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As an emerging and exciting research field, flexible electronics have attracted tremendous interests 
from both the academic and industrial communities. Till now, many kinds of flexible electronic 
devices and systems have been developed, such as flexible displays, electronic skins, health moni-
toring bioelectronics, chemical and biosensors, wearable smart textile, and intelligent soft robots, 
etc. This area develops very fast and some flexible products are already commercially available. For 
example, flexible organic light-emitting diode displays have been widely used in smart phones, 
smart watches, and tablet personal computers.

The booming development of flexible electronics has driven the demand for compatible flexible 
energy storage devices, ideally to make the whole electronic system flexible. Although conven-
tional energy storage devices, such as lithium-ion batteries, lead acid batteries, supercapacitors, 
have been widely used in our modern society and affected our daily life, their rigid shape, heavy 
weight, and thickness make them not suitable for flexible electronics. Among different energy stor-
age devices, supercapacitors have the advantages of simple device structure, high power density, 
short charge and discharge time, long cycle life and wide operating temperature range. When mak-
ing supercapacitor flexible, it will also possesses the required features of excellent flexibility, port-
ability, stretchability, miniaturized size, ultrathin thickness for flexible electronic devices. During 
the past several years, researches on flexible supercapacitors are very active and this field expanded 
very fast. Thus, it is considered timely to provide a survey of a number of important developments 
in this filed.

This book provides an up-to-date survey of the state of flexible supercapacitors. It contains a 
selection of 11 chapters contributed by a number of research teams. All the contributors are active 
researchers in the field of flexible supercapacitors. The most important topics related to flexible 
supercapacitors are included in this book, ranging from the selection and design of different active 
electrode materials, the design of different device structures, suitable fabrication techniques, 
and  different functions. I hope this book will be a source of inspiration for graduate students, 
researchers, and industrial engineers, and will stimulate new developments in this challenging but 
exciting field.

 Guozhen Shen, Professor
Beijing, China
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Flexible Supercapacitors: Materials and Applications, First Edition. Edited by Guozhen Shen, Zheng Lou and Di Chen. 
© 2022 John Wiley & Sons, Inc. Published 2022 by John Wiley & Sons, Inc.

1.1  Introduction

Recently, flexible electronic products, such as flexible microphones [1], elastic circuits [2–4], pres-
sure and strain sensors [5–7], artificial skin sensors [8–10], intelligent garments [11], and wearable 
health monitoring devices have boomed as a new and important field of modern electronics 
(Figure 1.1). Therefore, the development of suitable energy storage devices, which can serve as an 
excellent power supply while sustaining high mechanical flexibility, are becoming increasingly 
necessary to power these electronics [13–21]. Supercapacitors (SCs), also known as electrochemi-
cal capacitors or ultracapacitors, have emerged as the bridge between batteries and traditional 
capacitors due to their promising merits of high power density (about 10 kW kg−1), good reversibil-
ity, excellent cyclic stability (over 106 cycles), and safety [22, 23]. Meanwhile, accompanied with 
the advanced development of lightweight, foldable, and stretchable materials, substantial effort 
has been invested in the fabrication of flexible supercapacitors (FSCs) [24–28].

In order to satisfy the further demand for practical usage, the configuration of the two electrodes 
as well as the geometry of the devices are of vital importance and worth careful considerations [29]. 
The major obstacle of early designed FSCs is their relatively low energy density (E) to mismatch 
basic requirements of future applications. Thus, tremendous efforts have been denoted to optimize 
the overall performance of FSCs according to the Eq. (1.1), without sacrificing their power density 
and service life.

	
E CV1

2
2

	
(1.1)

In general, either enhanced capacitance (C) or enlarged operating voltage (V) of the device 
should make sense. Of which, the C of a FSC device can be equivalent to the negative electrode 
capacitance (Cn) and positive electrode capacitance (Cp) connected in series (Figure 1.2a), which 
can be calculated using Eq. (1.2)

	

1 1 1
C n pC C 	

(1.2)
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Figure 1.1  (a, b) Scheme and optical image of a flexible acoustic device. Source: Reproduced with permission from Ref. [121], © 2017, Springer Nature. 
Optical image of (c) a flexible circuit Source: Reproduced with permission from Ref. [2], © 2018, NPG, (d) multiplexed fingerprint sensor. Scale bar, 1 cm. 
Source: Reproduced with permission from Ref. [5], © 2018, NPG and (e) artificial skin electronics Source: Reproduced with permission from Ref. [8], © 2018, 
NPG. (f) 3 × 3 honeycomb-like supercapacitor array powering LED panel. Source: Reproduced with permission from Ref. [13], © 2017, Wiley. (g) Image of an 
array of field-effect heterojunctions on textile. Source: Reproduced with permission from Ref. [14], © 2017, NPG. (h, i) Fabrication and optical image of the 
fiber-shaped Al-air battery. Source: Reproduced with permission from Ref. [15], © 2016, Wiley.
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The maximum C value of the FSCs can be reached when Cn is equal to Cp. Thus, early investiga-
tions focused on the symmetric flexible supercapacitors (SFSCs) with cathodes and anodes being 
identical for achieving higher device capacitance [31–34]. However, due to their limited potential 
voltage (<1 V in aqueous electrolyte), the energy density of SFSCs is still unsatisfactory. Notably, 
the V of a FSC device related to the capacitive potential range of electrodes. Thus, asymmetric flex-
ible supercapacitors (AFSCs), also called hybrid SCs or battery-capacitor SCs, are designed with 
different electrodes configured together (Figure 1.2b) [24–28]. By making use of the distinct capac-
itive potential range, AFSCs have been widely proven to effectively achieve high operating voltages 
(even >2 V in aqueous electrolyte) as well as optimized capacitance after balancing the charge 
between the specific positive and negative electrodes (Figure 1.2c) [30, 35]. In addition, they have 
several important advantages including small size, low weight, ease of handling, excellent reliabil-
ity, and a wider range of operating temperatures. Therefore, AFSCs have become one of the most 
promising energy storage devices for flexible and wearable electronics.

In this context, to achieve high electrochemical performance while maintaining good mechani-
cal stability, FSCs with asymmetric structure could realize further gains, and thus arouse global 
efforts in relative research. This chapter enumerates some typical newly developed AFSCs in terms 
of structure design of electrode materials and device’s configuration engineering. We first focus on 
the guidelines on the material design and charge balance of a typical AFSC device. Furthermore, 
different types of various newly developed AFSCs, including sandwich-type, fiber-type, and the 
other type of AFSCs devices, are illustrated based on various electrode materials. Finally, the future 
developing trends and challenges are discussed to provide certain reference to readers on how to 
contrive this device.

1.2  Configurations of AFSCs Device

Specifically, AFSCs device can be fabricated by constructing two flexible dissimilar electrodes 
(a Faradaic positive electrode and a capacitor-type negative electrode), a separator and, in most 
cases, quasi-solid-state electrolyte in a soft package. Among various types of quasi-solid-state 
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Figure 1.2  (a) The equivalent circuit of an AFSC. (b) Schematic illustration of the typical configuration 
of AFSCs and (c) Cyclic voltammograms (CV) curves as schematic illustrations of typical AFSCs. 
Source: Reproduced with permission [30]. © 2016, Royal Society of Chemistry.



1 F lexible Asymmetric Supercapacitors4

electrolytes, gel polymer electrolytes have been extensively used in FSCs due to its relatively high 
ionic conductivity  [36–40]. Soft and bendable plastics including polyethylene terephthalate 
(PET) [41–44], polydimethylsiloxane (PDMS) [45], and ethylene/vinyl acetate copolymer (EVA) 
film [46] are typically used as packaging materials for FSC devices.

Considering that the fundamental limit of energy storage capability is largely determined by 
the electrode material, either the material choice or structure design of electrode materials are 
of vital importance. Apart from directly fabricated freestanding films like carbon nanotube 
(CNT) films [47, 48] and graphene films [49, 50], previous reports for FSCs indicate that the 
flexible electrodes can also rely on a flexible substrate such as thin metal foils [51, 52], polymer 
substrates  [53], textiles  [54], and papers  [55], to provide flexibility. The main differences 
between the AFSCs and SFSCs are that the AFSCs require that the positive and negative elec-
trodes are not the same, but they need to be matched well. Electrode materials that are domi-
nated by Faradaic reactions such as metal oxides (RuO2 [56, 57], MnO2 [58–64], CoO [60, 65–67] 
NiO  [68–70], V2O5  [71, 72], etc.), metal sulfides (NiCo2S4  [73–75], MoS2  [76], CoS2  [77, 78], 
NiS  [58, 63, 79, 80], etc.) and conductive polymers (polyaniline (PANI)  [32, 81], polypyrrole 
(PPy) [82, 83], poly (3,4-ethylenedioxythiophene) (PEDOT) [84, 85] etc.) are normally applied 
as positive electrodes in AFSCs due to their high specific capacitance and relatively higher 
potential window. Notably, carbon-based materials (activated carbon [60, 66, 67], graphene [59, 
86], CNTs [87], carbon fibers [88–90] etc.), metal nitrides (TiN [20], VN [91], MoN [92], etc.), 
and some metal oxides (FeOx [93], MoOx [94] etc.) are usually employed as negative electrodes 
because of their fast charging/discharging rate and suitable working window at negative 
potential.

However, before they are assembled in an AFSC, the matching problems of the two electrodes 
with different theoretical capacitance need to be solved [91]. As for an AFSC, the charge balance 
will follow the relationship q+ = q−. The charge stored by each electrode depends on the specific 
capacitance (C), the potential range for the charge/discharge process (E) and the mass of the active 
electrode material (m), following the Eq. (1.3):

	q C E m 	 (1.3)

In order to get q+ = q− at the typical current density, the mass balancing will follow the Eq. (1.4):

	

m
m

C E
C E 	

(1.4)

In this way, the suitable mass ratio between the positive electrode (m+) and negative electrode 
(m−) is defined, which is much closed to the mass loading of the active materials of positive and 
negative electrode in typical AFSCs.

1.3  Progress of Flexible AFSCs

1.3.1  Sandwich-Type AFSCs

To date, the most widely applied configuration of AFSCs is sandwich-type AFSCs, which stacks 
two flexible flat electrodes face-to-face with an ionic conductive separator and liquid/gel electro-
lyte in the middle of the two electrodes to isolate direct contact. AFSCs with such shape holds great 
potential in future applications in flexible planar electronic devices, such as flexible display, wrist-
bands, membrane-type sensors, etc. [24]
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1.3.1.1  Carbon-Based Anodes
The most reliable anode materials for sandwich-type AFSCs are carbon-based materials with sig-
nificant excellence in conductivity and mechanical stability, such as graphene, CNTs, carbon fib-
ers, etc. [24, 25, 27, 56, 95–97] For example, Zhai et al. [98] successfully synthesized hydrogenated 
MnO2 nanorods (H-MnO2) on carbon cloth (CC) via electrodeposition followed by annealing in 
hydrogen atmosphere (Figure 1.3a), and loaded reduced graphene oxide (RGO) on CC using vac-
uum process. The obtained H-MnO2 cathode and RGO anode were assembled as flexible solid-
state AFSC with LiCl/PVA gel electrolyte and a separator sandwiched in between. The as-fabricated 
sandwich-type AFSC (denoted as H-MnO2//RGO) exhibited a reliable operating voltage window 
as wide as 1.8 V and extraordinary mechanical tolerance to bending (Figure 1.3b). Owing to the 
significantly wide potential window, the device achieved a high energy density of 0.25 mWh cm−3 
at power density of 1.01 W cm−3, which has surpassed many SFSCs and some AFSCs previously 
reported. To verify the feasibility of the AFSCs device as energy storage device for wearable elec-
tronics, two H-MnO2//RGO devices were tailored on a laboratory coat in series and able to power 
an electronic watch (Figure 1.3c). Recently, Yu and his co-workers [25] reported a sandwich-type 
AFSC with CNT-textile anode and MnO2/graphene-textile cathode, which achieved an operating 
potential window of 1.5 V and a maximum energy density of 12.5 W h kg−1. Choi et al. [56] devel-
oped a solid-state AFSC based on an ionic liquid functionalized chemically modified graphene 
(IL-CMG) film as anode and a hydrous RuO2-ILCMG composite film as cathode, which reached a 
high output voltage of 1.8 V and thus delivered a maximum energy density of 19.7 W h kg−1 and 
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maximum power density of 6.8 kW kg−1. Moreover, the as-fabricated device exhibited superior 
cyclic stability even when bent or twisted.

Unfortunately, most carbon-based anodes are relatively low in capacitance due to the electro-
chemical double layer energy storage mechanism. To this end, effective strategies of achieving 
high-energy-dense AFSCs has been extensively developed by employing pseudocapacitive anodes 
such as functionalized carbon, transition metal oxides, transition metal nitrides, conductive poly-
mers, etc.  [90] Recently, Wang et  al.  [90] creatively applied electrochemical activation to CC 
(Figure 1.4a), which were rarely employed as SC electrode materials because of its intrinsic low 
capacitance as a result of the small surface area and poor electrochemical activity  [32]. The 
obtained electrochemically activated carbon cloth (EACC) anode was coupled with MnO2@TiN 
loaded on CC as cathode to fabricate a novel sandwich-type AFSC (denoted as MnO2@TiN//
EACC) with an extended operation voltage window of 2 V (Figure 1.4b). Besides the broadened 
voltage window, the impressively boosted capacitance of EACC due to the roughened surface and 
the introduction of oxygen-containing groups on the surface for redox reactions also contribute to 
an excellent energy density as high as 1.5 mWh cm−3, which enables its successful application in 
powering light emitting diode (LED) indicator even under bent condition (Figure 1.4c).

1.3.1.2  Transition Metal Oxide Anodes
Transition metal oxides can generate reversible redox reactions on the surface or even in the 
bulk  during charging/discharging, which results in much higher capacitances compared to 
carbon-based anodes. By integrating transition metal oxides with flexible current collectors as 
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pseudocapacitive anodes, the energy density of AFSC can be drastically enhanced. For example, 
Yang et  al.  [54] grew α-MnO2 nanowires (NWs) and amorphous Fe2O3 nanotubes (NTs) on 
flexible  carbon textile as the pseudocapacitive cathode and anode respectively (Figure  1.5a) to 
fabricate a sandwich-type flexible asymmetric pseudocapacitor (Figure  1.5b). The as-fabricated 
sandwich-type AFSC operates at a maximum cell voltage of 1.6 V (Figure 1.5c) and delivers high 
energy density of 0.55 mWh cm−3 (Figure 1.5d). Two devices connected in series can readily oper-
ate a blue LED after charging (Figure 1.5d inset), indicating the potential of the AFSC in future 
applications. Similarly, a novel flexible all-solid-state asymmetric SC fabricated with a carbon-
fabric-loaded WO3–x/MoO3–x core/shell nanowires anode and a polyaniline cathode was reported 
by Xiao and his co-workers. The device showed satisfactory energy density (1.9 mWh cm−3), 
impressive cyclic stability, as well as good mechanical flexibility.

1.3.1.3  Transition Metal Nitride Anodes
Owing to the high conductivity and transition metal sites with multiple valence states, transition 
metal nitrides are emerging as promising pseudocapacitive anode materials with fast and reversi-
ble redox reactions. Many transition metal nitrides have been exploited for AFSCs, such as 
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titanium nitride, vanadium nitride, tungsten oxynitride, iron nitride, etc., with high performances 
comparable to transition metal oxide anodes [91, 99–101]. For instance, Fan’s group successfully 
fabricated an all-metal nitrides solid-state asymmetric SC, where the titanium nitride (TiN) 
cathode and iron nitride (Fe2N) anode were grown on CC-loaded graphene nanosheets (GNS) 
using atomic layered deposition followed by calcination under ammonia atmosphere (Figure 1.6a). 
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The porous configuration of TiN and homogeneous distribution of Fe2N nanoparticles contrib-
ute  to the extraordinary cycling durability (≈98% capacity retention after 20 000 cycles) of the 
fabricated quasi-solid-state AFSC device using PVA/LiCl polymer gel as neutral electrolyte 
(Figure  1.6b). The AFSC device achieved a maximum energy density of 0.61 mWh cm−3 and 
a  maximum power density of 422.7 mW cm−3, which were substantially higher than those of 
transition-metal-nitride-based SCs and PVA-based solid-state SCs (Figure  1.6c). Lu’s group has 
reported various AFSCs using CC-loaded transition metal nitride anodes in recent years. For exam-
ple, they used neutral PVA/LiCl polymer gel electrolyte to effectively stabilize porous VN NWs 
anode, and paired it with VOx NWs cathode to assemble a stable and high-performance quasi-
solid-state AFSC device with a high output voltage of 1.8 V [91]. Furthermore, the VOx//VN-AFSC 
device was able to deliver an impressive volumetric capacitance of 1.35 F cm−3, a highest energy 
density of 0.61mWh cm−3 and extraordinary cycling stability with 12.5% loss of capacitance after 
10 000 cycles. They also prepared holey tungsten oxynitride (WON) nanowires on CC through the 
annealing of WO3 precursor nanowires in ammonia atmosphere [100]. The as-fabricated AFSC 
device with WON NWs anode and MnO2 cathode could deliver a high working voltage of 1.8 V and 
volumetric capacitance of 2.73 F cm−3. The maximum energy density of MnO2//WON AFSC device 
was 1.27 mWh cm−3 at a power density of 0.62 W cm−3, which has transcended many reported 
AFSC devices.

1.3.1.4  Conductive Polymer Anodes
Conductive polymers are promising candidates as pseudocapacitive materials owing to their good 
conductivity and reversible redox reactions during charging/discharging, but they are mostly 
applied as cathode materials while rarely studied as anode materials for AFSCs. Recently, Wang 
et  al. synthesized 150  WO3@PPy nanowires on carbon fibers as the anode and grew Co(OH)2 
nanowires on carbon fabric as the cathode for AFSC device. The as-fabricated AFSC device exhib-
ited apparent pseudocapacitive behavior within a stable potential range of 0–1.6 V. The maximum 
volumetric capacitance of 2.8 F cm−3 was achieved at a scan rate of 20 mV s−1. Moreover, the asym-
metric supercapacitor (ASC) device delivered an energy density as high as 1.03 mWh cm−3.

1.3.2  Fiber-Type ASCs

Despite distinct advances, the planar-shaped SCs are still insufficient in deformability for weaving 
into textiles or integrating into linear-shaped electronics. In this regard, researchers have creatively 
assembled electrodes with one-dimensional geometry to fabricate fiber-type AFSCs. Fiber-shaped 
AFSCs have been developed into multiple configurations including parallel type, wrap type, 
coaxial-helix type and two-ply yarn type, in order to effectively meet the demands of different 
wearable energy textiles, including sensing [102–104], communication [105], and storage [106].

1.3.2.1  Parallel-Type Fiber AFSCs
For a parallel-type fiber AFSC, two fiber-shaped electrodes are assembled side-by-side, separated 
by gel/polymer electrolyte, and finally supported on a flat substrate [60, 107–109]. For instance, 
Yu et al. [109] reported a parallel type all-solid-state asymmetric micro-SC using MnO2-deposited 
rGO/SWCNT fiber as the cathode (denoted as GCF/MnO2-10) and an N-doped rGO/SWCNT 
fiber  as the anode (denoted as GCF/N2) (Figure  1.7a). By fully utilizing the potential window 
of  both  cathode (0 ~ 0.9 V) and anode (−0.9 ~ 0 V), the device showed a high output voltage of 
1.8 V  (Figure  1.7b). Excellent electrochemical performances such as good cycling stability 
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(87% capacitance retention after 10 000 cycles), high energy density (5 mW h cm−3) and power den-
sity (929 mW cm−3) were also achieved. Furthermore, such device geometry exhibited promising 
mechanic stability under different bending states (Figure 1.7c). This asymmetric micro-SC device 
was testified as a reliable power source for a ZnO film-based UV photodetector, suggesting its 
promising potential in future applications.

1.3.2.2  Wrap-Type Fiber AFSCs
The design of a wrap-type AFSC is very similar to that of a parallel-type fiber AFSC, which encap-
sulates two electrodes into a protective flexible tube instead of placing them on a flexible sub-
strate [53, 59, 62, 110–112]. Recently, Lu and his co-workers [112] successfully synthesized N and 
low valence-state Mo dual-doped MoO3 nanowires on carbon fibers, which was coupled with 
MnO2@TiN-loaded carbon fiber cathode and sealed with heat-shrinkable tube to fabricate a wrap 
type solid-state ASC (denoted as MnO2@TiN//N-MoO3-x) (Figure 1.8a). The galvanostatic charge/
discharge (GCD) curves of MnO2@TiN//N-MoO3-x with different current densities in Figure 1.8b 
indicate that the stable operating voltage of the device reaches a significantly high value of 
2.0 V. The ASC device also shows superior rate capability when current density increased by 15 
folds (Figure 1.8c). More importantly, the excellent flexibility and mechanic robustness enabled 
the fiber AFSC device to perfectly maintain its electrochemical performances in bent and even 
knotted conditions (Figure  1.8d). Benefiting from the ultrahigh output voltage and Faradaic 
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electrodes with improved conductivity, the MnO2@TiN//N-MoO3-x device exhibited a maximum 
energy and power density of 2.29 mW h cm−3 and 1.64 W cm−3 respectively, outperforming many 
other fiber-shaped SC devices reported (Figure 1.8e).

1.3.2.3  Coaxial-Helix-Type Fiber AFSCs
By helically wrapping a wire shape axial electrode with another wire electrode, coaxial-helix-type 
ASCs with core–shell cable-like structures have been creatively explored [86, 113–117]. For exam-
ple, the Thomas group [117] fabricated a novel cable-like coaxial-helix-type AFSC as illustrated in 
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asymmetric supercapacitor electrical cable at different bending states. (c) CV curves obtained at different 
bending states at 200 mV s−1. Source: Reproduced with permission [117]. © 2015, Wiley-VCH.


