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Preface
As an emerging and exciting research field, flexible
electronics have attracted tremendous interests from both
the academic and industrial communities. Till now, many
kinds of flexible electronic devices and systems have been
developed, such as flexible displays, electronic skins, health
monitoring bioelectronics, chemical and biosensors,
wearable smart textile, and intelligent soft robots, etc. This
area develops very fast and some flexible products are
already commercially available. For example, flexible
organic light‐emitting diode displays have been widely used
in smart phones, smart watches, and tablet personal
computers.
The booming development of flexible electronics has driven
the demand for compatible flexible energy storage devices,
ideally to make the whole electronic system flexible.
Although conventional energy storage devices, such as
lithium‐ion batteries, lead acid batteries, supercapacitors,
have been widely used in our modern society and affected
our daily life, their rigid shape, heavy weight, and thickness
make them not suitable for flexible electronics. Among
different energy storage devices, supercapacitors have the
advantages of simple device structure, high power density,
short charge and discharge time, long cycle life and wide
operating temperature range. When making supercapacitor
flexible, it will also possesses the required features of
excellent flexibility, portability, stretchability, miniaturized
size, ultrathin thickness for flexible electronic devices.
During the past several years, researches on flexible
supercapacitors are very active and this field expanded
very fast. Thus, it is considered timely to provide a survey
of a number of important developments in this filed.



This book provides an up‐to‐date survey of the state of
flexible supercapacitors. It contains a selection of 11
chapters contributed by a number of research teams. All
the contributors are active researchers in the field of
flexible supercapacitors. The most important topics related
to flexible supercapacitors are included in this book,
ranging from the selection and design of different active
electrode materials, the design of different device
structures, suitable fabrication techniques, and different
functions. I hope this book will be a source of inspiration
for graduate students, researchers, and industrial
engineers, and will stimulate new developments in this
challenging but exciting field.

Guozhen Shen, Professor
Beijing, China



1
Flexible Asymmetric Supercapacitors:
Design, Progress, and Challenges

Dun Lin, Xiyue Zhang and Xihong Lu
MOE of the Key Laboratory of Bioinorganic and
Synthetic Chemistry, The Key Lab of Low‐Carbon Chem
and Energy Conservation of Guangdong Province,
School of Chemistry, Sun Yat‐Sen University, Guangzhou,
Guangdong, 510275, People’s Republic of China

1.1 Introduction
Recently, flexible electronic products, such as flexible
microphones [1], elastic circuits [2–4], pressure and strain
sensors [5–7], artificial skin sensors [8–10], intelligent
garments [11], and wearable health monitoring devices
have boomed as a new and important field of modern
electronics (Figure 1.1). Therefore, the development of
suitable energy storage devices, which can serve as an
excellent power supply while sustaining high mechanical
flexibility, are becoming increasingly necessary to power
these electronics [13–21]. Supercapacitors (SCs), also
known as electrochemical capacitors or ultracapacitors,
have emerged as the bridge between batteries and
traditional capacitors due to their promising merits of high
power density (about 10  kW  kg−1), good reversibility,
excellent cyclic stability (over 106  cycles), and safety [22,
23]. Meanwhile, accompanied with the advanced
development of lightweight, foldable, and stretchable
materials, substantial effort has been invested in the
fabrication of flexible supercapacitors (FSCs) [24–28].



(1.1)

(1.2)

In order to satisfy the further demand for practical usage,
the configuration of the two electrodes as well as the
geometry of the devices are of vital importance and worth
careful considerations [29]. The major obstacle of early
designed FSCs is their relatively low energy density (E) to
mismatch basic requirements of future applications. Thus,
tremendous efforts have been denoted to optimize the
overall performance of FSCs according to the Eq. (1.1),
without sacrificing their power density and service life.

In general, either enhanced capacitance (C) or enlarged
operating voltage (V) of the device should make sense. Of
which, the C of a FSC device can be equivalent to the
negative electrode capacitance (C n) and positive electrode
capacitance (C p) connected in series (Figure 1.2a), which
can be calculated using Eq. (1.2)





Figure 1.1 (a, b) Scheme and optical image of a flexible
acoustic device.

Source: Reproduced with permission from Ref. [121], © 2017, Springer
Nature.

Optical image of (c) a flexible circuit
Source: Reproduced with permission from Ref. [2], © 2018, NPG

, (d) multiplexed fingerprint sensor. Scale bar, 1  cm.
Source: Reproduced with permission from Ref. [5], © 2018, NPG

and (e) artificial skin electronics
Source: Reproduced with permission from Ref. [8], © 2018, NPG.

(f) 3  ×  3 honeycomb‐like supercapacitor array powering
LED panel.

Source: Reproduced with permission from Ref. [13], © 2017, Wiley.

(g) Image of an array of field‐effect heterojunctions on
textile.

Source: Reproduced with permission from Ref. [14], © 2017, NPG.

(h, i) Fabrication and optical image of the fiber‐shaped Al‐
air battery.

Source: Reproduced with permission from Ref. [15], © 2016, Wiley.


