




Algorithms
2nd Edition

by John Paul Mueller and Luca Massaron



Algorithms For Dummies®, 2nd Edition
Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2022 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2022 by John Wiley & Sons, Inc. All rights reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any 
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 
107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to 
the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River 
Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related 
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written 
permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not 
associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHORS HAVE USED THEIR 
BEST EFFORTS IN PREPARING THIS WORK, THEY MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT 
TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL 
WARRANTIES, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR 
FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES 
REPRESENTATIVES, WRITTEN SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR THIS WORK. THE FACT 
THAT AN ORGANIZATION, WEBSITE, OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION AND/OR 
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE PUBLISHER AND AUTHORS 
ENDORSE THE INFORMATION OR SERVICES THE ORGANIZATION, WEBSITE, OR PRODUCT MAY PROVIDE OR 
RECOMMENDATIONS IT MAY MAKE. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS 
NOT ENGAGED IN RENDERING PROFESSIONAL SERVICES. THE ADVICE AND STRATEGIES CONTAINED HEREIN 
MAY NOT BE SUITABLE FOR YOUR SITUATION. YOU SHOULD CONSULT WITH A SPECIALIST WHERE APPROPRIATE. 
FURTHER, READERS SHOULD BE AWARE THAT WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR 
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ. NEITHER THE PUBLISHER 
NOR AUTHORS SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES, INCLUDING 
BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services, please contact our Customer Care Department within 
the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit 
https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with 
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to 
media such as a CD or DVD that is not included in the version you purchased, you may download this material at 
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2022934261

ISBN: 978-1-119-86998-6; 978-1-119-86999-3 (ebk); 978-1-119-87000-5 (ebk)

http://www.wiley.com
http://www.wiley.com/go/permissions
https://hub.wiley.com/community/support/dummies
http://booksupport.wiley.com
http://www.wiley.com


Contents at a Glance
Introduction. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1

Part 1: Getting Started with Algorithms. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7
CHAPTER 1:	 Introducing Algorithms . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9
CHAPTER 2:	 Considering Algorithm Design. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23
CHAPTER 3:	 Working with Google Colab. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41
CHAPTER 4:	 Performing Essential Data Manipulations Using Python. .  .  .  .  .  .  .  .  .  .  .  .  . 59
CHAPTER 5:	 Developing a Matrix Computation Class. . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Part 2: Understanding the Need to Sort and Search . .  .  .  .  .  .  . 97
CHAPTER 6:	 Structuring Data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 99
CHAPTER 7:	 Arranging and Searching Data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  117

Part 3: Exploring the World of Graphs . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  139
CHAPTER 8:	 Understanding Graph Basics . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  141
CHAPTER 9:	 Reconnecting the Dots. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  161
CHAPTER 10:	Discovering Graph Secrets . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  195
CHAPTER 11:	Getting the Right Web page . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  207

Part 4: Wrangling Big Data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  223
CHAPTER 12:	Managing Big Data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  225
CHAPTER 13:	Parallelizing Operations. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  249
CHAPTER 14:	Compressing and Concealing Data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  267

Part 5: Challenging Difficult Problems. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  289
CHAPTER 15:	Working with Greedy Algorithms. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  291
CHAPTER 16:	Relying on Dynamic Programming . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  307
CHAPTER 17:	Using Randomized Algorithms. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  331
CHAPTER 18:	Performing Local Search. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  349
CHAPTER 19:	Employing Linear Programming. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  367
CHAPTER 20:	Considering Heuristics. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  381

Part 6: The Part of Tens. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  401
CHAPTER 21:	Ten Algorithms That Are Changing the World. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  403
CHAPTER 22:	Ten Algorithmic Problems Yet to Solve. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  411

Index. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  417





Table of Contents      v

Table of Contents
INTRODUCTION . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1

About This Book. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  1
Foolish Assumptions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3
Icons Used in This Book. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3
Beyond the Book. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4
Where to Go from Here. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5

PART 1: GETTING STARTED WITH ALGORITHMS . .  .  .  .  .  .  .  .  .  .  .  . 7

CHAPTER 1:	 Introducing Algorithms. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 9
Describing Algorithms . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  10

The right way to make toast: Defining algorithm uses . .  .  .  .  .  .  .  .  .  12
Finding algorithms everywhere. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  14

Using Computers to Solve Problems. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  15
Getting the most out of modern CPUs and GPUs . .  .  .  .  .  .  .  .  .  .  .  .  .  16
Working with special-purpose chips. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  17
Networks: Sharing is more than caring. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  18
Leveraging available data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  18

Distinguishing between Issues and Solutions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  19
Being correct and efficient. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  19
Discovering there is no free lunch . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  20
Adapting the strategy to the problem . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  20
Describing algorithms in a lingua franca. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  20
Facing problems that are like brick walls, only harder. .  .  .  .  .  .  .  .  .  .  21

Structuring Data to Obtain a Solution . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  21
Understanding a computer’s point of view. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  22
Arranging data makes the difference. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  22

CHAPTER 2:	 Considering Algorithm Design . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23
Starting to Solve a Problem. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  24

Modeling real-world problems . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  25
Finding solutions and counterexamples. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  26
Standing on the shoulders of giants. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  27

Dividing and Conquering. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  28
Avoiding brute-force solutions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  29
Keeping it simple, silly (KISS) . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  29
Breaking down a problem is usually better. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  30

Learning that Greed Can Be Good. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  30
Applying greedy reasoning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Reaching a good solution. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  31

Computing Costs and Following Heuristics. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  32



vi      Algorithms For Dummies

Representing the problem as a space. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  33
Going random and being blessed by luck. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  34
Using a heuristic and a cost function. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  34

Evaluating Algorithms. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  35
Simulating using abstract machines. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  36
Getting even more abstract. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  37
Working with functions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  38

CHAPTER 3:	 Working with Google Colab. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 41
Defining Google Colab . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  42

Understanding what Google Colab does. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  42
Getting familiar with Google Colab features. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  44

Working with Notebooks. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  47
Creating a new notebook. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  47
Opening existing notebooks . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  47
Saving notebooks . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  50

Performing Common Tasks. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  51
Creating code cells . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  52
Creating text cells . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  54
Creating special cells. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  54
Editing cells. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  55
Moving cells . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  55

Using Hardware Acceleration . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  55
Executing the Code. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  56
Getting Help. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  57

CHAPTER 4:	 Performing Essential Data Manipulations  
Using Python . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 59
Performing Calculations Using Vectors and Matrixes. .  .  .  .  .  .  .  .  .  .  .  .  .  60

Understanding scalar and vector operations. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  61
Performing vector multiplication . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  63
Creating a matrix is the right way to start. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  63
Multiplying matrixes. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  64
Defining advanced matrix operations . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  65

Creating Combinations the Right Way. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  67
Distinguishing permutations. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  68
Shuffling combinations. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  69
Facing repetitions . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  70

Getting the Desired Results Using Recursion. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  71
Explaining recursion. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  71
Eliminating tail call recursion. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  74

Performing Tasks More Quickly . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  75
Considering divide and conquer. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  75
Distinguishing between different possible solutions. .  .  .  .  .  .  .  .  .  .  .  78



Table of Contents      vii

CHAPTER 5:	 Developing a Matrix Computation Class. .  .  .  .  .  .  .  .  .  .  .  . 79
Avoiding the Use of NumPy. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  80
Understanding Why Using a Class is Important. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  81
Building the Basic Class . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  82

Creating a matrix. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  83
Printing the resulting matrix . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  84
Accessing specific matrix elements . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  85
Performing scalar and matrix addition . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  86
Performing multiplication . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  87

Manipulating the Matrix. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  90
Transposing a matrix . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  91
Calculating the determinant . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  91
Flattening the matrix. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  95

PART 2: UNDERSTANDING THE NEED  
TO SORT AND SEARCH . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 97

CHAPTER 6:	 Structuring Data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 99
Determining the Need for Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . .100

Making it easier to see the content. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  100
Matching data from various sources. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  101
Considering the need for remediation. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  102

Stacking and Piling Data in Order. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  105
Ordering in stacks. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  105
Using queues. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  107
Finding data using dictionaries. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  108

Working with Trees. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  109
Understanding the basics of trees . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  109
Building a tree. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  110

Representing Relations in a Graph. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  112
Going beyond trees. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  113
Building graphs. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  114

CHAPTER 7:	 Arranging and Searching Data . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  117
Sorting Data Using Merge Sort and Quick Sort. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  118

Understanding why sorting data is important . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  118
Employing better sort techniques. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  122

Using Search Trees and the Heap. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  127
Considering the need to search effectively. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  127
Building a binary search tree. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  129
Performing specialized searches using a binary heap. .  .  .  .  .  .  .  .  .  131

Relying on Hashing. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  132
Putting everything into buckets. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  132
Avoiding collisions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  134
Creating your own hash function. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  135



viii      Algorithms For Dummies

PART 3: EXPLORING THE WORLD OF GRAPHS. .  .  .  .  .  .  .  .  .  .  .  .  139

CHAPTER 8:	 Understanding Graph Basics. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  141
Explaining the Importance of Networks. . . . . . . . . . . . . . . . . . . . . . . . .142

Considering the essence of a graph. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  142
Finding graphs everywhere. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  145
Showing the social side of graphs. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  146
Understanding subgraphs. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  147

Defining How to Draw a Graph. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  148
Distinguishing the key attributes . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  149
Drawing the graph. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  150

Measuring Graph Functionality. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  151
Counting edges and vertexes . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  152
Computing centrality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154

Putting a Graph in Numeric Format. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  157
Adding a graph to a matrix . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  157
Using sparse representations. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  158
Using a list to hold a graph . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  159

CHAPTER 9:	 Reconnecting the Dots . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  161
Traversing a Graph Efficiently. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  162

Creating the graph . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  163
Applying breadth-first search . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  164
Applying depth-first search . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  165
Determining which application to use. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  167

Sorting the Graph Elements. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  168
Working on Directed Acyclic Graphs (DAGs). .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  169
Relying on topological sorting. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  169

Reducing to a Minimum Spanning Tree. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  170
Getting the minimum spanning tree historical context. .  .  .  .  .  .  .  .  170
Working with unweighted versus weighted graphs. .  .  .  .  .  .  .  .  .  .  .  171
Creating a minimum spanning tree example. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  171
Discovering the correct algorithms to use. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  173
Introducing priority queues. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  174
Leveraging Prim’s algorithm . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  175
Testing Kruskal’s algorithm . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  177
Determining which algorithm works best. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  179

Finding the Shortest Route . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  180
Defining what it means to find the shortest path. .  .  .  .  .  .  .  .  .  .  .  .  .  180
Adding a negative edge . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  182
Explaining Dijkstra’s algorithm . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  184
Explaining the Bellman-Ford algorithm. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  187
Explaining the Floyd-Warshall algorithm. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  190



Table of Contents      ix

CHAPTER 10:	Discovering Graph Secrets. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  195
Envisioning Social Networks as Graphs. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  196

Clustering networks in groups. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  196
Discovering communities. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  199

Navigating a Graph. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  202
Counting the degrees of separation. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  202
Walking a graph randomly. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  204

CHAPTER 11:	Getting the Right Web page . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  207
Finding the World in a Search Engine. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  208

Searching the Internet for data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  208
Considering how to find the right data . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  209

Explaining the PageRank Algorithm. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  210
Understanding the reasoning behind the  
PageRank algorithm. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  210
Explaining the nuts and bolts of PageRank. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  212

Implementing PageRank . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  212
Implementing a Python script. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  213
Struggling with a naive implementation . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  216
Introducing boredom and teleporting. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  219
Looking inside the life of a search engine. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  220
Considering other uses of PageRank. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  221

Going Beyond the PageRank Paradigm. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  221
Introducing semantic queries. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  222
Using AI for ranking search results. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  222

PART 4: WRANGLING BIG DATA. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  223

CHAPTER 12:	Managing Big Data . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  225
Transforming Power into Data . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  226

Understanding Moore’s implications. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  226
Finding data everywhere . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  228
Getting algorithms into business . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  231

Streaming Flows of Data . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  233
Analyzing streams with the right recipe. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  234
Reserving the right data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  235

Sketching an Answer from Stream Data . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  240
Filtering stream elements by heart. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  240
Demonstrating the Bloom filter . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  243
Finding the number of distinct elements. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  246
Learning to count objects in a stream. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  247



x      Algorithms For Dummies

CHAPTER 13:	Parallelizing Operations. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  249
Managing Immense Amounts of Data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  250

Understanding the parallel paradigm . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  251
Distributing files and operations. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  253
Employing the MapReduce solution. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  255

Working Out Algorithms for MapReduce. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  259
Setting up a MapReduce simulation. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  260
Inquiring by mapping. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  262

CHAPTER 14:	Compressing and Concealing Data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  267
Making Data Smaller. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  268

Understanding encoding. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  268
Considering the effects of compression . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  270
Choosing a particular kind of compression. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  271
Choosing your encoding wisely. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  273
Encoding using Huffman compression . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  276
Remembering sequences with LZW. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  278

Hiding Your Secrets with Cryptography. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  282
Substituting characters. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  283
Working with AES encryption. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  285

PART 5: CHALLENGING DIFFICULT PROBLEMS. .  .  .  .  .  .  .  .  .  .  .  289

CHAPTER 15:	Working with Greedy Algorithms. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  291
Deciding When It Is Better to Be Greedy. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  292

Understanding why greedy is good . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  293
Keeping greedy algorithms under control. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  294
Considering NP complete problems. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  297

Finding Out How Greedy Can Be Useful . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  299
Arranging cached computer data. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  299
Competing for resources. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  301
Revisiting Huffman coding. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  303

CHAPTER 16:	Relying on Dynamic Programming. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  307
Explaining Dynamic Programming. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  308

Obtaining a historical basis. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  308
Making problems dynamic. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  309
Casting recursion dynamically. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  311
Leveraging memoization . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  314

Discovering the Best Dynamic Recipes . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  316
Looking inside the knapsack. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  317
Touring around cities . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  321
Approximating string search. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  326



Table of Contents      xi

CHAPTER 17:	Using Randomized Algorithms. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  331
Defining How Randomization Works. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  332

Considering why randomization is needed. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  333
Understanding how probability works. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  334
Understanding distributions. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  335
Simulating the use of the Monte Carlo method. .  .  .  .  .  .  .  .  .  .  .  .  .  .  339

Putting Randomness into your Logic. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  341
Calculating a median using quick select. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  341
Doing simulations using Monte Carlo . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  344
Ordering faster with quick sort. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  347

CHAPTER 18:	Performing Local Search . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  349
Understanding Local Search. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  350

Knowing the neighborhood. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  351
Presenting local search tricks . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  353

Explaining hill climbing with n-queens. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  354
Discovering simulated annealing . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  357
Avoiding repeats using Tabu Search. . . . . . . . . . . . . . . . . . . . . . . . .358

Solving Satisfiability of Boolean Circuits . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  359
Solving 2-SAT using randomization. . . . . . . . . . . . . . . . . . . . . . . . . .360
Implementing the Python code. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  361
Realizing that the starting point is important. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  365

CHAPTER 19:	Employing Linear Programming. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  367
Using Linear Functions as a Tool. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  368

Grasping the basic math you need. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  369
Learning to simplify when planning. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  371
Working with geometry using simplex. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  372
Understanding the limitations. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  373

Using Linear Programming in Practice. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  374
Setting up PuLP at home . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  375
Optimizing production and revenue . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  376

CHAPTER 20:	Considering Heuristics. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  381
Differentiating Heuristics. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  382

Considering the goals of heuristics. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  383
Going from genetic to AI. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  383

Routing Robots Using Heuristics. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  384
Scouting in unknown territories. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  385
Using distance measures as heuristics . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  387

Explaining Path Finding Algorithms . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  388
Creating a maze. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  388
Looking for a quick best-first route. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  392
Going heuristically around by A* . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  396



xii      Algorithms For Dummies

PART 6: THE PART OF TENS. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  401

CHAPTER 21:	Ten Algorithms That Are Changing the World. .  .  .  .  403
Using Sort Routines. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  404
Looking for Things with Search Routines. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  404
Shaking Things Up with Random Numbers. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  405
Performing Data Compression. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  406
Keeping Data Secret. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  406
Changing the Data Domain. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  407
Analyzing Links. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  407
Spotting Data Patterns. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  408
Dealing with Automation and Automatic Responses. .  .  .  .  .  .  .  .  .  .  .  .  .  409
Creating Unique Identifiers . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  409

CHAPTER 22:	Ten Algorithmic Problems Yet to Solve. .  .  .  .  .  .  .  .  .  .  .  .  411
Solving Problems Quickly. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  412
Solving 3SUM Problems More Efficiently. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  412
Making Matrix Multiplication Faster. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  413
Determining Whether an Application Will End. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  413
Creating and Using One-Way Functions. . . . . . . . . . . . . . . . . . . . . . . . .414
Multiplying Really Large Numbers . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  414
Dividing a Resource Equally. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  415
Reducing Edit Distance Calculation Time. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  415
Playing the Parity Game. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  416
Understanding Spatial Issues . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  416

INDEX. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  417



Introduction      1

Introduction

You need to learn about algorithms for school or work. Yet, all the books 
you’ve tried on the subject end up being more along the lines of really good 
sleep-inducing aids rather than texts to teach you something. Assuming 

that you can get past the arcane symbols obviously written by a demented  
two-year-old with a penchant for squiggles, you end up having no idea of why 
you’d even want to know anything about them. Most math texts are boring! 
However, Algorithms For Dummies, 2nd Edition is different. The first thing you’ll 
note is that this book has a definite lack of odd symbols (especially of the squiggly 
sort) floating about. Yes, you see a few (it is a math book, after all), but what you 
find instead are clear instructions for using algorithms that actually have names 
and a history behind them and that perform useful tasks. You’ll encounter simple 
coding techniques to perform amazing tasks that will intrigue your friends. You 
can certainly make them jealous as you perform feats of math that they can’t 
begin to understand. You get all this without having to strain your brain, even a 
little, and you won’t even fall asleep (well, unless you really want to do so). New 
in this edition of the book are more details about how algorithms work, and you 
even get to create your own basic math package so that you know how to do it for 
that next job interview.

About This Book
Algorithms For Dummies, 2nd Edition is the math book that you wanted in college 
but didn’t get. You discover, for example, that algorithms aren’t new. After all,  
the Babylonians used algorithms to perform simple tasks as early as 1,600 BC. If 
the Babylonians could figure this stuff out, certainly you can, too! This book actu-
ally has three things that you won’t find in most math books:

»» Algorithms that have actual names and a historical basis so that you can 
remember the algorithm and know why someone took time to create it

»» Simple explanations of how the algorithm performs awesome feats of data 
manipulation, data analysis, or probability prediction

»» Code that shows how to use the algorithm without actually dealing with 
arcane symbols that no one without a math degree can understand



2      Algorithms For Dummies

Part of the emphasis of this book is on using the right tools. This book uses Python 
to perform various tasks. Python has special features that make working with 
algorithms significantly easier. For example, Python provides access to a huge 
array of packages that let you do just about anything you can imagine, and more 
than a few that you can’t. However, unlike many texts that use Python, this one 
doesn’t bury you in packages. We use a select group of packages that provide great 
flexibility with a lot of functionality but don’t require you to pay anything. You can 
go through this entire book without forking over a cent of your hard-earned 
money.

You also discover some interesting techniques in this book. The most important is 
that you don’t just see the algorithms used to perform tasks; you also get an 
explanation of how the algorithms work. Unlike many other books, Algorithms For 
Dummies, 2nd Edition enables you to fully understand what you’re doing, but 
without requiring you to have a PhD in math. Every one of the examples shows the 
expected output and tells you why that output is important. You aren’t left with 
the feeling that something is missing.

Of course, you might still be worried about the whole programming environment 
issue, and this book doesn’t leave you in the dark there, either. This book relies on 
Google Colab to provide a programming environment (although you can use Jupy-
ter Notebook quite easily, too). Because you access Colab through a browser, you 
can program anywhere and at any time that you have access to a browser, even on 
your smartphone while at the dentist’s office or possibly while standing on your 
head watching reruns of your favorite show.

To help you absorb the concepts, this book uses the following conventions:

»» Text that you’re meant to type just as it appears in the book is in bold. The 
exception is when you’re working through a step list: Because each step is 
bold, the text to type is not bold.

»» Words that we want you to type in that are also in italics are used as place-
holders, which means that you need to replace them with something that 
works for you. For example, if you see “Type Your Name and press Enter,” you 
need to replace Your Name with your actual name.

»» We also use italics for terms we define. This means that you don’t have to rely 
on other sources to provide the definitions you need.

»» Web addresses and programming code appear in monofont. If you’re reading 
a digital version of this book on a device connected to the Internet, you can 
click the live link to visit that website, like this: http://www.dummies.com.

»» When you need to click command sequences, you see them separated by a 
special arrow, like this: File  ➪    New File, which tells you to click File and then 
New File.

http://www.dummies.com/


Introduction      3

Foolish Assumptions
You might find it difficult to believe that we’ve assumed anything about you — 
after all, we haven’t even met you yet! Although most assumptions are indeed 
foolish, we made certain assumptions to provide a starting point for the book.

The first assumption is that you’re familiar with the platform you want to use, 
because the book doesn’t provide any guidance in this regard. (Chapter  3 does, 
however, tell you how to access Google Colab from your browser and use it to work 
with the code examples in the book.) To give you the maximum information about 
Python with regard to algorithms, this book doesn’t discuss any platform-specific 
issues. You really do need to know how to install applications, use applications, and 
generally work with your chosen platform before you begin working with this book.

This book isn’t a math primer. Yes, you see lots of examples of complex math, but 
the emphasis is on helping you use Python to perform common tasks using algo-
rithms rather than learning math theory. However, you do get explanations of 
many of the algorithms used in the book so that you can understand how the 
algorithms work. Chapters 1 and 2 guide you through a what you need to know in 
order to use this book successfully. Chapter 5 is a special chapter that discusses 
how to create your own math library, which significantly aids you in understand-
ing how math works with code to create a reusable package. It also looks dandy on 
your resume to say that you’ve created your own math library.

This book also assumes that you can access items on the Internet. Sprinkled 
throughout are numerous references to online material that will enhance your 
learning experience. However, these added sources are useful only if you actually 
find and use them. You must also have Internet access to use Google Colab.

Icons Used in This Book
As you read this book, you encounter icons in the margins that indicate material 
of interest (or not, as the case may be). Here’s what the icons mean:

Tips are nice because they help you save time or perform some task without a lot 
of extra work. The tips in this book are time-saving techniques or pointers to 
resources that you should try so that you can get the maximum benefit from 
Python, or in performing algorithm-related or data analysis–related tasks.



4      Algorithms For Dummies

We don’t want to sound like angry parents or some kind of maniacs, but you 
should avoid doing anything that’s marked with a Warning icon. Otherwise, you 
might find that your application fails to work as expected, you get incorrect 
answers from seemingly bulletproof algorithms, or (in the worst-case scenario) 
you lose data.

Whenever you see this icon, think advanced tip or technique. You might find these 
tidbits of useful information just too boring for words, or they could contain the 
solution you need to get a program running. Skip these bits of information when-
ever you like.

If you don’t get anything else out of a particular chapter or section, remember the 
material marked by this icon. This text usually contains an essential process or a 
bit of information that you must know to work with Python, or to perform  
algorithm-related or data analysis–related tasks successfully.

Beyond the Book
This book isn’t the end of your Python or algorithm learning experience — it’s 
really just the beginning. We provide online content to make this book more flex-
ible and better able to meet your needs. That way, as we receive email from you, 
we can address questions and tell you how updates to Python, or its associated 
add-ons affect book content. In fact, you gain access to all these cool additions:

»» Cheat sheet: You remember using crib notes in school to make a better mark 
on a test, don’t you? You do? Well, a cheat sheet is sort of like that. It provides 
you with some special notes about tasks that you can do with Python, Google 
Colab, and algorithms that not every other person knows. To find the cheat 
sheet for this book, go to www.dummies.com and enter Algorithms For 
Dummies, 2nd Edition Cheat Sheet in the search box. The cheat sheet contains 
really neat information such as finding the algorithms that you commonly 
need to perform specific tasks.

»» Updates: Sometimes changes happen. For example, we might not have seen 
an upcoming change when we looked into our crystal ball during the writing 
of this book. In the past, this possibility simply meant that the book became 
outdated and less useful, but you can now find updates to the book, if we 
make any, by going to www.dummies.com and entering Algorithms For 
Dummies, 2nd Edition in the search box.

In addition to these updates, check out the blog posts with answers to reader 
questions and demonstrations of useful book-related techniques at http://
blog.johnmuellerbooks.com/.

http://www.dummies.com
http://www.dummies.com
http://blog.johnmuellerbooks.com/
http://blog.johnmuellerbooks.com/


Introduction      5

»» Companion files: Hey! Who really wants to type all the code in the book and 
reconstruct all those plots manually? Most readers prefer to spend their time 
actually working with Python, performing tasks using algorithms, and seeing 
the interesting things they can do, rather than typing. Fortunately for you, the 
examples used in the book are available for download, so all you need to do is 
read the book to learn algorithm usage techniques. You can find these files by 
searching Algorithms For Dummies, 2nd Edition at www.dummies.com and 
scrolling down the left side of the page that opens. The source code is also at 
http://www.johnmuellerbooks.com/source-code/, and https://
github.com/lmassaron/algo4d_2ed.

Where to Go from Here
It’s time to start your algorithm learning adventure! If you’re completely new to 
algorithms, you should start with Chapter 1 and progress through the book at a 
pace that allows you to absorb as much of the material as possible. Make sure to 
read about Python, because the book uses this language as needed for the examples.

If you’re a novice who’s in an absolute rush to get going with algorithms as quickly 
as possible, you can skip to Chapter 3 with the understanding that you may find 
some topics a bit confusing later.

Readers who have some exposure to Python, and have the appropriate language 
versions installed, can save reading time by moving directly to Chapter 5. You can 
always go back to earlier chapters as necessary when you have questions. How-
ever, you do need to understand how each technique works before moving to the 
next one. Every technique, coding example, and procedure has important lessons 
for you, and you could miss vital content if you start skipping too much 
information.

http://www.dummies.com
http://www.johnmuellerbooks.com/source-code/
https://github.com/lmassaron/algo4d_2ed
https://github.com/lmassaron/algo4d_2ed




1Getting Started 
with Algorithms



IN THIS PART . . .

Defining algorithms and their design

Using Google Colab to work with algorithms

Performing essential data manipulations

Building a matrix manipulation class



CHAPTER 1  Introducing Algorithms      9

Chapter 1
Introducing Algorithms

If you’re in the majority of people, you’re likely confused as you open this book 
and begin your adventure with algorithms, because most texts never tell you 
what an algorithm is, much less why you’d want to use one. Hearing about 

algorithms is like being in school again with the teacher droning on; you’re falling 
asleep from lack of interest because algorithms don’t seem particularly useful to 
understand at the moment.

The first section of this chapter is dedicated to helping you understand precisely 
what the term algorithm means and why you benefit from knowing how to use 
algorithms. Far from being arcane, algorithms are actually used all over the place, 
and you have probably used or been helped by them for years without really know-
ing it. So, they’re stealth knowledge! In truth, algorithms are becoming the spine 
that supports and regulates what is important in an increasingly complex and 
technological society like ours.

The second section of this chapter discusses how you use computers to create 
solutions to problems using algorithms, how to distinguish between issues and 
solutions, and what you need to do to manipulate data to discover a solution. The 
goal is to help you differentiate between algorithms and other tasks that people 
confuse with algorithms. In short, you discover why you really want to know 
about algorithms, as well as how to apply them to data.

IN THIS CHAPTER

»» Defining what is meant by algorithm

»» Relying on computers to use 
algorithms to provide solutions

»» Determining how issues differ from 
solutions

»» Performing data manipulation so 
that you can find a solution



10      PART 1  Getting Started with Algorithms

The third section of the chapter discusses algorithms in a real-world manner, that 
is, by viewing the terminologies used to understand algorithms and to present 
algorithms in a way that shows that the real world is often less than perfect. 
Understanding how to describe an algorithm in a realistic manner also helps to 
temper expectations to reflect the realities of what an algorithm can actually do.

The final section of the chapter discusses data. The algorithms you work with  
in this book require data input in a specific form, which sometimes means 
changing the data to match the algorithm’s requirements. Data manipulation 
doesn’t change the content of the data. Instead, it changes the presentation and 
form of the data so that an algorithm can help you see new patterns that weren’t 
apparent before (but were actually present in the data all along).

Describing Algorithms
Even though people have solved algorithms manually for thousands of years, 
doing so can consume huge amounts of time and require many numeric computa-
tions, depending on the complexity of the problem you want to solve. Algorithms 
are all about finding solutions, and the speedier and easier, the better. A huge gap 
exists between mathematical algorithms historically created by geniuses of their 
time, such as Euclid (https://www.britannica.com/biography/Euclid-Greek- 
mathematician), Sir Isaac Newton (https://www.britannica.com/biography/ 
Isaac-Newton), or Carl Friedrich Gauss (https://www.britannica.com/biography/ 
Carl-Friedrich-Gauss), and modern algorithms created in universities as well 
as private research and development laboratories. The main reason for this gap is 
the use of computers. Using computers to solve problems by employing the appro-
priate algorithm speeds up the task significantly. You may notice that more prob-
lem solutions appear quickly today, in part, because computer power is both cheap 
and constantly increasing.

When working with algorithms, you consider the inputs, desired outputs, and the 
process (a sequence of actions) used to obtain a desired output from a given input. 
However, you can get the terminology wrong and view algorithms in the wrong 
way because you haven’t really considered how they work in a real-world setting.

Sources of information about algorithms often present them in a way that proves 
confusing because they’re too sophisticated or even downright incorrect. Although 
you may find other definitions, this book uses the following definitions for terms 
that people often confuse with algorithms (but aren’t):

https://www.britannica.com/biography/Euclid-Greek-mathematician
https://www.britannica.com/biography/Euclid-Greek-mathematician
https://www.britannica.com/biography/Isaac-Newton
https://www.britannica.com/biography/Isaac-Newton
https://www.britannica.com/biography/Carl-Friedrich-Gauss
https://www.britannica.com/biography/Carl-Friedrich-Gauss


CHAPTER 1  Introducing Algorithms      11

»» Equation: Numbers and symbols that, when taken as a whole, equate to a 
specific value. An equation always contains an equals sign so that you know 
that the numbers and symbols represent the specific value on the other side 
of the equals sign. Equations generally contain variable information presented 
as a symbol, but they’re not required to use variables.

»» Formula: A combination of numbers and symbols used to express informa-
tion or ideas. Formulas normally present mathematical or logical concepts, 
such as defining the Greatest Common Divisor (GCD) of two integers (the 
video at https://www.khanacademy.org/math/cc-sixth-grade-math/ 
cc-6th-factors-and-multiples/cc-6th-gcf/v/greatest-common- 
divisor tells how this works). Generally, they show the relationship between 
two or more variables.

»» Algorithm: A sequence of steps used to solve a problem. The sequence 
presents a unique method of addressing an issue by providing a particular 
solution. An algorithm need not represent mathematical or logical concepts, 
even though the presentations in this book often do fall into those categories 
because people most commonly use algorithms in this manner. In order for a 
process to represent an algorithm, it must be:

•	 Finite: The algorithm must eventually solve the problem. This book 
discusses problems with a known solution so that you can evaluate 
whether an algorithm solves the problem correctly.

•	 Well-defined: The series of steps must be precise and present steps that 
are understandable. Especially because computers are involved in 
algorithm use, the computer must be able to understand the steps to 
create a usable algorithm.

•	 Effective: An algorithm must solve all cases of the problem for which 
someone defined it. An algorithm should always solve the problem it has 
to solve. Even though you should anticipate some failures, the incidence of 
failure is rare and occurs only in situations that are acceptable for the 
intended algorithm use.

With these definitions in mind, the following sections help to clarify the precise 
nature of algorithms. The goal isn’t to provide a precise definition for algorithms, 
but rather to help you understand how algorithms fit into the grand scheme of 
things so that you can develop your own understanding of what algorithms are 
and why they’re so important.

https://www.khanacademy.org/math/cc-sixth-grade-math/cc-6th-factors-and-multiples/cc-6th-gcf/v/greatest-common-divisor
https://www.khanacademy.org/math/cc-sixth-grade-math/cc-6th-factors-and-multiples/cc-6th-gcf/v/greatest-common-divisor
https://www.khanacademy.org/math/cc-sixth-grade-math/cc-6th-factors-and-multiples/cc-6th-gcf/v/greatest-common-divisor


12      PART 1  Getting Started with Algorithms

The right way to make toast:  
Defining algorithm uses
An algorithm always presents a series of steps and doesn’t necessarily perform 
these steps to solve a math formula. The scope of algorithms is incredibly large. 
You can find algorithms that solve problems in science, medicine, finance, indus-
trial production and supply, and communication. Algorithms provide support for 
all parts of a person’s daily life. Anytime a sequence of actions achieving some-
thing in our life is finite, well-defined, and effective, you can view it as an algo-
rithm. For example, you can turn even something as trivial and simple as making 
toast into an algorithm. In fact, the making toast procedure often appears in com-
puter science classes, as discussed at http://brianaspinall.com/now-thats- 
how-you-make-toast-using-computer-algorithms/.

Unfortunately, the algorithm on the site is flawed. The instructor never removes 
the bread from the wrapper and never plugs the toaster in, so the result is dam-
aged plain bread still in its wrapper stuffed into a nonfunctional toaster (see the 
discussion at http://blog.johnmuellerbooks.com/2013/03/04/procedures- 
in-technical-writing/ for details). Even so, the idea is the correct one, yet it 
requires some slight, but essential, adjustments to make the algorithm finite and 
effective.

One of the most common uses of algorithms is as a means of solving formulas. For 
example, when working with the GCD of two integer values, you can perform the 
task manually by listing each of the factors for the two integers and then selecting 
the greatest factor that is common to both. For example, GCD (20, 25) is 5 because 
5 is the largest number that divides evenly into both 20 and 25. However, process-
ing every GCD manually is time consuming and error prone, so the Greek mathe-
matician Euclid created a better algorithm to perform the task. You can see the 
Euclidean method demonstrated at https://www.khanacademy.org/computing/ 
computer-science/cryptography/modarithmetic/a/the-euclidean- 
algorithm.

However, a single formula, which is a presentation of symbols and numbers used 
to express information or ideas, can have multiple solutions, each of which is an 
algorithm. In the case of GCD, another common algorithm is one created by 
Derrick Henry Lehmer (https://www.imsc.res.in/~kapil/crypto/notes/ 
node11.html). Because you can solve any formula multiple ways, people spend a 
great deal of time comparing algorithms to determine which one works best in a 
given situation. (See a comparison of Euclid to Lehmer at http://citeseerx. 
ist.psu.edu/viewdoc/download?doi=10.1.1.31.693&rep=rep1&type=pdf.)

Because our society and its accompanying technology are changing quickly, we 
need algorithms that can keep the pace. Scientific achievements such as 

http://brianaspinall.com/now-thats-how-you-make-toast-using-computer-algorithms/
http://brianaspinall.com/now-thats-how-you-make-toast-using-computer-algorithms/
http://blog.johnmuellerbooks.com/2013/03/04/procedures-in-technical-writing/
http://blog.johnmuellerbooks.com/2013/03/04/procedures-in-technical-writing/
https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/the-euclidean-algorithm
https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/the-euclidean-algorithm
https://www.khanacademy.org/computing/computer-science/cryptography/modarithmetic/a/the-euclidean-algorithm
https://www.imsc.res.in/~kapil/crypto/notes/node11.html
https://www.imsc.res.in/~kapil/crypto/notes/node11.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.693&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.693&rep=rep1&type=pdf


CHAPTER 1  Introducing Algorithms      13

sequencing the human genome were possible in our age because scientists found 
algorithms that run fast enough to complete the task. Measuring which algorithm 
is better in a given situation, or in an average usage situation, is really serious 
stuff and is a topic of discussion among computer scientists.

When it comes to computer science, the same algorithm can have multiple 
presentations; why do it one way when you can invent multiple methods just for 
fun? For example, you can present the Euclidean algorithm in both recursive and 
iterative forms, as explained at http://cs.stackexchange.com/questions/1447/ 
what-is-most-efficient-for-gcd. In short, algorithms present a method of 
solving formulas, but it would be a mistake to say that just one acceptable algo-
rithm exists for any given formula or that only one acceptable presentation of an 
algorithm exists. Using algorithms to solve problems of various sorts has a long 
history — it isn’t something that has just happened.

Even if you limit your gaze to computer science, data science, artificial intelli-
gence, and other technical areas, you find many kinds of algorithms — too many 
for a single book. For example, The Art of Computer Programming, by Donald 
E.  Knuth (Addison-Wesley), spans 3,168 pages in four volumes (see http:// 
www.amazon.com/exec/obidos/ASIN/0321751043/datacservip0f-20/) and still 
doesn’t manage to cover the topic (the author intended to write more volumes). 
However, here are some interesting uses for you to consider:

»» Searching: Locating information or verifying that the information you see is the 
information you want is an essential task. Without this ability, you couldn’t 
perform many tasks online, such as finding the website on the Internet selling 
the perfect coffee pot for your office. These algorithms change constantly, as 
shown by Google’s recent change in its algorithm (https://www.youaretech. 
com/blog/2021/1/26/webpage-experience-a-major-google-algorithm- 
update-in-2021nbsp).

»» Sorting: Determining which order to use to present information is important 
because most people today suffer from information overload, and putting 
information in order is one way to reduce the onrush of data. Imagine going 
to Amazon, finding that more than a thousand coffee pots are for sale there, 
and yet not being able to sort them in order of price or the most positive 
review. Moreover, many complex algorithms require data in the proper order 
to work dependably, so ordering is an important requisite for solving more 
problems.

»» Transforming: Converting one sort of data to another sort of data is critical  
to understanding and using the data effectively. For example, you might 
understand imperial weights just fine, but all your sources use the metric 
system. Converting between the two systems helps you understand the data.

http://cs.stackexchange.com/questions/1447/what-is-most-efficient-for-gcd
http://cs.stackexchange.com/questions/1447/what-is-most-efficient-for-gcd
http://www.amazon.com/exec/obidos/ASIN/0321751043/datacservip0f-20/
http://www.amazon.com/exec/obidos/ASIN/0321751043/datacservip0f-20/
https://www.youaretech.com/blog/2021/1/26/webpage-experience-a-major-google-algorithm-update-in-2021nbsp
https://www.youaretech.com/blog/2021/1/26/webpage-experience-a-major-google-algorithm-update-in-2021nbsp
https://www.youaretech.com/blog/2021/1/26/webpage-experience-a-major-google-algorithm-update-in-2021nbsp


14      PART 1  Getting Started with Algorithms

»» Scheduling: Making the use of resources fair to all concerned is another way 
in which algorithms make their presence known in a big way. For example, 
timing lights at intersections are no longer simple devices that count down the 
seconds between light changes. Modern devices consider all sorts of issues, 
such as the time of day, weather conditions, and flow of traffic.

»» Graph analysis: Deciding on the shortest path between two points finds all sorts 
of uses. For example, in a routing problem, your GPS couldn’t function without 
this particular algorithm because it could never direct you along city streets using 
the shortest route from point A to point B. And even then, your GPS might direct 
you to drive into a lake (https://theweek.com/articles/464674/8- 
drivers-who-blindly-followed-gps-into-disaster).

»» Cryptography: Keeping data safe is an ongoing battle with hackers constantly 
attacking data sources. Algorithms make it possible to analyze data, put it into 
some other form, and then return it to its original form later.

»» Pseudorandom number generation: Imagine playing games that never 
varied. You start at the same place; perform the same steps, in the same 
manner, every time you play. Without the capability to generate seemingly 
random numbers, many computer tasks become impossible.

This list presents an incredibly short overview. People use algorithms for many 
different tasks and in many different ways, and constantly create new algorithms 
to solve both existing problems and new problems. The most important issue to 
consider when working with algorithms is that given a particular input, you 
should expect a specific output. Secondary issues include how many resources the 
algorithm requires to perform its task and how long it takes to complete the task. 
Depending on the kind of issue and the sort of algorithm used, you may also need 
to consider issues of accuracy and consistency.

Finding algorithms everywhere
The previous section mentions the toast algorithm for a specific reason. For some 
reason, making toast is probably the most popular algorithm ever created. Many 
grade-school children write their equivalent of the toast algorithm long before 
they can even solve the most basic math. It’s not hard to imagine how many 
variations of the toast algorithm exist and what the precise output is of each of 
them. The results likely vary by individual and the level of creativity employed. 
There are also websites dedicated to telling children about algorithms, such as the 
one at https://www.idtech.com/blog/algorithms-for-kids. In short, algo-
rithms appear in great variety and often in unexpected places.

https://theweek.com/articles/464674/8-drivers-who-blindly-followed-gps-into-disaster
https://theweek.com/articles/464674/8-drivers-who-blindly-followed-gps-into-disaster
https://www.idtech.com/blog/algorithms-for-kids


CHAPTER 1  Introducing Algorithms      15

Every task you perform on a computer involves algorithms. Some algorithms 
appear as part of the computer hardware. The very act of booting a computer 
involves the use of an algorithm. You also find algorithms in operating systems, 
applications, and every other piece of software. Even users rely on algorithms. 
Scripts help direct users to perform tasks in a specific way, but those same steps 
could appear as written instructions or as part of an organizational policy 
statement.

Daily routines often devolve into algorithms. Think about how you spend your 
day. If you’re like most people, you perform essentially the same tasks every day 
in the same order, making your day an algorithm that solves the problem of how 
to live successfully while expending the least amount of energy possible. After all, 
that’s what a routine does; it makes us efficient.

Throughout this book, you see the same three elements for every algorithm:

1.	 Describe the problem.

2.	 Create a series of steps to solve the problem (well defined).

3.	 Perform the steps to obtain a desired result (finite and effective).

Using Computers to Solve Problems
The term computer sounds quite technical and possibly a bit overwhelming to 
some people, but people today are neck deep (possibly even deeper) in computers. 
You wear at least one computer, your smartphone, most of the time. If you have 
any sort of special device, such as a pacemaker, it also includes a computer. A car 
can contain as many as 150 computers in the form of embedded microprocessors 
that regulate fuel consumption, engine combustion, transmission, steering, and 
stability (see https://spectrum.ieee.org/software-eating-car for details), 
provide Advanced Driver-Assist Systems (ADAS), and more lines of code than a jet 
fighter. A computer exists to solve problems quickly and with less effort than 
solving them manually. Consequently, it shouldn’t surprise you that this book 
uses still more computers to help you understand algorithms better.

Computers vary in a number of ways. The computer in a watch is quite small; the 
one on a desktop quite large. Supercomputers are immense and contain many 
smaller computers all tasked to work together to solve complex issues, such as 
predicting tomorrow’s weather. The most complex algorithms rely on special 
computer functionality to obtain solutions to the issues people design them to 
solve. Yes, you could use lesser resources to perform the task, but the trade-off is 
waiting a lot longer for an answer, or getting an answer that lacks sufficient 

https://spectrum.ieee.org/software-eating-car


16      PART 1  Getting Started with Algorithms

accuracy to provide a useful solution. In some cases, you wait so long that the 
answer is no longer important. With the need for both speed and accuracy in mind, 
the following sections discuss some special computer features that can affect 
algorithms.

Getting the most out of modern CPUs 
and GPUs
General-purpose processors, CPUs, started out as a means to solve problems using 
algorithms. However, their general-purpose nature also means that a CPU can 
perform a great many other tasks, such as moving data around or interacting with 
external devices. A general-purpose processor does many things well, which 
means that it can perform the steps required to complete an algorithm, but not 
necessarily fast. Owners of early general-purpose processors could add math 
coprocessors (special math-specific chips) to their systems to gain a speed advan-
tage (see https://www.computerhope.com/jargon/m/mathcopr.htm for details). 
Today, general-purpose processors have the math coprocessor embedded into 
them, so when you get an Intel i9 processor, you actually get multiple processors 
in a single package.

A GPU is a special-purpose processor with capabilities that lend themselves to 
faster algorithm execution. For most people, GPUs are supposed to take data, 
manipulate it in a special way, and then display a pretty picture onscreen. How-
ever, any computer hardware can serve more than one purpose. It turns out that 
GPUs are particularly adept at performing data transformations, which is a key 
task for solving algorithms in many cases. It shouldn’t surprise you to discover 
that people who create algorithms spend a lot of time thinking outside the box, 
which means that they often see methods of solving issues in nontraditional 
approaches.

The point is that CPUs and GPUs form the most commonly used chips for per-
forming algorithm-related tasks. The first performs general-purpose tasks quite 
well, and the second specializes in providing support for math-intensive tasks, 
especially those that involve data transformations. Using multiple cores makes 
parallel processing (performing more than one algorithmic step at a time) possi-
ble. Adding multiple chips increases the number of cores available. Having more 
cores adds speed, but a number of factors keeps the speed gain to a minimum. 
Using two i9 chips won’t produce double the speed of just one i9 chip.

https://www.computerhope.com/jargon/m/mathcopr.htm

