

A HANDBOOK

Human Factors Handbook for Process Plant Operations

Improving Process Safety
and System Performance

 energy
institute

WILEY

HUMAN FACTORS HANDBOOK FOR PROCESS PLANT OPERATIONS

HUMAN FACTORS HANDBOOK FOR PROCESS PLANT OPERATIONS

*Improving Process Safety and
System Performance*

**CENTER FOR CHEMICAL PROCESS SAFETY
AMERICAN INSTITUTE OF CHEMICAL ENGINEERS**
New York, NY

WILEY

This edition first published 2022
© 2022 the American Institute of Chemical Engineers

A Joint Publication of the American Institute of Chemical Engineers and John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at <http://www.wiley.com/go/permissions>.

The rights of CCPS to be identified as the author of the editorial material in this work have been asserted in accordance with law.

Registered Office
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data Applied for

Cover Design: Wiley

Cover Image: Pand P Studio/Shutterstock, manine99/Shutterstock, agsandrew/Shutterstock

10 9 8 7 6 5 4 3 2 1

This book is one in a series of process safety guidelines and concept books published by the Center for Chemical Process Safety (CCPS). Refer to www.wiley.com/go/ccps for full list of titles in this series.

It is sincerely hoped that the information presented in this document will lead to a better safety record for the entire industry; however, neither the American Institute of Chemical Engineers, its consultants, CCPS Technical Steering Committee and Subcommittee members, their employers, their employers' officers and directors, nor Greenstreet Berman, Ltd., and its employees and subcontractors warrant or represent, expressly or by implication, the correctness or accuracy of the content of the information presented in this document. As between (1) American Institute of Chemical Engineers, its consultants, CCPS Technical Steering Committee and Subcommittee members, their employers, their employers' officers and directors, and Greenstreet Berman, Ltd., and its employees and subcontractors, and (2) the user of this document, the user accepts any legal liability or responsibility whatsoever for the consequence of its use or misuse.

Human Factors Handbook for Process Plant Operations
is dedicated to
Jack L. McCavit

Jack is passionate about process safety, especially in the areas of culture and human factors. His work, both in his career at Celanese, and after his retirement, has concentrated on educating workers and industry leaders on the importance of process safety, the payback of sustaining a great program, and most importantly, the impact of not making process safety a top priority. Jack had first-hand experience with the latter when he witnessed a butane vapor cloud explosion at the Celanese site in Pampa, Texas, in 1987, resulting in three fatalities and dozens of injuries. Based on his significant and relevant expertise, Jack was selected as the technical manager for the prominent Baker Panel investigation of the BP Texas City Explosion in 2005.

Jack is a CCPS Fellow, an AIChE Fellow, and is rumored to be the fifth most famous Texan in history. He was the committee chair for the CCPS flagship book, Guidelines for Risk Based Process Safety, and a driving force behind CCPS's Vision 20/20.

It is both an honor and a privilege to see Jack in action!

Louisa A. Nara, CCPSC
CCPS Global Technical Director

Table of Contents

Table of Contents	ix
Glossary	xxiii
Acronyms.....	xxv
Acknowledgements.....	xxvii
Foreword	xxix
Part 1: Concepts, principles, and foundational knowledge	1
1 Introduction.....	3
1.1 What is "Human Factors"?	3
1.2 Purpose of this handbook	4
1.3 Why Human Factors?	7
1.4 The structure of this handbook.....	9
2 Human performance and error.....	11
2.1 Learning objectives of this Chapter	11
2.2 An example of successful human performance.....	11
2.3 An example of unsuccessful human performance.....	13
2.4 Key learning points from this Chapter.....	17
3 Options for supporting human performance.....	19
3.1 Learning objective of this Chapter	19
3.2 Types of human performance	19
3.3 Types of human performance, errors and mistakes	21
3.4 Selecting options for supporting human performance.....	30
3.5 Key learning points from this Chapter.....	34
4 Supporting human capabilities.....	35
4.1 Learning objectives of this Chapter	35
4.2 Attention	35
4.3 Vigilance	36
4.4 Memory.....	37
4.5 Cognitive capacity.....	38
4.6 Cognitive heuristics/biases.....	39
4.7 Key learning points from this Chapter.....	41

Part 2: Procedures and job aids	43
5 Human performance and job aids	45
5.1 Learning objectives of this Chapter	45
5.2 An example of a major accident.....	45
5.3 The role of job aids in supporting human performance.....	46
5.4 Approach to developing effective job aids.....	48
5.5 Key learning points from this Chapter.....	52
6 Selecting a type of job aid	53
6.1 Learning objectives of this Chapter	53
6.2 Stage 1: Determining the need for a job aid.....	53
6.3 Stage 2: Selecting the type of job aid	62
6.4 Electronic job aids.....	67
6.5 Key learning points from this Chapter.....	68
7 Developing content of a job aid.....	69
7.1 Learning objectives of this Chapter	69
7.2 Outputs from task analysis	69
7.3 Outputs from Hazard Identification and Risk Analysis.....	72
7.4 User involvement.....	72
7.5 Validation of job aids.....	74
7.6 Keeping job aids up to date	75
7.7 Key learning points from this Chapter.....	76
8 Format and design of job aids	77
8.1 Learning objectives of this Chapter	77
8.2 Structure and layout.....	77
8.3 Navigation.....	82
8.4 Instructional Language	84
8.5 Pictorial information	87
8.6 Icons	88
8.7 Key learning points from this Chapter.....	90
Part 3: Equipment.....	91
9 Human Factors in equipment design	93
9.1 Learning objectives of this Chapter	93
9.2 Definitions	93
9.3 Major accident example	94

9.4	Error traps	96
9.5	How might poor equipment Human Factors cause error?.....	98
9.6	Example of poor equipment Human Factors	101
9.7	Supporting human performance by good equipment design.....	103
9.8	Mitigating poor design	111
9.9	Key learning points from this Chapter.....	113
Part 4: Operational competence		115
10	Human performance and operational competency.....	117
10.1	Learning objectives of this Chapter	117
10.2	What is competency?	117
10.3	Competency Management.....	118
10.4	An example of effective Process Safety Competency Management	121
10.5	An example of gaps in operational competency.....	122
10.6	Competency influencing factors.....	124
10.7	Key learning points from this Chapter.....	125
11	Determining operational competency requirements.....	127
11.1	Learning objectives of this Chapter	127
11.2	Identify and define safety critical competency: overview	127
11.3	Step 1: Identify safety critical tasks	128
11.4	Step 2: Identify required competency	130
11.5	Step 3: Define performance standards	132
11.6	Key learning points from this Chapter.....	136
12	Identifying learning requirements	137
12.1	Learning objectives of this Chapter	137
12.2	Competency gap analysis.....	137
12.3	Training Needs Analysis.....	138
12.4	Key learning points from this Chapter.....	142
13	Operational competency development.....	143
13.1	Learning objectives of this Chapter	143
13.2	Good practice in learning	143
13.3	Key learning points from this Chapter.....	149

14	Operational competency assessment	151
14.1	Learning objectives of this Chapter	151
14.2	Reasons for competency assessment	151
14.3	How to conduct assessment of competency.....	151
14.4	Reassessment	157
14.5	Managing competency gaps	158
14.6	Competency and learning records.....	160
14.7	Key learning points from this Chapter.....	160
Part 5: Task support.....		161
15	Fatigue and staffing levels.....	163
15.1	Learning objectives of this Chapter	163
15.2	A fatigue-related accident	163
15.3	Managing fatigue risk.....	168
15.4	Key learning points from this Chapter.....	178
16	Task planning and error assessment.....	179
16.1	Learning objectives of this Chapter	179
16.2	Incident example	179
16.3	Human Factors and task planning	180
16.4	Error assessment within task planning	182
16.5	Key learning points from this Chapter.....	187
17	Error management in task planning, preparation and control.....	189
17.1	Learning objectives of this Chapter	189
17.2	Overview	189
17.3	Preventing optimism bias in task planning: scheduling.....	190
17.4	Assigning safety critical tasks.....	194
17.5	Distractions and interruptions.....	195
17.6	Long and low demand tasks	199
17.7	The Human Factors of control of work packages	202
17.8	Team briefings	204
17.9	Human Factors of system isolation.....	205
17.10	Human Factors of managing interlocks and automatic trips	210
17.11	Key learning points from this Chapter.....	214
18	Capturing, challenging and correcting operational error	215
18.1	Learning objectives of this Chapter	215
18.2	Failing to spot, challenge, and recover from errors.....	215

18.3	Why do we fail to capture, challenge, and correct errors? ...	217
18.4	Coaching people to recognize risk of making errors.....	218
18.5	Error Management Training.....	220
18.6	Enabling challenge of task performance	224
18.7	Key learning points from this Chapter.....	231
19	Communicating information and instructions	233
19.1	Learning objectives of this Chapter	233
19.2	Incident example	233
19.3	Causes of poor communication	234
19.4	Human Factors of communications.....	235
19.5	Avoiding communication overload	237
19.6	Human Factors in shift handover.....	241
19.7	Key learning points from this Chapter.....	245
	Part 6: Non-technical skills	247
20	Situation awareness and agile thinking.....	249
20.1	Learning objectives of this Chapter	249
20.2	What are situation awareness and agile thinking?	249
20.3	Accidents from poor situation awareness and rigid thinking	252
20.4	Causes of poor situation awareness and rigid thinking.....	253
20.5	Key learning points from this Chapter.....	256
21	Fostering situation awareness and agile thinking.....	257
21.1	Learning objectives of this Chapter	257
21.2	Training in situation awareness skills	257
21.3	Practical situation awareness tools and tactics	262
21.4	Recognizing loss of situation awareness.....	268
21.5	Fostering agile decision-making	270
21.6	Key learning points from this Chapter.....	275
22	Human Factors in emergencies.....	277
22.1	Learning objectives of this Chapter	277
22.2	An example accident.....	277
22.3	Supporting human performance in emergencies.....	281
22.4	Non-technical skills for emergency response.....	284
22.5	Key learning points from this Chapter.....	297

Part 7: Working with contractors and managing change.....	299
23 Working with contractors	301
23.1 Learning objectives of this Chapter	301
23.2 An accident involving contractors	301
23.3 Human Factors tactics for supporting contractors	304
23.4 Key learning points from this Chapter.....	307
24 Human Factors of operational level change.....	309
24.1 Learning objectives of this Chapter	309
24.2 What do we mean by operational level change?.....	309
24.3 Operational level change and major accidents	310
24.4 Recognizing operational level changes that impact human performance.....	311
24.5 Managing Human Factors of changes	314
24.6 Key learning points from this Chapter.....	317
Part 8: Recognizing and learning from performance	319
25 Indicators of human performance	321
25.1 Learning objectives of this Chapter	321
25.2 What are performance indicators?	321
25.3 Identifying human performance indicators.....	323
25.4 Examples of human performance indicators	324
25.5 Sharing and acting on human performance indicators	322
25.6 Key learning points from this Chapter.....	333
26 Learning from error and human performance	335
26.1 Learning objectives of this Chapter	335
26.2 The importance of understanding error	336
26.3 Examples of poor learning	338
26.4 Learning in high performing teams	340
26.5 Human Factors of investigating process	341
26.6 Selecting preventive Human Factors actions.....	356
26.7 Learning	359
26.8 Key learning points from this Chapter.....	362

APPENDICES

A	Human error concepts.....	373
B	Major accident case studies	383
C	Human Factors Competency Matrix	397
D	Competency performance standards.....	415
E	Learning methods and performance.....	420
F	Situation awareness and behavioral markers	425
G	Human Factors change checklist.....	431
	Index.....	437

List of Figures

Figure 1-1: Human Factors science, concepts and principles.....	3
Figure 1-2: Overview of the handbook, by chapter.....	10
Figure 2-1: "Miracle on the Hudson"	12
Figure 2-2: Performance Influencing Factors.....	16
Figure 3-1: The Skill-Rule-Knowledge Performance Model.....	20
Figure 3-2: Human performance modes, errors and mistakes	23
Figure 3-3: Strategies for knowledge and rule-based human performance.....	31
Figure 3-4: Supporting skill-based performance.....	33
Figure 4-1: Typical vigilance decrement	36
Figure 5-1: Overview of Human Factors aspects of developing a job aid	51
Figure 6-1: Selecting a type of job aid for operational use	56
Figure 6-2: Using HIRA risk matrix results to assess task safety criticality.....	57
Figure 6-3: Example of a formal safety critical task assessment.....	58
Figure 6-4: Task safety criticality rating	60
Figure 6-5: Mapping of type of job aid to type of task performance	63
Figure 7-1: Example of a graphical task description	70
Figure 7-2: Example of HIRA results.....	72
Figure 7-3: Task walk-through process.....	74
Figure 8-1: Good practice SOP example.....	79
Figure 8-2: An example grab card	81
Figure 8-3: An example decision flow chart for unresponsive casualties	82
Figure 8-4: An example of icon and color coding.....	83
Figure 8-5: Examples poor and good practice of instructional language.....	86
Figure 8-6: An annotated diagram	88
Figure 8-7: An example of icon and color coding.....	89
Figure 9-1: The Buncefield fuel storage facility before and after	94
Figure 9-2: A Human Factors solution to selecting the right control	96
Figure 9-3: A common error trap	97
Figure 9-4: Control and instrumentation panel.....	102
Figure 9-5: User- centered design	103
Figure 9-6: Examples of good and poor natural mapping for a stove.....	108
Figure 9-7: Example of good practice in natural mapping	109
Figure 9-8: Principles of good alarm design	112
Figure 10-1: Competency Management	120
Figure 11-1: SCTA and Level of Training.....	129
Figure 13-1: Example of competency development through training.....	144
Figure 13-2: The Learning Pyramid	147
Figure 14-1: Learning assessments.....	157
Figure 15-1: Example of rapid rise in fatigue scores from a 16-hour day	166
Figure 15-2: Working without rest breaks.....	167
Figure 15-3: Working nights	168
Figure 15-4: Typical scope of fatigue risk policy	169

Figure 15-5: Guidelines on shift design	171
Figure 15-6: Signs and symptoms of fatigue	173
Figure 15-7: Signs of under staffing	175
Figure 15-8: Managing workloads	176
Figure 15-9: A simple task timeline	177
Figure 16-1: Examples of error-likely situations	184
Figure 17-1: Overview of HF task planning, preparation and control.....	190
Figure 17-2: Open language for inviting questions and opinions	191
Figure 17-3: Barrier ownership prevented wrong valve line up	195
Figure 17-4: Tactics for minimizing distraction and interruptions	197
Figure 17-5: Schematic of some factors influencing attention span	200
Figure 17-6: Features of a good Tool Box Talk or task briefing.....	205
Figure 18-1: Draining pumps	215
Figure 18-2: Categories of cognitive error.....	217
Figure 18-3: Factors contributing to error.....	218
Figure 18-4: Error contributing factors.....	221
Figure 18-5: Cognitive skills required for error self-management.....	223
Figure 18-6: Factors building psychological safety.....	226
Figure 18-7: Challenging skills	229
Figure 19-1: Repeating back.....	240
Figure 20-1: Stages of situation awareness	250
Figure 21-1: Behavioral Markers for "Actively seeks relevant information".....	259
Figure 21-2: Causes of failed Situation Awareness	268
Figure 22-1: Error recognition and management process	279
Figure 22-2: Human Errors – categories.....	280
Figure 22-3: Refinery explosion, Philadelphia Energy Solutions	282
Figure 22-4: Stress management – training strategies.....	288
Figure 22-5: Decision-making in emergency situations.....	290
Figure 24-1: Types of change and impact	311
Figure 24-2: Sample Management of Change process.....	314
Figure 25-1: Design of human performance indicators	323
Figure 25-2: Gathering and reviewing feedback	326
Figure 25-3: Stress in the workplace and performance	328
Figure 25-4: Signs of mindfulness	331
Figure 25-5: Lessons learned – knowledge sharing	332
Figure 26-1: Steps of effective learning – learning process	338
Figure 26-2: The consequences of blame culture	343
Figure 26-3: "New" Just Culture Process.....	348
Figure 26-4: Error – causal factors and conditions.....	350
Figure 26-5: Matching improvements to type of error	358
Figure 26-6: Goals of Restorative Just Culture	359

Figure A-1 Energy Institute human performance principles.....	377
Figure A-2 What are the causes of incidents?.....	378
Figure B-1 Texas City Refinery Explosion	383
Figure B-2 Bayer Crop Science plant damage	385
Figure B-3 Longford Esso Gas Plant explosion.....	387
Figure B-4 The explosion and fires at Milford Haven	389
Figure B-5 Interaction of the key valves and vessels	392
Figure B-6 The polyvinyl fluoride process	393
Figure B-7 Deepwater Horizon Oil Spill – Macondo blowout.....	395

List of Tables

Table 3-1: SRK types of human performance	22
Table 3-2: Case study example of a knowledge-based mistake	24
Table 3-3: Example of a rule-based mistake	27
Table 3-4: Example of skill-based human error in a major accident	29
Table 6-1: Guidelines for rating task complexity	61
Table 6-2: Guidelines for rating task frequency	61
Table 6-3: Time available to complete a task	62
Table 6-4: Definition of types of operational job aids	64
Table 6-5: Pros and cons of electronic job aids	68
Table 7-1: Example task analysis as a table	71
Table 8-1: Typical structure of procedures	77
Table 8-2: Checklist for layout of job aids	78
Table 8-3: Checklist for instructional language	84
Table 8-4: When to use different presentation options	87
Table 9-1: Examples of poor design for hard-wired interfaces – physical panels ..	98
Table 10-1: Key features of effective process safety Competency Management	125
Table 11-1: An example industry standard	133
Table 11-2: Generic example of a competency standards matrix	134
Table 11-3: Petrochemical example of a competency standards matrix	135
Table 12-1: Competency Gap Analysis and Training Needs Analysis template...	140
Table 13-1: Learning methods for developing individuals	145
Table 13-2: Team learning methods	148
Table 14-1: Suitability of and differences between competency assessments ...	153
Table 15-1: Principles of shift design	170
Table 16-1: Example of locks removed on wrong blinds	180
Table 16-2: Task planning tactics for potential high-risk situations	185
Table 16-3: Task planning tactics for different task errors	186
Table 17-1: Scheduling	193
Table 17-2: Barrier ownership to prevent commissioning loss of containment ..	194
Table 17-3: Example tactics for enabling attention	201
Table 17-4: An isolation incident: relying on experience	207
Table 17-5: Human Factors of isolation	208
Table 17-6: Example of defeating an interlocked valve	212
Table 17-7: Human Factors good practice for interlocks and trips	213
Table 18-1: Draining pumps leads to product release	216
Table 18-2: Error management training and coaching	219
Table 18-3: High-risk observable behaviors	220
Table 18-4: Error detection techniques	227
Table 18-5: Examples of error recovery techniques	230
Table 18-6: Types of task verification	231
Table 19-1: Verbal and communication techniques	236
Table 19-2: Shift handover contributed to a massive explosion	241

Table 19-3: Shift handover risk factors.....	242
Table 19-4: Elements of effective handover	244
Table 20-1: Cognitive biases	254
Table 21-1: Situation awareness – Assessment record	261
Table 21-2: Human performance tools – examples.....	263
Table 21-3: Clues for recognizing impaired Situation Awareness.....	269
Table 21-4: Group-think – behaviors (symptoms).....	273
Table 21-5: Confirmation bias – observable behavior.....	274
Table 22-1: Non-technical skills and error prevention	285
Table 22-2: Stress indicators in emergency situations	286
Table 22-3: Shared situation awareness requirements	289
Table 22-4: Emergency decision-making aids.....	291
Table 22-5: Leadership in emergency situations	295
Table 22-6: Delegating and communicating in emergency situations.....	296
Table 24-1: Tips on recognizing change	313
Table 25-1: Leading and lagging indicators	322
Table 25-2: Specifying a human performance indicator	324
Table 26-1: High performing teams and self-learning from error	341
Table 26-2: Investigation biases and mitigating strategies	345
Table 26-3: Human Factors investigation tools	352
Table 26-4: Effective learning tips	361
Table A-1 'Hearts and Minds' definitions for non-compliance.....	375
Table C-1 Human Factors Competency Matrix.....	397
Table D-1 Competency standards template – Skill-based task	415
Table D-2 Competency standards template – Procedure/Rule-based task	417
Table D-3 Competency standards template – Knowledge-based task.....	418
Table E-1 Application of learning methods to type of performance	420
Table F-1 Situation awareness – behavioral markers for oil and gas industry....	425
Table G-1 Human Factors Change Checklist.....	431

Glossary

Accident: An event that can cause (or has caused) significant harm to workers, the environment, property, and the surrounding community.

Anthropometrics: The science of measuring the size and proportions of the human body (called anthropometry), especially as applied to the design of furniture and machines.

Behavioral marker: Non-technical behaviors that can be observed and described. They refer to a prescribed set of behaviors and are indicative of specific types of non-technical skills performance (e.g., effective decision-making in emergencies) within a work environment.

Cognitive overload: A mental state where an individual is unable to process all the information provided by the system.

Cognitive underload: A mental state when an individual is under-stimulated due to insufficient workload. This mental state leads to lack of attention.

Competency Assessment: System which allows measuring and documenting personnel competency. The goal of competency assessment is to identify problems with employee performance, and to correct these issues before they affect performance.

Competency: Set of skills and knowledge which enables a person to perform tasks efficiently, reliably and safely to a defined standard.

Competency Gap: Difference between the current competency level and the required competency level of an employee.

Competency Management: Method of categorizing and tracking the development of individual employee competency, allowing an organization to track progress, and identify future training needs.

Fatigue: Fatigue is a decline in physical and/or mental performance.

Hold Points: Point where change cannot happen until there has been verification that the prerequisites have been achieved.

Human Error: Intended or unintended human action or inaction that produces an unintended result. This includes, but is not limited to, actions by designers, operators, planners/schedulers, maintainers, engineers or managers that may contribute to or result in accidents [1].

Human Factors: Discipline concerned with designing machines, operations, and work environments so they match human capabilities, limitations, and needs. This includes any technical work (engineering, procedure writing, worker training, worker selection, operations, maintenance, etc.) related to the human interface in human-machine systems [1].

Human Performance: Measure of an individual's ability to execute a task effectively.

Incident: Event, or series of events, resulting in one or more undesirable consequences, such as harm to people, damage to the environment, or asset/business losses.

Job aid: Specific information or material intended to help workers execute a task more effectively.

Learning: Acquisition of knowledge or skills through study, experience, or being taught.

Major accident: Major accident means an occurrence such as a major emission, fire, or explosion resulting from uncontrolled developments in the course of the operation of any establishment, and leading to serious danger to human health or the environment (whether immediate or delayed) inside or outside the establishment, and involving one or more dangerous substances [2].

Mistake: A decision or judgement that is misguided.

Non-technical skills: The cognitive, social, and personal resource skills that complement technical skills and contribute to safe and efficient task execution [3].

Performance Influencing Factors (PIFs): Characteristics of the job, the individual and the organization that influence human performance [4].

Performance standards: Description of how the job is a description of what (actions/tasks) needs to be taken/executed, how the job must be done (behaviors/methods) and outcomes/results that will define satisfactory or acceptable performance.

Psychological safety: The outcome of an open workplace culture where people are willing to express an opinion, or admit mistakes or unsafe behaviors, without fear of being embarrassed, rejected, or punished.

Root cause: Fundamental, underlying, system-related reason why an incident occurred that identifies a correctable failure(s) in management systems. There is typically more than one root cause for every process safety incident.

Rota: A period of work taken in rotation with other workers (an abbreviation of rotation).

Rotation: A period of work taken in rotation with other workers.

Shift working (shifts): Work which takes place on a schedule outside traditional day work hours. It can involve evening or night shifts, early morning shifts, and rotating shifts.

Training: "Practical instruction in job and task requirements and methods. Training may be provided in a classroom or at the workplace, and its objectives are to enable workers to meet some minimum initial performance standards (minimum required competency level), maintain their proficiency, or to qualify them for promotion to a more demanding position" [5].

Vigilance decrement: Decline in "the ability to sustain attention and remain alert to a particular stimulus over a prolonged period of time" [6].

Table G-1 *continued*

Type of change	Potential impacts	Typical Human Factors actions
Staffing arrangements		
Reduction in number of supervisors or team leaders.	<p>Ratio of staff to supervisors reduces capacity to support staff.</p> <p>Excessive supervisory workload, stress, and fatigue.</p> <p>Reduction in time for improvement activities.</p>	<p>Verify the “span of control” in respect of workload, level of supervision etc.</p> <p>Monitor workload and capacity for tasks such as improvement projects.</p> <p>Increase supervisory non-technical skills, such as leadership and delegation.</p> <p>Increase self-management competence of team members.</p>
Outsourcing.	<p>Creation of new communication and contact interfaces.</p> <p>Loss of in-house expertise.</p> <p>Reliance on continuity of service.</p> <p>Contractor does not adopt company safety values.</p> <p>Contractor lacks competence in site management procedures.</p>	<p>Formalize communications.</p> <p>Provide team bonding exercises.</p> <p>Determine the minimum level of in-house expertise to be retained.</p> <p>Offer a cultural induction.</p> <p>Provide contractor training and certification.</p>

Index

Active failures, 374
Barrier Analysis, 355
Behavioral markers, 258, 275, 425
Challenge skills, 217, 227
Checklist, 55, 56, 63, 65, 78, 84, 85, 129, 431
Chronic unease, 330, 360
Circadian rhythms, 165, 200, 201
Cognitive overload, xxiii, 38
Color-coding, 82
Communications, 5, 12, 186, 235, 237, 238, 244, 435
Competence, 9, 13, 123, 127, 185, 186, 278, 281, 316, 323, 428, 434, 435
Control of Work, 189, 202, 203, 403
Crew Resource Management, 12, 257, 284
Culture, xxiv, 5, 6, 15, 32, 159, 190, 191, 193, 212, 213, 230, 243, 272, 275, 294, 305, 321, 322, 324, 329, 335, 339, 342, 343, 347, 356, 359, 360, 362
Distractions, 26, 28, 29, 30, 33, 36, 186, 195, 196, 198, 231, 256, 337, 403
Equipment design, 9, 95, 97, 103, 105, 106, 111, 257
Error detection, 227
Error traps, 96, 183, 262, 329, 332, 340, 347, 397, 405
Error-likely situations, 183, 256, 379
Errors of commission, 373
Errors of omission, 373
Grab card, 56, 63, 66, 129
Group-think, 254, 270–273, 275, 327
Hazard Analysis, 72
Interfaces, 13, 28, 99, 100
Just Culture, 225, 346, 348, 356
Labelling, 32, 70, 98, 100, 111, 206
Latent failures, 374
Leadership, 6, 13, 121, 285, 294, 295, 412
Leading and lagging indicators, 321, 323, 413
Learning from Experience, 103
Mental models, 99, 107, 252, 253, 274, 429
Mindfulness, 330, 331, 333
Motivation, 253
Natural mapping, 106, 107, 108, 109
Non-compliance, 46, 219, 227, 322, 346, 347, 356, 374, 375, 376
Operating limits, 72
Performance influencing factors, 15, 285, 356
Performance standards, xxiv, 118, 119, 127, 130, 131, 132, 136, 151, 158, 208, 415
Permit to work, 56, 63, 66, 129
Permits to Work, 182, 187, 196, 202, 214
Process flow diagrams, 62, 64
Psychological safety, xxiv, 224, 225, 272, 329, 406
Restorative Just Culture, 359
Root Cause Analysis, 352
Root causes, 333, 336, 339, 340, 342, 347, 351, 352, 356, 360, 362
Routine non-compliance, 375
Safety Critical Task Analysis, 57, 118, 127, 128, 131

Shift handover, 124, 196, 202, 238, 241, 242, 243, 244, 383, 386, 404, 433

Shift Handover, 56, 63, 129

Shift system, 164, 337, 434

Staffing level, 70, 174, 185, 432, 433, 434

Stress, 38, 218, 253, 286, 288, 327, 328, 411

Supervision, 13, 46, 79, 123, 134, 145, 311, 346, 433, 435

Tabular Task Analysis, 131

Task analysis, 53, 69, 128, 130, 136

Task verification, 77, 202, 203, 213, 217, 230, 231

Teamwork, 32, 285, 411

Trust, 7, 191, 193, 224, 225, 275, 284, 346, 359

Usability assessments, 103

User acceptance testing, 104

User-centered design, 103

Vigilance, xxiv, 36

Walk-through, 49, 55, 73, 74, 130, 146, 421

Work instruction, 65

Workload, xxiii, 12, 35, 53, 158, 159, 174, 176, 177, 196, 219, 242, 253, 256, 259, 295, 309, 404, 432, 434, 435