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Preface

Preface to Reinforcement Learning and Stochastic Optimization: A unified
framework for sequential decisions

This books represents a lifetime of research into what I now call sequential
decision problems, which dates to 1982 when I was introduced to the problem
arising in truckload trucking (think of Uber/Lyft for trucks) where we have to
choose which driver to assign to a load, and which loads to accept to move,
given the high level of randomness in future customer demands, representing
requests to move full truckloads of freight.
It took me 20 years to figure out a practical algorithm to solve this problem,

which led to my first book (in 2007) on approximate dynamic programming,
where the major breakthrough was the introduction of the post-decision state
and the use of hierarchical aggregation for approximating value functions to
solve these high-dimensional problems. However, I would argue today that
the most important chapter in the book (and I recognized it at the time), was
chapter 5 on how tomodel these problems, without any reference to algorithms
to solve the problem. I identified five elements to a sequential decision problem,
leading up to the objective function which was written

max
𝜋

𝔼
⎧

⎨
⎩

𝑇∑

𝑡=0
𝐶(𝑆𝑡, 𝑋𝜋(𝑆𝑡))|𝑆0

⎫

⎬
⎭

.

It was not until the second edition (in 2011) that I realized that approximate
dynamic programming (specifically, policies that depend on value functions)
was not the only way to solve these problems; rather, there were four classes of
policies, and only one used value functions. The 2011 edition of the book listed
three of the four classes of policies that are described in this book, but most of
the book still focused on approximating value functions. It was not until a 2014



xxvi Preface

paper (“Clearing the Jungle of Stochastic Optimization”) that I identified the
four classes of policies I use now. Then, in 2016 I realized that the four classes of
policies could be divided between two major strategies: the policy search strat-
egy, where we search over a family of functions to find the one that works best,
and the lookahead strategy, where we make good decisions by approximating
the downstream impact of a decision made now.
Finally, I combined these ideas in a 2019 paper (“A Unified Framework

for Stochastic Optimization” published in the European Journal for Oper-
ational Research) with a better appreciation of major classes of problems
such as state-independent problems (the pure learning problems that include
derivative-based and derivative-free stochastic search) and the more general
state-dependent problems; cumulative and final reward objective functions;
and the realization that any adaptive search algorithm was a sequential deci-
sion problem. The material in the 2019 paper is effectively the outline for this
book.
This book builds on the 2011 edition of my approximate dynamic program-

ming book, and includes a number of chapters (some heavily edited) from the
ADP book. It would be nice to call this a third edition, but the entire framework
of this book is completely different. “Approximate dynamic programming” is
a term that still refers to making decisions based on the idea of approximating
the downstream value of being in a state. After decades of working with this
approach (which is still covered over a span of five chapters in this volume),
I can now say with confidence that value function approximations, despite all
the attention they have received, is a powerful methodology for a surprisingly
narrow set of decision problems.
By contrast, I finally developed the confidence to claim that the four classes

of policies are universal. This means that any method for making decisions
will fall in one of these four classes, or a hybrid of two or more. This is a game
changer, because it shifts the focus from an algorithm (the method for making
decisions) to the model (specifically the optimization problem above, along
with the state-transition function and the model of the exogenous information
process). This means we write out the elements of a problem before we tackle
the problem of designing policies to decisions. I call this:

Model first, then solve.

The communities working on sequential decision problems are very focused
on methods, just as I was with my earlier work with approximate dynamic
programming. The problem is that any particular method will be inherently
limited to a narrow class of problems. In this book, I demonstrate how you can
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take a simple inventory problem, and then tweak the data to make each of the
four classes work best.
This new approach has opened up an entirely new way of approaching

a problem class that, in the last year of writing the book, I started calling
“sequential decision analytics,” which is any problem consisting of the
sequence:

Decision, information, decision, information, ....

I allow decisions to range from binary (selling an asset) to discrete choices
(favored in computer science) to the high-dimensional resource allocation
problems popular in operations research. This approach starts with a problem,
shifts to the challenging task of modeling uncertainty, and then finishes with
designing policies to make decisions to optimize some metric. The approach is
practical, scalable, and universally applicable.
It is exciting to be able to create a single framework that spans 15 differ-

ent communities, and which represents every possible method for solving
sequential decision problems. While having a common language to model any
sequential decision problem, combined with the general approach of the four
classes of policies, is clearly of value, this framework has been developed by
standing on the shoulders of the giants who have laid the foundational work
for all of these methods. I have had to make choices regarding the best notation
andmodeling conventions, but my framework is completely inclusive of all the
methods that have been developed to solve these problems. Rather than joining
the chorus of researchers promoting specific algorithmic strategies (as I once
did), my goal is to raise the visibility of all methods, so that someone looking to
solve a real problem is working with the biggest possible toolbox, rather than
just the tools developed within a specific community.
A word needs to be said about the title of the book. As this is being written,

there is amassive surge of interest in “reinforcement learning,”which started as
a form of approximate dynamic programming (I used to refer to ADP and RL as
similar to American English and British English). However, as the RL commu-
nity has grown and started working on harder problems, they encountered the
same experience that I and everyone else working in ADP found: value func-
tion approximations are not a panacea. Not only is it the case that they often do
not work, they usually do not work. As a result, the RL community branched
out (just as I did) into other methods such as “policy gradient methods” (my
“policy function approximations” or PFA), upper confidence bounding (a form
of “cost function approximation” or CFA), the original 𝑄-learning (which pro-
duces a policy based on “value function approximations” or VFA), and finally
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Monte Carlo tree search (a policy based on “direct lookahead approximations”
or DLA). All of these methods are found in the second edition of Sutton and
Barto’s landmark book Reinforcement Learning: An introduction, but only as
specific methods rather than general classes. This book takes the next step and
identifies the general classes.
This evolution from one core method to all four classes of policies is being

repeated among other fields that I came to call the “jungle of stochastic opti-
mization.” Stochastic search, simulation-optimization, and bandit problems all
feature methods from each of the four classes of policies. Over time, I came
to realize that all these fields (including reinforcement learning) were play-
ing catchup to the grandfather of all of this work, which is optimal control
(and stochastic control). The field of optimal control was the first to introduce
and seriously explore the use of value function approximations (they call these
cost-to-go functions), linear decision rules (a form of PFA), and the workhorse
“model predictive control” (a great name for a simple rolling horizon proce-
dure, which is a “direct lookahead approximation” in this book). I also found
that my modeling framework was closest to that used in the optimal control
literature, whichwas the first field to introduce the concept of a transition func-
tion, a powerful modeling device that has been largely overlooked by the other
communities. I make a few small tweaks such as using state 𝑆𝑡 instead of 𝑥𝑡,
and decision 𝑥𝑡 (widely used in the field of math programming) instead of 𝑢𝑡.
Then I introduce one big change, which is to maximize over all four classes

of policies. Perhaps the most important innovation of this book is to break
the almost automatic link between optimizing over policies, and then assum-
ing that we are going to compute an optimal policy from either Bellman’s
equation or the Hamilton-Jacobi equations. These are rarely computable for
real problems, which then leads people to assume that the natural next step
is to approximate these equations. This is simply false, supported by decades
of research where people have developed methods that do not depend on HJB
equations. I recognize this body of research developing different classes of poli-
cies by making the inclusion of all four classes of policies fundamental to the
original statement of the optimization problem above.
It will take some time for people from the different communities to learn to

speak this common language. More likely, there will be an adaptation of exist-
ing modeling languages to this framework. For example, the optimal control
community could keep their notation, but learn to write their objective func-
tions as I have above, recognizing that the search over policies needs to span all
four classes (which, Imight point out, they are already using). Iwould hope that
the reinforcement learning community,which adopted the notation for discrete
action 𝑎, might learn to use the more general 𝑥 (as the bandit community has
already done).
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I have tried to write this book to appeal to newcomers to the field, as well as
people who already have training in one or more of the subfields that deal with
decisions and uncertainty; recognizing these two broad communities was eas-
ily the biggest challenge while writing this book. Not surprisingly, the book is
quite long. I have tried to make it more accessible to people who are new to the
field by marking many sections with an * as an indication that this section can
be skipped on a first-read. I also hope that the book will appeal to people from
many application domains. However, the core audience is people who are look-
ing to solve real problems bymodeling applications and implementing thework
in software. The notation is designed to facilitate writing computer programs,
where there should be a direct relationship between the mathematical model
and the software. This is particularly important when modeling the flow of
information, something that is often overlooked in mainstream reinforcement
learning papers.

Warren B. Powell
Princeton, New Jersey
August, 2021


