




Algorithms For Dummies®, 2nd Edition
Published by: John Wiley & Sons, Inc., 111 River
Street, Hoboken, NJ 07030-5774, www.wiley.com
Copyright © 2022 by John Wiley & Sons, Inc., Hoboken,
New Jersey
Media and software compilation copyright © 2022 by
John Wiley & Sons, Inc. All rights reserved.
Published simultaneously in Canada
No part of this publication may be reproduced, stored in
a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the
Publisher. Requests to the Publisher for permission
should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.
Trademarks: Wiley, For Dummies, the Dummies Man
logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered
trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. All other trademarks
are the property of their respective owners. John Wiley &
Sons, Inc. is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY:
WHILE THE PUBLISHER AND AUTHORS HAVE USED
THEIR BEST EFFORTS IN PREPARING THIS WORK,
THEY MAKE NO REPRESENTATIONS OR
WARRANTIES WITH RESPECT TO THE ACCURACY OR

http://www.wiley.com/
http://www.wiley.com/go/permissions


COMPLETENESS OF THE CONTENTS OF THIS WORK
AND SPECIFICALLY DISCLAIM ALL WARRANTIES,
INCLUDING WITHOUT LIMITATION ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. NO WARRANTY MAY
BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES, WRITTEN SALES MATERIALS OR
PROMOTIONAL STATEMENTS FOR THIS WORK. THE
FACT THAT AN ORGANIZATION, WEBSITE, OR
PRODUCT IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR POTENTIAL SOURCE OF FURTHER
INFORMATION DOES NOT MEAN THAT THE
PUBLISHER AND AUTHORS ENDORSE THE
INFORMATION OR SERVICES THE ORGANIZATION,
WEBSITE, OR PRODUCT MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE
PUBLISHER IS NOT ENGAGED IN RENDERING
PROFESSIONAL SERVICES. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR YOUR SITUATION. YOU SHOULD
CONSULT WITH A SPECIALIST WHERE APPROPRIATE.
FURTHER, READERS SHOULD BE AWARE THAT
WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS
WORK WAS WRITTEN AND WHEN IT IS READ.
NEITHER THE PUBLISHER NOR AUTHORS SHALL BE
LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER
COMMERCIAL DAMAGES, INCLUDING BUT NOT
LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and
services, please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-



572-3993, or fax 317-572-4002. For technical support,
please visit https://hub.wiley.com/community/support/dummies.
Wiley publishes in a variety of print and electronic
formats and by print-on-demand. Some material included
with standard print versions of this book may not be
included in e-books or in print-on-demand. If this book
refers to media such as a CD or DVD that is not included
in the version you purchased, you may download this
material at http://booksupport.wiley.com. For more
information about Wiley products, visit www.wiley.com.
Library of Congress Control Number: 2022934261
ISBN: 978-1-119-86998-6; 978-1-119-86999-3 (ebk); 978-
1-119-87000-5 (ebk)

https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com/
http://www.wiley.com/


Algorithms For Dummies®
To view this book's Cheat Sheet,
simply go to www.dummies.com and
search for “Algorithms For Dummies
Cheat Sheet” in the Search box.

Table of Contents
Cover
Title Page
Copyright
Introduction

About This Book
Foolish Assumptions
Icons Used in This Book
Beyond the Book
Where to Go from Here

Part 1: Getting Started with Algorithms
Chapter 1: Introducing Algorithms

Describing Algorithms
Using Computers to Solve Problems
Distinguishing between Issues and Solutions
Structuring Data to Obtain a Solution

Chapter 2: Considering Algorithm Design
Starting to Solve a Problem
Dividing and Conquering

http://www.dummies.com/
file:///tmp/calibre_5.42.0_tmp_m8p1uji8/gc98d7fl_pdf_out/OPS/cover.xhtml


Learning that Greed Can Be Good
Computing Costs and Following Heuristics
Evaluating Algorithms

Chapter 3: Working with Google Colab
Defining Google Colab
Working with Notebooks
Performing Common Tasks
Using Hardware Acceleration
Executing the Code
Getting Help

Chapter 4: Performing Essential Data
Manipulations Using Python

Performing Calculations Using Vectors and Matrixes
Creating Combinations the Right Way
Getting the Desired Results Using Recursion
Performing Tasks More Quickly

Chapter 5: Developing a Matrix
Computation Class

Avoiding the Use of NumPy
Understanding Why Using a Class is Important
Building the Basic Class
Manipulating the Matrix

Part 2: Understanding the Need to Sort and
Search

Chapter 6: Structuring Data
Determining the Need for Structure
Stacking and Piling Data in Order
Working with Trees
Representing Relations in a Graph

Chapter 7: Arranging and Searching Data
Sorting Data Using Merge Sort and Quick Sort
Using Search Trees and the Heap



Relying on Hashing
Part 3: Exploring the World of Graphs

Chapter 8: Understanding Graph Basics
Explaining the Importance of Networks
Defining How to Draw a Graph
Measuring Graph Functionality
Putting a Graph in Numeric Format

Chapter 9: Reconnecting the Dots
Traversing a Graph Efficiently
Sorting the Graph Elements
Reducing to a Minimum Spanning Tree
Finding the Shortest Route

Chapter 10: Discovering Graph Secrets
Envisioning Social Networks as Graphs
Navigating a Graph

Chapter 11: Getting the Right Web page
Finding the World in a Search Engine
Explaining the PageRank Algorithm
Implementing PageRank
Going Beyond the PageRank Paradigm

Part 4: Wrangling Big Data
Chapter 12: Managing Big Data

Transforming Power into Data
Streaming Flows of Data
Sketching an Answer from Stream Data

Chapter 13: Parallelizing Operations
Managing Immense Amounts of Data
Working Out Algorithms for MapReduce

Chapter 14: Compressing and Concealing
Data

Making Data Smaller



Hiding Your Secrets with Cryptography
Part 5: Challenging Difficult Problems

Chapter 15: Working with Greedy
Algorithms

Deciding When It Is Better to Be Greedy
Finding Out How Greedy Can Be Useful

Chapter 16: Relying on Dynamic
Programming

Explaining Dynamic Programming
Discovering the Best Dynamic Recipes

Chapter 17: Using Randomized Algorithms
Defining How Randomization Works
Putting Randomness into your Logic

Chapter 18: Performing Local Search
Understanding Local Search
Presenting local search tricks
Solving Satisfiability of Boolean Circuits

Chapter 19: Employing Linear Programming
Using Linear Functions as a Tool
Using Linear Programming in Practice

Chapter 20: Considering Heuristics
Differentiating Heuristics
Routing Robots Using Heuristics
Explaining Path Finding Algorithms

Part 6: The Part of Tens
Chapter 21: Ten Algorithms That Are
Changing the World

Using Sort Routines
Looking for Things with Search Routines
Shaking Things Up with Random Numbers
Performing Data Compression



Keeping Data Secret
Changing the Data Domain
Analyzing Links
Spotting Data Patterns
Dealing with Automation and Automatic Responses
Creating Unique Identifiers

Chapter 22: Ten Algorithmic Problems Yet
to Solve

Solving Problems Quickly
Solving 3SUM Problems More Efficiently
Making Matrix Multiplication Faster
Determining Whether an Application Will End
Creating and Using One-Way Functions
Multiplying Really Large Numbers
Dividing a Resource Equally
Reducing Edit Distance Calculation Time
Playing the Parity Game
Understanding Spatial Issues

Index
About the Authors
Advertisement Page
Connect with Dummies
End User License Agreement

List of Illustrations
Chapter 2

FIGURE 2-1: Complexity of an algorithm in case of best, average,
and worst inpu...

Chapter 3
FIGURE 3-1: Using Colab commands makes configuring your
Notebook easy.



FIGURE 3-2: The Settings dialog box helps you configure the Colab
IDE.
FIGURE 3-3: Customize shortcut keys for speed of access to
commands.
FIGURE 3-4: Colab lets you compare two files to see how they
differ.
FIGURE 3-5: Create a new Python 3 Notebook.
FIGURE 3-6: Use this dialog box to open existing notebooks.
FIGURE 3-7: When using GitHub, you must provide the location of
the source code...
FIGURE 3-8: Using GitHub means storing your data in a repository.
FIGURE 3-9: Colab code cells contain a few extras not found in
Notebook.
FIGURE 3-10: Use the GUI to make formatting your text easier.

Chapter 4
FIGURE 4-1: In the recursion process, a function continuously calls
itself unti...

Chapter 6
FIGURE 6-1: A tree in Python looks much like the physical
alternative.
FIGURE 6-2: Graph nodes can connect to each other in myriad
ways.

Chapter 7
FIGURE 7-1: The arrangement of keys when using a BST.
FIGURE 7-2: The arrangement of keys when using a binary heap.

Chapter 8
FIGURE 8-1: Presenting a simple undirected graph.
FIGURE 8-2: Creating the directed version of the same graph.
FIGURE 8-3: A mixed graph shows a mix of directed and
undirected subgraphs.
FIGURE 8-4: Using a weighted graph to make things more
realistic.
FIGURE 8-5: Seeing what a graph contains makes it easier to
understand.
FIGURE 8-6: Plotting the graph can help you see degree centrality
with greater ...



Chapter 9
FIGURE 9-1: Representing the example graph by NetworkX.
FIGURE 9-2: The example graph becomes weighted.
FIGURE 9-3: The example graph becomes weighted and directed.
FIGURE 9-4: Negative edges are added to the example graph.
FIGURE 9-5: A negative cycle in a graph can create problems for
some algorithms...

Chapter 10
FIGURE 10-1: A graph showing the network clusters of
relationships among friend...
FIGURE 10-2: Communities often contain cliques that can prove
useful for SNA.
FIGURE 10-3: A sample graph used for navigation purposes.

Chapter 11
FIGURE 11-1: A strongly connected network.
FIGURE 11-2: A network with a dead end in node 2.
FIGURE 11-3: A network with a spider trap in nodes 4, 5, and 6.

Chapter 12
FIGURE 12-1: Stuffing more and more transistors into a CPU.
FIGURE 12-2: How sampling from a bucket works.
FIGURE 12-3: An example of windowing a stream of DNA data.
FIGURE 12-4: Adding a single element to a bit vector.
FIGURE 12-5: Adding a second element can cause collisions.
FIGURE 12-6: Locating an element and determining that it exists
means searching...
FIGURE 12-7: Testing membership of a website using a Bloom
filter.
FIGURE 12-8: Counting only leading zeros.
FIGURE 12-9: How values are updated in a Count-Min Sketch.

Chapter 13
FIGURE 13-1: Associative and commutative properties allow
parallelism.
FIGURE 13-2: A schema representing a computing cluster.
FIGURE 13-3: Mapping a list of numbers by a square function.



FIGURE 13-4: Reducing a list of numbers to its sum.
FIGURE 13-5: An overview of the complete MapReduce
computation.

Chapter 14
FIGURE 14-1: A Huffman tree and its symbolic table of conversion.

Chapter 15
FIGURE 15-1: The sets of P, NP, NP-complete and NP-hard
problems.
FIGURE 15-2: From a balanced tree (left) to an unbalanced tree
(right).

Chapter 16
FIGURE 16-1: Cities represented as nodes in a weighted graph.
FIGURE 16-2: Transforming Saturday into Sunday.
FIGURE 16-3: Highlighting what transformations are applied.

Chapter 17
FIGURE 17-1: A histogram of a normal distribution.
FIGURE 17-2: A histogram of a uniform distribution.
FIGURE 17-3: Displaying the results of a Monte Carlo simulation.
FIGURE 17-4: Displaying the results of a Monte Carlo simulation
on quick select...
FIGURE 17-5: Displaying Monte Carlo simulations as input grows.

Chapter 18
FIGURE 18-1: Switching ending trips in a TSP problem may bring
better results.
FIGURE 18-2: Local search explores the landscape by hill climbing.
FIGURE 18-3: An 8-queen puzzle solved.
FIGURE 18-4: Symbols and truth tables of logic operators AND, OR,
and NOT.
FIGURE 18-5: The number of unsatisfiable clauses decreases after
random adjustm...
FIGURE 18-6: Execution is speedier because the starting point is
better.

Chapter 19



FIGURE 19-1: Looking where the objective function is going to
touch the feasibl...
FIGURE 19-2: Wondering which vertex is the right one.

Chapter 20
FIGURE 20-1: A and B are points on a map’s coordinates.
FIGURE 20-2: A maze representing a topological map with
obstacles.
FIGURE 20-3: An intricate maze to be solved by heuristics.



Introduction
You need to learn about algorithms for school or work.
Yet, all the books you’ve tried on the subject end up
being more along the lines of really good sleep-inducing
aids rather than texts to teach you something. Assuming
that you can get past the arcane symbols obviously
written by a demented two-year-old with a penchant for
squiggles, you end up having no idea of why you’d even
want to know anything about them. Most math texts are
boring! However, Algorithms For Dummies, 2nd Edition
is different. The first thing you’ll note is that this book
has a definite lack of odd symbols (especially of the
squiggly sort) floating about. Yes, you see a few (it is a
math book, after all), but what you find instead are clear
instructions for using algorithms that actually have
names and a history behind them and that perform
useful tasks. You’ll encounter simple coding techniques
to perform amazing tasks that will intrigue your friends.
You can certainly make them jealous as you perform
feats of math that they can’t begin to understand. You
get all this without having to strain your brain, even a
little, and you won’t even fall asleep (well, unless you
really want to do so). New in this edition of the book are
more details about how algorithms work, and you even
get to create your own basic math package so that you
know how to do it for that next job interview.

About This Book
Algorithms For Dummies, 2nd Edition is the math book
that you wanted in college but didn’t get. You discover,
for example, that algorithms aren’t new. After all, the
Babylonians used algorithms to perform simple tasks as



early as 1,600 BC. If the Babylonians could figure this
stuff out, certainly you can, too! This book actually has
three things that you won’t find in most math books:

Algorithms that have actual names and a historical
basis so that you can remember the algorithm and
know why someone took time to create it
Simple explanations of how the algorithm performs
awesome feats of data manipulation, data analysis, or
probability prediction
Code that shows how to use the algorithm without
actually dealing with arcane symbols that no one
without a math degree can understand

Part of the emphasis of this book is on using the right
tools. This book uses Python to perform various tasks.
Python has special features that make working with
algorithms significantly easier. For example, Python
provides access to a huge array of packages that let you
do just about anything you can imagine, and more than a
few that you can’t. However, unlike many texts that use
Python, this one doesn’t bury you in packages. We use a
select group of packages that provide great flexibility
with a lot of functionality but don’t require you to pay
anything. You can go through this entire book without
forking over a cent of your hard-earned money.
You also discover some interesting techniques in this
book. The most important is that you don’t just see the
algorithms used to perform tasks; you also get an
explanation of how the algorithms work. Unlike many
other books, Algorithms For Dummies, 2nd Edition
enables you to fully understand what you’re doing, but
without requiring you to have a PhD in math. Every one
of the examples shows the expected output and tells you



why that output is important. You aren’t left with the
feeling that something is missing.
Of course, you might still be worried about the whole
programming environment issue, and this book doesn’t
leave you in the dark there, either. This book relies on
Google Colab to provide a programming environment
(although you can use Jupyter Notebook quite easily,
too). Because you access Colab through a browser, you
can program anywhere and at any time that you have
access to a browser, even on your smartphone while at
the dentist’s office or possibly while standing on your
head watching reruns of your favorite show.
To help you absorb the concepts, this book uses the
following conventions:

Text that you’re meant to type just as it appears in the
book is in bold. The exception is when you’re working
through a step list: Because each step is bold, the text
to type is not bold.
Words that we want you to type in that are also in
italics are used as placeholders, which means that you
need to replace them with something that works for
you. For example, if you see “Type Your Name and
press Enter,” you need to replace Your Name with your
actual name.
We also use italics for terms we define. This means
that you don’t have to rely on other sources to provide
the definitions you need.
Web addresses and programming code appear in
monofont. If you're reading a digital version of this book
on a device connected to the Internet, you can click
the live link to visit that website, like this:
http://www.dummies.com.

http://www.dummies.com/


When you need to click command sequences, you see
them separated by a special arrow, like this: File    ⇒       
New File, which tells you to click File and then New File.

Foolish Assumptions
You might find it difficult to believe that we’ve assumed
anything about you — after all, we haven’t even met you
yet! Although most assumptions are indeed foolish, we
made certain assumptions to provide a starting point for
the book.
The first assumption is that you’re familiar with the
platform you want to use, because the book doesn’t
provide any guidance in this regard. (Chapter 3 does,
however, tell you how to access Google Colab from your
browser and use it to work with the code examples in the
book.) To give you the maximum information about
Python with regard to algorithms, this book doesn’t
discuss any platform-specific issues. You really do need
to know how to install applications, use applications, and
generally work with your chosen platform before you
begin working with this book.
This book isn’t a math primer. Yes, you see lots of
examples of complex math, but the emphasis is on
helping you use Python to perform common tasks using
algorithms rather than learning math theory. However,
you do get explanations of many of the algorithms used
in the book so that you can understand how the
algorithms work. Chapters 1 and 2 guide you through a
what you need to know in order to use this book
successfully. Chapter 5 is a special chapter that
discusses how to create your own math library, which
significantly aids you in understanding how math works
with code to create a reusable package. It also looks



dandy on your resume to say that you’ve created your
own math library.
This book also assumes that you can access items on the
Internet. Sprinkled throughout are numerous references
to online material that will enhance your learning
experience. However, these added sources are useful
only if you actually find and use them. You must also
have Internet access to use Google Colab.

Icons Used in This Book
As you read this book, you encounter icons in the
margins that indicate material of interest (or not, as the
case may be). Here’s what the icons mean:

 Tips are nice because they help you save time or
perform some task without a lot of extra work. The
tips in this book are time-saving techniques or
pointers to resources that you should try so that you
can get the maximum benefit from Python, or in
performing algorithm-related or data analysis–
related tasks.

 We don’t want to sound like angry parents or some
kind of maniacs, but you should avoid doing anything
that’s marked with a Warning icon. Otherwise, you
might find that your application fails to work as
expected, you get incorrect answers from seemingly
bulletproof algorithms, or (in the worst-case
scenario) you lose data.



 Whenever you see this icon, think advanced tip or
technique. You might find these tidbits of useful
information just too boring for words, or they could
contain the solution you need to get a program
running. Skip these bits of information whenever you
like.

 If you don’t get anything else out of a particular
chapter or section, remember the material marked
by this icon. This text usually contains an essential
process or a bit of information that you must know to
work with Python, or to perform algorithm-related or
data analysis–related tasks successfully.

Beyond the Book
This book isn’t the end of your Python or algorithm
learning experience — it’s really just the beginning. We
provide online content to make this book more flexible
and better able to meet your needs. That way, as we
receive email from you, we can address questions and
tell you how updates to Python, or its associated add-ons
affect book content. In fact, you gain access to all these
cool additions:

Cheat sheet: You remember using crib notes in
school to make a better mark on a test, don’t you? You
do? Well, a cheat sheet is sort of like that. It provides
you with some special notes about tasks that you can
do with Python, Google Colab, and algorithms that not
every other person knows. To find the cheat sheet for



this book, go to www.dummies.com and enter Algorithms
For Dummies, 2nd Edition Cheat Sheet in the search
box. The cheat sheet contains really neat information
such as finding the algorithms that you commonly
need to perform specific tasks.
Updates: Sometimes changes happen. For example,
we might not have seen an upcoming change when we
looked into our crystal ball during the writing of this
book. In the past, this possibility simply meant that
the book became outdated and less useful, but you
can now find updates to the book, if we make any, by
going to www.dummies.com and entering Algorithms For
Dummies, 2nd Edition in the search box.
In addition to these updates, check out the blog posts
with answers to reader questions and demonstrations
of useful book-related techniques at
http://blog.johnmuellerbooks.com/.
Companion files: Hey! Who really wants to type all
the code in the book and reconstruct all those plots
manually? Most readers prefer to spend their time
actually working with Python, performing tasks using
algorithms, and seeing the interesting things they can
do, rather than typing. Fortunately for you, the
examples used in the book are available for download,
so all you need to do is read the book to learn
algorithm usage techniques. You can find these files by
searching Algorithms For Dummies, 2nd Edition at
www.dummies.com and scrolling down the left side of the
page that opens. The source code is also at
http://www.johnmuellerbooks.com/source-code/, and
https://github.com/lmassaron/algo4d_2ed.

Where to Go from Here

http://www.dummies.com/
http://www.dummies.com/
http://blog.johnmuellerbooks.com/
http://www.dummies.com/
http://www.johnmuellerbooks.com/source-code/
https://github.com/lmassaron/algo4d_2ed


It’s time to start your algorithm learning adventure! If
you’re completely new to algorithms, you should start
with Chapter 1 and progress through the book at a pace
that allows you to absorb as much of the material as
possible. Make sure to read about Python, because the
book uses this language as needed for the examples.
If you’re a novice who’s in an absolute rush to get going
with algorithms as quickly as possible, you can skip to
Chapter 3 with the understanding that you may find
some topics a bit confusing later.
Readers who have some exposure to Python, and have
the appropriate language versions installed, can save
reading time by moving directly to Chapter 5. You can
always go back to earlier chapters as necessary when
you have questions. However, you do need to understand
how each technique works before moving to the next
one. Every technique, coding example, and procedure
has important lessons for you, and you could miss vital
content if you start skipping too much information.



Part 1
Getting Started with

Algorithms



IN THIS PART …
Defining algorithms and their design
Using Google Colab to work with algorithms
Performing essential data manipulations
Building a matrix manipulation class



Chapter 1
Introducing Algorithms

IN THIS CHAPTER
 Defining what is meant by algorithm
 Relying on computers to use algorithms to

provide solutions
 Determining how issues differ from solutions
 Performing data manipulation so that you can

find a solution

If you’re in the majority of people, you’re likely confused
as you open this book and begin your adventure with
algorithms, because most texts never tell you what an
algorithm is, much less why you’d want to use one.
Hearing about algorithms is like being in school again
with the teacher droning on; you’re falling asleep from
lack of interest because algorithms don’t seem
particularly useful to understand at the moment.
The first section of this chapter is dedicated to helping
you understand precisely what the term algorithm means
and why you benefit from knowing how to use
algorithms. Far from being arcane, algorithms are
actually used all over the place, and you have probably
used or been helped by them for years without really
knowing it. So, they’re stealth knowledge! In truth,
algorithms are becoming the spine that supports and
regulates what is important in an increasingly complex
and technological society like ours.



The second section of this chapter discusses how you use
computers to create solutions to problems using
algorithms, how to distinguish between issues and
solutions, and what you need to do to manipulate data to
discover a solution. The goal is to help you differentiate
between algorithms and other tasks that people confuse
with algorithms. In short, you discover why you really
want to know about algorithms, as well as how to apply
them to data.
The third section of the chapter discusses algorithms in a
real-world manner, that is, by viewing the terminologies
used to understand algorithms and to present algorithms
in a way that shows that the real world is often less than
perfect. Understanding how to describe an algorithm in a
realistic manner also helps to temper expectations to
reflect the realities of what an algorithm can actually do.
The final section of the chapter discusses data. The
algorithms you work with in this book require data input
in a specific form, which sometimes means changing the
data to match the algorithm’s requirements. Data
manipulation doesn’t change the content of the data.
Instead, it changes the presentation and form of the data
so that an algorithm can help you see new patterns that
weren’t apparent before (but were actually present in
the data all along).

Describing Algorithms
Even though people have solved algorithms manually for
thousands of years, doing so can consume huge amounts
of time and require many numeric computations,
depending on the complexity of the problem you want to
solve. Algorithms are all about finding solutions, and the
speedier and easier, the better. A huge gap exists
between mathematical algorithms historically created by



geniuses of their time, such as Euclid
(https://www.britannica.com/biography/Euclid-Greek-
mathematician), Sir Isaac Newton
(https://www.britannica.com/biography/Isaac-Newton), or Carl
Friedrich Gauss (https://www.britannica.com/biography/Carl-
Friedrich-Gauss), and modern algorithms created in
universities as well as private research and development
laboratories. The main reason for this gap is the use of
computers. Using computers to solve problems by
employing the appropriate algorithm speeds up the task
significantly. You may notice that more problem solutions
appear quickly today, in part, because computer power is
both cheap and constantly increasing.
When working with algorithms, you consider the inputs,
desired outputs, and the process (a sequence of actions)
used to obtain a desired output from a given input.
However, you can get the terminology wrong and view
algorithms in the wrong way because you haven’t really
considered how they work in a real-world setting.
Sources of information about algorithms often present
them in a way that proves confusing because they’re too
sophisticated or even downright incorrect. Although you
may find other definitions, this book uses the following
definitions for terms that people often confuse with
algorithms (but aren’t):

Equation: Numbers and symbols that, when taken as
a whole, equate to a specific value. An equation
always contains an equals sign so that you know that
the numbers and symbols represent the specific value
on the other side of the equals sign. Equations
generally contain variable information presented as a
symbol, but they’re not required to use variables.
Formula: A combination of numbers and symbols
used to express information or ideas. Formulas

https://www.britannica.com/biography/Euclid-Greek-mathematician
https://www.britannica.com/biography/Isaac-Newton
https://www.britannica.com/biography/Carl-Friedrich-Gauss


normally present mathematical or logical concepts,
such as defining the Greatest Common Divisor (GCD)
of two integers (the video at
https://www.khanacademy.org/math/cc-sixth-grade-math/cc-
6th-factors-and-multiples/cc-6th-gcf/v/greatest-common-
divisor tells how this works). Generally, they show the
relationship between two or more variables.

 Algorithm: A sequence of steps used to solve a
problem. The sequence presents a unique method of
addressing an issue by providing a particular solution.
An algorithm need not represent mathematical or
logical concepts, even though the presentations in
this book often do fall into those categories because
people most commonly use algorithms in this manner.
In order for a process to represent an algorithm, it
must be:

Finite: The algorithm must eventually solve the
problem. This book discusses problems with a
known solution so that you can evaluate whether
an algorithm solves the problem correctly.
Well-defined: The series of steps must be
precise and present steps that are
understandable. Especially because computers
are involved in algorithm use, the computer must
be able to understand the steps to create a
usable algorithm.
Effective: An algorithm must solve all cases of
the problem for which someone defined it. An
algorithm should always solve the problem it has
to solve. Even though you should anticipate
some failures, the incidence of failure is rare and

https://www.khanacademy.org/math/cc-sixth-grade-math/cc-6th-factors-and-multiples/cc-6th-gcf/v/greatest-common-divisor


occurs only in situations that are acceptable for
the intended algorithm use.

With these definitions in mind, the following sections
help to clarify the precise nature of algorithms. The goal
isn’t to provide a precise definition for algorithms, but
rather to help you understand how algorithms fit into the
grand scheme of things so that you can develop your own
understanding of what algorithms are and why they’re so
important.

The right way to make toast:
Defining algorithm uses
An algorithm always presents a series of steps and
doesn’t necessarily perform these steps to solve a math
formula. The scope of algorithms is incredibly large. You
can find algorithms that solve problems in science,
medicine, finance, industrial production and supply, and
communication. Algorithms provide support for all parts
of a person’s daily life. Anytime a sequence of actions
achieving something in our life is finite, well-defined, and
effective, you can view it as an algorithm. For example,
you can turn even something as trivial and simple as
making toast into an algorithm. In fact, the making toast
procedure often appears in computer science classes, as
discussed at http://brianaspinall.com/now-thats-how-you-
make-toast-using-computer-algorithms/.
Unfortunately, the algorithm on the site is flawed. The
instructor never removes the bread from the wrapper
and never plugs the toaster in, so the result is damaged
plain bread still in its wrapper stuffed into a
nonfunctional toaster (see the discussion at
http://blog.johnmuellerbooks.com/2013/03/04/procedures-in-
technical-writing/ for details). Even so, the idea is the

http://brianaspinall.com/now-thats-how-you-make-toast-using-computer-algorithms/
http://blog.johnmuellerbooks.com/2013/03/04/procedures-in-technical-writing/


correct one, yet it requires some slight, but essential,
adjustments to make the algorithm finite and effective.
One of the most common uses of algorithms is as a
means of solving formulas. For example, when working
with the GCD of two integer values, you can perform the
task manually by listing each of the factors for the two
integers and then selecting the greatest factor that is
common to both. For example, GCD (20, 25) is 5 because
5 is the largest number that divides evenly into both 20
and 25. However, processing every GCD manually is time
consuming and error prone, so the Greek mathematician
Euclid created a better algorithm to perform the task.
You can see the Euclidean method demonstrated at
https://www.khanacademy.org/computing/computer-
science/cryptography/modarithmetic/a/the-euclidean-algorithm.
However, a single formula, which is a presentation of
symbols and numbers used to express information or
ideas, can have multiple solutions, each of which is an
algorithm. In the case of GCD, another common
algorithm is one created by Derrick Henry Lehmer
(https://www.imsc.res.in/~kapil/crypto/notes/node11.html).
Because you can solve any formula multiple ways, people
spend a great deal of time comparing algorithms to
determine which one works best in a given situation.
(See a comparison of Euclid to Lehmer at
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.31.693&rep=rep1&type=pdf.)
Because our society and its accompanying technology
are changing quickly, we need algorithms that can keep
the pace. Scientific achievements such as sequencing the
human genome were possible in our age because
scientists found algorithms that run fast enough to
complete the task. Measuring which algorithm is better
in a given situation, or in an average usage situation, is

https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/the-euclidean-algorithm
https://www.imsc.res.in/~kapil/crypto/notes/node11.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.693&rep=rep1&type=pdf

