriction 
endonucleases (REs) and ligation of RE- specific adaptors. Later DNA fragments are ampli-
fied using adaptor complementary primers. The representation fragments are ligated to 
vector and transformed into Escherichia coli cells. The transformed cells with recombinant 
DNA are selected and amplified using M13 forward and reverse primer. The amplified 
DNA is isolated and purified. The purified DNA is coated onto polylysine- coated glass 
slides to generate a diversity array.

For genotyping, the representation fragments of the target genotypes are prepared in the 
same as in the diversity panel. The DNA fragments are column purified and fluorescently 
labeled with two different dyes (Cy3 or Cy5). The labeled DNA fragments are used for 
hybridization onto the diversity array. Two representative panels – one labeled with Cy3 
and another with Cy5 – can be hybridized simultaneously and hybridization signal intensi-
ties are measured for each spot. DArT, thus detects DNA polymorphism at several hundred 
genomic loci in a single array without relying on sequence information.

1.3.2 Polymerase Chain Reaction (PCR)- based Markers

1.3.2.1 Simple- Sequence Repeats (SSRs)
Simple- sequence repeats (SSRs) (Litt and Luty 1989) are also known as microsatellites or 
short tandem repeats (STRs) or simple sequence length polymorphism (SSLP). These are 
widely used markers and are also referred to as the mother of all the markers. These are 
STRs, generally of one to eight nucleotide length. These are found dispersed throughout 
the genome and are hypervariable. These repeat regions are flanked with unique sequences 
that are highly conserved. The flanking unique sequences are used to design complemen-
tary primers which can be assayed with PCR. SSRs are highly polymorphic and codomi-
nant markers. These show polymorphism as a result of the variable number of repeat units. 
Before the era of genome sequencing, it was difficult to develop SSRs due to the extensive 
cost and labor involved in the identification of repeat regions and flanking unique 
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sequences. However, with the availability of genome sequences of several organisms, the 
development of SSR has become very easy which involves in silico identification of STRs, 
designing of SSR from flanking unique sequences, and validation through experimen-
tation. SSR markers have shown immense application in population genetic analysis, gene 
mapping, and cloning due to their abundance in the genome and high polymorphism, and 
very high reproducibility across labs. SSR- based linkage maps have been developed in 
several important crop plants such as rice (Temnykh et al. 2000; McCouch et al. 2002; 
Orjuela et  al.  2010), wheat (Roder et  al.  1998), maize (Sharopova et  al.  2002), potato 
(Milbourne et al. 1998), etc.

1.3.2.2 Sequence- Tagged Sites (STSs)
Sequence- tagged sites (STSs) were first developed for physical mapping of the human 
genome by Olsen et al. (1989). STS is the short unique sequences developed from polymor-
phic RFLP probe or AFLP fragment which is linked to desirable traits. The RFLP probes 
or AFLP fragments showing polymorphism are end- sequenced and primers are designed 
to specifically amplify these fragments. STS markers are co- dominant and highly repro-
ducible. For example, STS markers have been developed for RFLP markers linked with 
bacterial blight resistance genes xa5, xa13, and Xa21 (Huang et al. 1997). One major limi-
tation of these types of markers is the reduced polymorphism than the corresponding 
RFLP probe.

1.3.2.3 Randomly Amplified Polymorphic DNAs (RAPDs)
Williams et al. (1990) first developed these markers to amplify DNA without prior sequence 
information. In this type of marker, the arbitrary decamer sequences are used as primers at 
low annealing temperatures for DNA amplification. These markers are referred to as domi-
nant markers because the polymorphism is determined based on the presence or absence of a 
particular amplified fragment. Polymorphism may also be due to varying brightness of bands 
at a particular locus due to copy number differences. These markers have been used for 
constructing linkage maps in several species (Hunt 1997; Laucou et al. 1998) and also for 
tagging genes of economic importance. However, due to the dominant nature, these may not 
be appropriate for genetic mapping and marker- assisted selection (MAS). One major limita-
tion of these markers is the lack of repeatability in certain cases. Variations of RAPD include 
AP- PCR (arbitrarily primed PCR) and DAF (DNA amplification fingerprinting (Table 1.1).

Table 1.1 Details of the other important molecular markers.

Marker Description

Variable number tandem repeat (VNTR) or 
minisatellites

A short DNA sequence (10–100 bp) is present as 
tandem repeats and is a highly variable copy number

DNA amplification fingerprinting (DAF) A variation of RAPD, where 4–5 bp single and 
arbitrary primer is used to detect polymorphism

Arbitrary- primed PCR (AP- PCR) A variation of RAPD, where 18–32 bp long single 
and arbitrary primer is used to detect polymorphism



1.3  lasses oo Molecular Markers 5

Marker Description

Inter- simple sequence repeat (ISSR) Primers are designed based on the repeat region of 
microsatellites. These primers are used to amplify 
the region between two microsatellites. The 
stretches of unique DNA in between or flanking 
the SSRs are amplified. A single SSR- based primer 
is used to prime PCR

Selective amplification of microsatellite 
polymorphic loci (SAMPL)

A modification of ISSR, where SSR- based primer 
is used along with AFLP primer. The template is 
identical to the AFLP template and the rare cutter 
primer is replaced by SSR- based primer

Cleaved amplified polymorphic sequences 
(CAPS)

These markers are also called PCR- RFLP, where 
amplified PCR product is digested with 
endonucleases to reveal polymorphism. These are 
used when PCR product does not show 
polymorphism and restriction enzyme site present 
in amplified PCR product may detect 
polymorphism

Derived cleaved amplified polymorphic 
sequences (dCAPS)

A variation of CAPS, where a primer containing 
one or more mismatches to template DNA is used 
to create a restriction enzyme recognition site in 
one allele but not in another due to the presence 
of SNP. Thus, obtained PCR product is subjected 
to restriction enzyme digestion to find the 
presence or absence of the SNP

Single- strand conformational polymorphism 
(SSCP)

DNA fragments of size ranging from 200 to 
800 bp were amplified by PCR using  
specific primers (20–25 bp), followed by 
gel- electrophoresis of single- strand DNA to 
detect nucleotide sequence variation. The 
method is based on a principle that the 
secondary structure of single- strand DNA 
molecule changes significantly if it harbors 
mutation. This method detects nucleotide 
variation without sequencing a  
DNA sample

Denaturing/temperature gradient gel 
electrophoresis (DGGE, TGGE)

These methods reveal polymorphism due to 
differential movement of the same genomic 
double- stranded region with different base- pair 
composition. As an example, the AT- rich region 
would have a lower melting temperature than the 
GC- rich region

Target region amplification polymorphism 
(TRAP)

This method employs primers designed from the 
EST database for detecting polymorphism 
around a selected candidate gene. This includes 
two primers of 18 bp, one of which is designed 
from targeted EST and the other is an arbitrary 
primer

Table 1.1 (Continued)
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1.3.2.4 Sequence Characterized Amplified Regions (SCARs)
These markers overcome the limitation of RAPDs. In this case, the RAPD fragments that 
are linked to a gene of interest are cloned and sequenced. Based on the terminal sequences, 
longer primers (20 mer) are designed. These SCAR primers more specifically amplify a 
particular locus. These are similar to STS markers in design and application. The presence 
or absence of the band indicates variation in sequences. The SCAR markers thus are dom-
inant in nature. These, however, can be converted to codominant markers in certain cases 
by digesting the amplified fragment with tetranucleotide recognizing restriction enzymes. 
There are several examples where the RAPD markers linked to the gene of importance 
have been converted to SCAR markers (Joshi et al. 1999; Liu et al. 1999; Kasai et al. 2000; 
Akkurt et al. 2007; Chao et al. 2018).

1.3.2.5 Amplified Fragment Length Polymorphism (AFLP)
This marker technique was developed by Vos et  al. (1995) and is patented by Keygene 
(www.keygene.com). In this technique, DNA is cut into fragments by a combination of 
restriction enzymes which are frequent (four bases) and rare (six bases) cutters that gener-
ate restriction overhangs on both sides of fragments. This is followed by the annealing of 
double- stranded oligonucleotide adapters of a few oligonucleotide bases with respective 
restriction overhangs. The oligonucleotide adapters are designed in such a way that the 
original restriction sites are not reinstated and also provide the PCR amplification sites. 
The fragments are PCR amplified and visualized on agarose gel. This method produces 
many restriction fragments enabling the polymorphism detection. The number of ampli-
fied DNA fragments can be controlled by selecting different number or composition of 
bases in the adapters. The stringent reaction conditions used for primer annealing make 
this technique more reliable. This method is a combination of both RFLP and PCR tech-
niques and is extremely useful in the detection of polymorphism between closely related 
genotypes. Like RAPD, AFLP is a dominant marker and is not preferred for genetic map-
ping studies and MAS. AFLP maps have been constructed in several species and integrated 
into already existing RFLP maps e.g. tomato (Haanstra et al. 1999), rice (Cho et al. 1997), 
and wheat (Lotti et al. 2000).

1.3.2.6 Expressed Sequence Tags (ESTs)
These markers are developed by end sequencing (generally 200–300 bp) of random cDNA 
clones. The sequence thus obtained is referred to as expressed sequence tags (ESTs). A large 
number of ESTs have been synthesized in several crop plants and are available in the EST 
database at NCBI (https://www.ncbi.nlm. nih.gov/dbEST/). These markers were originally 
developed to identify gene transcripts and have played important role in the identification 
of several genes and the development of markers such as RFLP, SSR, SNPs, CAPS, etc. 
(Semagn et al. 2006). However, EST- based SSRs show less polymorphism as compared to 
genomic DNA- based SSRs. Since EST markers are from expressed sequence regions, these 
are highly conserved among the species and can be used for synteny mapping. Most of 
these could also be functional genes. A large number of EST markers have been used in rice 
for developing a high- density linkage map (Harushima et al. 1998) and for chromosome 
bin mapping in wheat using deletion stocks (Qi et al. 2003). In addition to these, several 
other molecular marker variants have been developed. The description of those markers is 
presented in Table 1.1.

http://www.keygene.com
https://www.ncbi.nlm
http://nih.gov/dbEST/
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1.4  Sequencing- based Markers

1.4.1 Single- Nucleotide Polymorphisms (SNPs)

Single- nucleotide polymorphisms (SNPs) are more abundant resulted from single- base pair 
variations. These are evenly distributed in a whole genome that can tag almost any gene or 
locus of a genome (Brookes 1999). However, the distribution of SNPs varies among species 
with 1 SNP per 60–120 bp in maize (Ching et al. 2002) and 1 SNP per 1000 bp in humans 
(Sachidanandam et al. 2001). SNPs are more prevalent in the noncoding region. In the cod-
ing region, SNPs could be synonymous or nonsynonymous. In synonymous SNPs, there is 
no change in the amino acid resulting in no phenotypic differences. However, phenotypic 
differences could be produced due to modified mRNA splicing (Richard and Beckman 1995). 
In nonsynonymous SNPs, change in amino acid results in phenotypic differences. SNPs are 
mostly bi- allelic and cause polymorphism due to nucleotide base substitution. The two types 
of nucleotide base substitutions result in SNPs. A transition substitution occurs between 
purines (A, G) or between pyrimidines (C, T). This type of substitution constitutes two- 
thirds of all SNPs. A transversion substitution occurs between a purine and pyrimidine. 
SNPs can be detected by the alignment of the similar genomic region of two different 
species. The SNPs have only two alleles compared to typical multiallele SSLP; however, this 
disadvantage can be compensated by using the high density of SNPs.

1.4.2 Identification of SNP in a Pregenomic Era

Initially, identification of SNP markers was laborious and expensive and involved allele- specific 
sequencing (Ganal et al. 2009). This includes sequencing of unigene- derived amplicons using 
Sanger’s method from two or more than two lines. In an experiment, about 350 bp of the RFLP 
clone, A- 519  was end sequenced in soybean and the flanking amplification primers were 
designed (Coryell et al. 1999). Primers were used to screen for allele diversity using PCR from 
ten genotypes and the amplicons were sequenced followed by sequence comparison to identify 
SNP. SNPs were also identified through mining a large number of EST sequences in EST data-
bases, which are generated through improved sequencing technologies (Soleimani et al. 2003). 
These SNPs are further validated using PCR (Batley et al. 2003). These approaches allowed the 
identification of mainly gene- based SNPs, but their frequency is generally low. Additionally, 
SNPs located in low- copy noncoding regions and intergenic spaces could not be identified.

Several assays have been developed for genotyping based on identified SNPs which 
include, allele- specific hybridization, primer extension, oligonucleotide ligation, and inva-
sive cleavage (Sobrino et al. 2005). Besides, DNA chips, allele- specific PCR, and primer 
extension were also attractive options since these are suitable for automation and can be 
used for the development of dense genetic maps. Allele- specific hybridization was used for 
the identification of polymorphism in 570 genotypes of soybean (Coryell et al. 1999).

1.5  Recent Advances in Molecular Marker Technologies

The improvement of Sanger sequencing technology in the 1990s combined with the begin-
ning of EST and genome sequencing projects in model plants led to the spurt in the identifi-
cation of variation at the single- base resolution (Wang et al. 1998). From 2005 onward, the 
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emergence of NGS platforms such as Roche 454, Illumina HiSeq2500, ABI 5500xl SOLiD, Ion 
Torrent, PacBio RS, Oxford Nanopore, and advances in bioinformatics tools simplified the 
process of identification of genome- wide SNPs and changed the face of molecular marker 
technology. NGS- based genotyping platforms such as genotyping- by- sequencing (GBS), 
whole- genome resequencing (WGR), and high- density SNP arrays helped to type thousands 
of SNPs in a single reaction in hundreds of individuals.

1.5.1 Genotyping- by- Sequencing (GBS)

GBS is an NGS- based reduced representation sequencing technique for the identification 
of genome- wide SNPs and genotyping large populations (Bhatia et al. 2013). GBS is a one- 
step approach for the identification and utilization of markers in a single reaction. It is a 
complexity reduction procedure where a combination of restriction enzymes is used to 
separate low copy sequences from high copy repetitive regions. In general, GBS involves 
the sequencing of fragments generated through restriction digestion of the genome on the 
NGS platform. In this process, the DNA of the population is digested with RE followed by 
ligation of RE- specific adaptors containing genotype- specific barcode sequences and sites 
for binding PCR and sequencing primers (Figure 1.1). The fragments thus generated can be 
PCR amplified and an equal volume of PCR product from different individuals are pooled 
in a tube. The fragments in the pool can be selected based on their size and sequenced on 
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Figure 1.1 An example of GBS and GBS data analysis workflow for identification of SNP markers.


