

A CPS HANDBOOK

Human Factors Handbook for Process Plant Operations

Improving Process Safety
and System Performance

Table of Contents

[Cover](#)

[Title Page](#)

[Copyright](#)

[Dedication](#)

[List of Figures](#)

[List of Tables](#)

[Glossary](#)

[Acronyms](#)

[Acknowledgements](#)

[Foreword](#)

[Part 1: Concepts, principles, and foundational knowledge](#)

[1 Introduction](#)

[1.1 What is “Human Factors”?](#)

[1.2 Purpose of this handbook](#)

[1.3 Why Human Factors?](#)

[1.4 The structure of this handbook](#)

[2 Human performance and error](#)

[2.1 Learning objectives of this Chapter](#)

[2.2 An example of successful human performance](#)

[2.3 An example of unsuccessful human performance](#)

[2.4 Key learning points from this Chapter](#)

[3 Options for supporting human performance](#)

[3.1 Learning objective of this Chapter](#)

3.2 Types of human performance

3.3 Types of human performance, errors and mistakes

3.4 Selecting options for supporting human performance

3.5 Key learning points from this Chapter

4 Supporting human capabilities

4.1 Learning objectives of this Chapter

4.2 Attention

4.3 Vigilance

4.4 Memory

4.5 Cognitive capacity

4.6 Cognitive heuristics/biases

4.7 Key learning points from this Chapter

Part 2: Procedures and job aids

5 Human performance and job aids

5.1 Learning objectives of this Chapter

5.2 An example of a major accident

5.3 The role of job aids in supporting human performance

5.4 Approach to developing effective job aids

5.5 Key learning points from this Chapter

6 Selecting a type of job aid

6.1 Learning objectives of this Chapter

6.2 Stage 1: Determining the need for a job aid

6.3 Stage 2: Selecting the type of job aid

6.4 Electronic job aids

6.5 Key learning points from this Chapter

7 Developing content of a job aid

- 7.1 Learning objectives of this Chapter
- 7.2 Outputs from task analysis
- 7.3 Outputs from Hazard Identification and Risk Analysis
- 7.4 User involvement
- 7.5 Validation of job aids
- 7.6 Keeping job aids up to date
- 7.7 Key learning points from this Chapter

8 Format and design of job aids

- 8.1 Learning objectives of this Chapter
- 8.2 Structure and layout
- 8.3 Navigation
- 8.4 Instructional Language
- 8.5 Pictorial information
- 8.6 Icons
- 8.7 Key learning points from this Chapter

Part 3: Equipment

9 Human Factors in equipment design

- 9.1 Learning objectives of this Chapter
- 9.2 Definitions
- 9.3 Major accident example
- 9.4 Error traps
- 9.5 How might poor equipment Human Factors cause error?
- 9.6 Example of poor equipment Human Factors
- 9.7 Supporting human performance by good equipment design
- 9.8 Mitigating poor design
- 9.9 Key learning points from this Chapter

Part 4: Operational competence

10 Human performance and operational competency

10.1 Learning objectives of this Chapter

10.2 What is competency?

10.3 Competency Management

10.4 An example of effective Process Safety Competency Management

10.5 An example of gaps in operational competency

10.6 Competency influencing factors

10.7 Key learning points from this Chapter

11 Determining operational competency requirements

11.1 Learning objectives of this Chapter

11.2 Identify and define safety critical competency: overview

11.3 Step 1: Identify safety critical tasks

11.4 Step 2: Identify required competency

11.5 Step 3: Define performance standards

11.6 Key learning points from this Chapter

12 Identifying learning requirements

12.1 Learning objectives of this Chapter

12.2 Competency gap analysis

12.3 Training Needs Analysis

12.4 Key learning points from this Chapter

13 Operational competency development

13.1 Learning objectives of this Chapter

13.2 Good practice in learning

13.3 Key learning points from this Chapter

14 Operational competency assessment

14.1 Learning objectives of this Chapter

14.2 Reasons for competency assessment

14.3 How to conduct assessment of competency

14.4 Reassessment

14.5 Managing competency gaps

14.6 Competency and learning records

14.7 Key learning points from this Chapter

Part 5: Task support

15 Fatigue and staffing levels

15.1 Learning objectives of this Chapter

15.2 A fatigue-related accident

15.3 Managing fatigue risk

15.4 Key learning points from this Chapter

16 Task planning and error assessment

16.1 Learning objectives of this Chapter

16.2 Incident example

16.3 Human Factors and task planning

16.4 Error assessment within task planning

16.5 Key learning points from this Chapter

17 Error management in task planning, preparation and control

17.1 Learning objectives of this Chapter

17.2 Overview

17.3 Preventing optimism bias in task planning: scheduling

17.4 Assigning safety critical tasks

17.5 Distractions and interruptions

17.6 Long and low demand tasks

17.7 The Human Factors of control of work packages

17.8 Team briefings

17.9 Human Factors of system isolation

17.10 Human Factors of managing interlocks and automatic trips

17.11 Key learning points from this Chapter

18 Capturing, challenging and correcting operational error

18.1 Learning objectives of this Chapter

18.2 Failing to spot, challenge, and recover from errors

18.3 Why do we fail to capture, challenge, and correct errors?

18.4 Coaching people to recognize risk of making errors

18.5 Error Management Training

18.6 Enabling challenge of task performance

18.7 Key learning points from this Chapter

19 Communicating information and instructions

19.1 Learning objectives of this Chapter

19.2 Incident example

19.3 Causes of poor communication

19.4 Human Factors of communications

19.5 Avoiding communication overload

19.6 Human Factors in shift handover

19.7 Key learning points from this Chapter

Part 6: Non-technical skills

20 Situation awareness and agile thinking

20.1 Learning objectives of this Chapter

20.2 What are situation awareness and agile thinking?

20.3 Accidents from poor situation awareness and rigid thinking

20.4 Causes of poor situation awareness and rigid thinking

20.5 Key learning points from this Chapter

21 Fostering situation awareness and agile thinking

21.1 Learning objectives of this Chapter

21.2 Training in situation awareness skills

21.3 Practical situation awareness tools and tactics

21.4 Recognizing loss of situation awareness

21.5 Fostering agile decision-making

21.6 Key learning points from this Chapter

22 Human Factors in emergencies

22.1 Learning objectives of this Chapter

22.2 An example accident

22.3 Supporting human performance in emergencies

22.4 Non-technical skills for emergency response

22.5 Key learning points from this Chapter

Part 7: Working with contractors and managing change

23 Working with contractors

23.1 Learning objectives of this Chapter

23.2 An accident involving contractors

23.3 Human Factors tactics for supporting contractors

23.4 Key learning points from this Chapter

24 Human Factors of operational level change

24.1 Learning objectives of this Chapter

24.2 What do we mean by operational level change?

24.3 Operational level change and major accidents

24.4 Recognizing operational level changes that impact human performance

24.5 Managing Human Factors of changes

24.6 Key learning points from this Chapter

Part 8: Recognizing and learning from performance

25 Indicators of human performance

25.1 Learning objectives of this Chapter

25.2 What are performance indicators?

25.3 Identifying human performance indicators

25.4 Examples of human performance indicators

25.5 Sharing and acting on human performance indicators

25.6 Key learning points from this Chapter

26 Learning from error and human performance

26.1 Learning objectives of this Chapter

26.2 The importance of understanding error

26.3 Examples of poor learning

26.4 Learning in high performing teams

26.5 Human Factors of investigating process

26.6 Selecting preventive Human Factors actions

26.7 Learning

26.8 Key learning points from this Chapter

References

A Human error concepts

- A.1 Human Error categorization and terminology
- A.2 Compliance concepts
- A.3 Five Principles of Human Performance
- A.4 Twelve Principles of Error Management

B Major accident case studies

- B.1. Texas City Refinery explosion, 2005
- B.2. Bayer Crop Science plant explosion in West Virginia, U.S.
- B.3. Longford gas plant explosion, Australia, 1998
- B.4. Milford Haven refinery explosion, Wales, 1994
- B.5. DuPont Yerkes chemical plant explosion, 2010
- B.6. Macondo well blowout, 2010

C Human Factors Competency Matrix

D Competency performance standards

E Learning methods and performance

F Situation awareness and behavioral markers

G Human Factors change checklist

Index

Wiley End User License Agreement

List of Tables

Chapter 3

Table 3-1 SRK types of human performance

Table 3-2 Case study example of a knowledge-based mistake

[Table 3-3 Example of a rule-based mistake](#)

[Table 3-4 Example of skill-based human error in a major accident](#)

Chapter 6

[Table 6-1: Guidelines for rating task complexity](#)

[Table 6-2: Guidelines for rating task frequency](#)

[Table 6-3: Time available to complete a task](#)

[Table 6-4: Definition of types of operational job aids](#)

[Table 6-5: Pros and cons of electronic job aids](#)

Chapter 7

[Table 7-1: Example task analysis as a table](#)

Chapter 8

[Table 8-1 Typical structure of procedures](#)

[Table 8-2 Checklist for layout of job aids](#)

[Table 8-3 Checklist for instructional language](#)

[Table 8-4 When to use different presentation options](#)

Chapter 9

[Table 9-1 Examples of poor design for hard-wired interfaces - physical pane...](#)

Chapter 10

[Table 10-1 Key features of effective process safety Competency Management](#)

Chapter 11

[Table 11-1 An example industry standard](#)

[Table 11-2 Generic example of a competency standards matrix](#)

[Table 11-3 Petrochemical example of a competency standards matrix](#)

Chapter 12

[Table 12-1 Competency Gap Analysis and Training Needs Analysis template](#)

Chapter 13

[Table 13-1 Learning methods for developing individuals](#)

[Table 13-2 Team learning methods](#)

Chapter 14

[Table 14-1 Suitability of and differences between competency assessments](#)

Chapter 15

[Table 15-1 Principles of shift design](#)

Chapter 16

[Table 16-1 Example of locks removed on wrong blinds](#)

[Table 16-2 Task planning tactics for potential high-risk situations](#)

[Table 16-3 Task planning tactics for different task errors](#)

Chapter 17

[Table 17-1 Scheduling](#)

[Table 17-2 Barrier ownership to prevent commissioning loss of containment](#)

[Table 17-3 Example tactics for enabling attention](#)

[Table 17-4 An isolation incident: relying on experience](#)

Table 17-5 Human Factors of isolation

Table 17-6 Example of defeating an interlocked valve

Table 17-7 Human Factors good practice for interlocks and trips

Chapter 18

Table 18-1: Draining pumps leads to product release (adapted from [71])

Table 18-2: Error management training and coaching(adapted from [75])

Table 18-3: High-risk observable behaviors

Table 18-4: Error detection techniques

Table 18-5: Examples of error recovery techniques

Table 18-6: Types of task verification

Chapter 19

Table 19-1: Verbal and communication techniques

Table 19-2: Shift handover contributed to a massive explosion

Table 19-3: Shift handover risk factors

Table 19-4: Elements of effective handover

Chapter 20

Table 20-1: Cognitive biases

Chapter 21

Table 21-1: Situation awareness - Assessment record

Table 21-2: Human performance tools - examples

[Table 21-3: Clues for recognizing impaired Situation Awareness](#)

[Table 21-4: Group-think – behaviors \(symptoms\)](#)

[Table 21-5: Confirmation bias – observable behavior](#)

Chapter 22

[Table 22-1: Non-technical skills and error prevention](#)

[Table 22-2: Stress indicators in emergency situations](#)

[Table 22-3: Shared situation awareness requirements](#)

[Table 22-4: Emergency decision-making aids](#)

[Table 22-5: Leadership in emergency situations](#)

[Table 22-6: Delegating and communicating in emergency situations](#)

Chapter 24

[Table 24-1 Tips on recognizing change](#)

Chapter 25

[Table 25-1 Leading and lagging indicators](#)

[Table 25-2 Specifying a human performance indicator](#)

Chapter 26

[Table 26-1 High performing teams and self-learning from error](#)

[Table 26-2 Investigation biases and mitigating strategies](#)

[Table 26-3 Human Factors investigation tools](#)

[Table 26-4 Effective learning tips](#)

APPENDICES A

[Table A-1 'Hearts and Minds' definitions for non-compliance](#)

APPENDICES C

[Table C-1 Human Factors Competency Matrix](#)

APPENDICES D

[Table D-1 Competency standards template - Skill-based task](#)

[Table D-2 Competency standards template - Procedure/Rule-based task](#)

[Table D-3 Competency standards template - Knowledge-based task](#)

APPENDICES E

[Table E-1 Application of learning methods to type of performance](#)

APPENDICES F

[Table F-1 Situation awareness - behavioral markers for oil and gas industry...](#)

APPENDICES G

[Table G-1 Human Factors Change Checklist](#)

List of Illustrations

Chapter 1

[Figure 1-1 Human Factors science, concepts and principles](#)

[Figure 1-2 Overview of the handbook, by chapter](#)

Chapter 2

[Figure 2-1 “Miracle on the Hudson”](#)

[Figure 2-2 Performance Influencing Factors](#)

Chapter 3

[Figure 3-1 The Skill-Rule-Knowledge Performance Model](#)

[Figure 3-2 Human performance modes, errors and mistakes](#)

[Figure 3-3 Strategies for knowledge and rule-based human performance](#)

[Figure 3-4 Supporting skill-based performance](#)

Chapter 4

[Figure 4-1: Typical vigilance decrement](#)

Chapter 5

[Figure 5-1: Overview of Human Factors aspects of developing a job aid](#)

Chapter 6

[Figure 6-1: Selecting a type of job aid for operational use](#)

[Figure 6-2: Using HIRA risk matrix results to assess task safety criticality...](#)

[Figure 6-3: Example of a formal safety critical task assessment](#)

[Figure 6-4: Task safety criticality rating](#)

[Figure 6-5: Mapping of type of job aid to type of task performance](#)

Chapter 7

[Figure 7-1: Example of a graphical task description](#)

[Figure 7-2: Example of HIRA results](#)

Figure 7-3: Task walk-through process

Chapter 8

Figure 8-1 Good practice SOP example

Figure 8-2 An example grab card

Figure 8-3 An example decision flow chart for unresponsive casualties

Figure 8-4 An example of icon and color coding

Figure 8-5 Examples poor and good practice of instructional language

Figure 8-6 An annotated diagram

Figure 8-7 An example of icon and color coding

Chapter 9

Figure 9-1 The Buncefield fuel storage facility before and after

Figure 9-2 A Human Factors solution to selecting the right control

Figure 9-3 A common error trap

Figure 9-4 Control and instrumentation panel

Figure 9-5 User- centered design

Figure 9-6 Examples of good and poor natural mapping for a stove

Figure 9-7 Example of good practice in natural mapping

Figure 9-8 Principles of good alarm design

Chapter 10

Figure 10-1 Competency Management

Chapter 11

Figure 11-1 SCTA and Level of Training

Chapter 13

Figure 13-1 Example of competency development through training

Figure 13-2 The Learning Pyramid

Chapter 14

Figure 14-1 Learning assessments

Chapter 15

Figure 15-1 Example of rapid rise in fatigue scores from a 16-hour day

Figure 15-2 Working without rest breaks

Figure 15-3 Working nights

Figure 15-4 Typical scope of fatigue risk policy

Figure 15-5 Guidelines on shift design

Figure 15-6 Signs and symptoms of fatigue

Figure 15-7 Signs of under staffing

Figure 15-8 Managing workloads

Figure 15-9 A simple task timeline

Chapter 16

Figure 16-1 Examples of error-likely situations

Chapter 17

Figure 17-1 Overview of HF task planning, preparation and control

Figure 17-2 Open language for inviting questions and opinions

Figure 17-3 Barrier ownership prevented wrong valve line up

[Figure 17-4 Tactics for minimizing distraction and interruptions](#)

[Figure 17-5 Schematic of some factors influencing attention span](#)

[Figure 17-6 Features of a good Tool Box Talk or task briefing.](#)

Chapter 18

[Figure 18-1: Draining pumps](#)

[Figure 18-2: Categories of cognitive error](#)

[Figure 18-3: Factors contributing to error](#)

[Figure 18-4: Error contributing factors](#)

[Figure 18-5: Cognitive skills required for error self-management](#)

[Figure 18-6: Factors building psychological safety](#)

[Figure 18-7: Challenging skills](#)

Chapter 19

[Figure 19-1: Repeating back](#)

Chapter 20

[Figure 20-1: Stages of situation awareness](#)

Chapter 21

[Figure 21-1: Behavioral Markers for “Actively seeks relevant information”](#)

[Figure 21-2: Causes of failed Situation Awareness](#)

Chapter 22

[Figure 22-1: Error recognition and management process](#)

[Figure 22-2: Human Errors – categories](#)

[Figure 22-3: Refinery explosion, Philadelphia Energy Solutions](#)

[Figure 22-4: Stress management – training strategies](#)

[Figure 22-5: Decision-making in emergency situations.](#)

Chapter 24

[Figure 24-1 Types of change and impact](#)

[Figure 24-2 Sample Management of Change process](#)

Chapter 25

[Figure 25-1 Design of human performance indicators](#)

[Figure 25-2 Gathering and reviewing feedback](#)

[Figure 25-3 Stress in the workplace and performance](#)

[Figure 25-4 Signs of mindfulness](#)

[Figure 25-5 Lessons learned – knowledge sharing](#)

Chapter 26

[Figure 26-1 Steps of effective learning – learning process](#)

[Figure 26-2 The consequences of blame culture](#)

[Figure 26-3 “New” Just Culture Process](#)

[Figure 26-4 Error – causal factors and conditions](#)

[Figure 26-5 Matching improvements to type of error](#)

[Figure 26-6 Goals of Restorative Just Culture](#)

APPENDICES A

[Figure A-1 Energy Institute human performance principles](#)

[Figure A-2 What are the causes of incidents?](#)

APPENDICES B

[Figure B-1 Texas City Refinery Explosion](#)

[Figure B-2 Bayer Crop Science plant damage](#)

[Figure B-3 Longford Esso Gas Plant explosion](#)

[Figure B-4 The explosion and fires at Milford Haven.](#)

[Figure B-5 Interaction of the key valves and vessels](#)

[Figure B-6 The polyvinyl fluoride process](#)

[Figure B-7 Deepwater Horizon Oil Spill – Macondo blowout](#)

HUMAN FACTORS HANDBOOK FOR PROCESS PLANT OPERATIONS

***Improving Process Safety and System
Performance***

**CENTER FOR CHEMICAL PROCESS SAFETY
AMERICAN INSTITUTE OF CHEMICAL ENGINEERS**
New York, NY

The logo for Wiley, featuring the word 'WILEY' in large, bold, black capital letters. The letters are slightly shadowed, giving them a 3D appearance. The logo is set against a light gray background with a subtle grid pattern.

This edition first published 2022

© 2022 the American Institute of Chemical Engineers

A Joint Publication of the American Institute of Chemical Engineers and John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at <http://www.wiley.com/go/permissions>.

The rights of CCPS to be identified as the author of the editorial material in this work have been asserted in accordance with law.

Registered Office

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither

the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Cover Design: Wiley

Cover Image: Pand P Studio/Shutterstock, manine99/ Shutterstock,
agsandrew/Shutterstock

This book is one in a series of process safety guidelines and concept books published by the Center for Chemical Process Safety (CCPS). Refer to www.wiley.com/go/ccps for full list of titles in this series.

It is sincerely hoped that the information presented in this document will lead to a better safety record for the entire industry; however, neither the American Institute of Chemical Engineers, its consultants, CCPS Technical Steering Committee and Subcommittee members, their employers, their employers' officers and directors, nor Greenstreet Berman, Ltd., and its employees and subcontractors warrant or represent, expressly or by implication, the correctness or accuracy of the content of the information presented in this document. As between (1) American Institute of Chemical Engineers, its consultants, CCPS Technical Steering Committee and Subcommittee members, their employers, their employers' officers and directors, and Greenstreet Berman, Ltd., and its employees and subcontractors, and (2) the user of this document, the user accepts any legal liability or responsibility whatsoever for the consequence of its use or misuse.

Human Factors Handbook For Process Plant Operations is
dedicated to
Jack L. McCavit

Jack is passionate about process safety, especially in the areas of culture and human factors. His work, both in his

career at Celanese, and after his retirement, has concentrated on educating workers and industry leaders on the importance of process safety, the payback of sustaining a great program, and most importantly, the impact of not making process safety a top priority. Jack had first-hand experience with the latter when he witnessed a butane vapor cloud explosion at the Celanese site in Pampa, Texas, in 1987, resulting in three fatalities and dozens of injuries. Based on his significant and relevant expertise, Jack was selected as the technical manager for the prominent Baker Panel investigation of the BP Texas City Explosion in 2005.

Jack is a CCPS Fellow, an AIChE Fellow, and is rumored to be the fifth most famous Texan in history. He was the committee chair for the CCPS flagship book, Guidelines for Risk Based Process Safety, and a driving force behind CCPS's Vision 20/20.

It is both an honor and a privilege to see Jack in action!

Louisa A. Nara, CCPSC
CCPS Global Technical Director

List of Figures

Figure 1-1 Human Factors science, concepts and principles

Figure 1-2 Overview of the handbook, by chapter

Figure 2-1 "Miracle on the Hudson"

Figure 2-2 Performance Influencing Factors

Figure 3-1 The Skill-Rule-Knowledge Performance Model

Figure 3-2 Human performance modes, errors and mistakes

Figure 3-3 Strategies for knowledge and rule-based human performance

Figure 3-4 Supporting skill-based performance

Figure 4-1: Typical vigilance decrement

Figure 5-1: Overview of Human Factors aspects of developing a job aid

Figure 6-1: Selecting a type of job aid for operational use

Figure 6-2: Using HIRA risk matrix results to assess task safety criticality

Figure 6-3: Example of a formal safety critical task assessment

Figure 6-4: Task safety criticality rating

Figure 6-5: Mapping of type of job aid to type of task performance

Figure 7-1: Example of a graphical task description