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Preface

Ellipsometry is an experimental technique that boasts of a developmental history
spanning more than a century. Initially proposed by Paul Drude in 1887, its first
documented use was in 1945. Even though it was then regarded as an unproductive
experimental technique, ellipsometry gained traction in the 1990s with advances in
computer technology and data processing, necessary for the efficient automation of
ellipsometric instrumentation and data analyses. Since then, spectroscopic ellipsom-
etry has established itself as an ultra-sensitive, high-precision optical characteriza-
tion technique useful in a diverse range of disciplines ranging from semiconductor
physics to microelectronics and from biochemistry to real-time characterization of
film growth.

Numerous publications have dealt with the fundamentals and analytical tech-
niques of spectroscopic ellipsometry. This book serves as a brief introduction to the
ellipsometric technique, and greater emphasis will be devoted to its applications in
interfacial properties, electronic structures, and quasiparticle properties of different
classes of thin-film materials. This book will focus on two-dimensional transition
metal dichalcogenides (2D-TMDs), magnetic oxides such as manganite materials
and unconventional superconductors in the form of copper oxide (cuprate) systems.
In-depth discussions will be provided on how spectroscopic ellipsometry is utilized
to characterize the electronic structures, interfacial properties, and quasiparticle
dynamics in novel quantum materials.

Through the in-depth and comprehensive coverage of these materials systems, we
demonstrate that spectroscopic ellipsometry remains relevant, and its capabilities
continue to advance to cater to the rapidly evolving research landscape. Spectro-
scopic ellipsometry is therefore a versatile experimental technique for measuring
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these unique novel properties. We hope that researchers and graduate students in the
field of condensed matter physics and materials science will find this book a useful
resource.

Andrew T. S. Wee
National University of Singapore

Singapore

Xinmao Yin, PhD
Department of Physics, Shanghai University

China

Chi Sin Tang
Institute of Materials Research and Engineering

Agency for Science Technology and Research (A*STAR)
Singapore
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Spectroscopic Ellipsometry: Basic Principles

1.1 Spectroscopic Ellipsometry

Spectroscopic ellipsometry measures the change of light polarization upon its reflec-
tion from the sample. A schematic diagram of the experimental setup is displayed
in Figure 1.1. The detector of spectroscopic ellipsometry measures the quantities Ψ
and Δ at each corresponding wavelength/photon energy. Parameter Ψ denotes the
ratio of the amplitude of p- to s-polarized reflected light, while Δ their phase differ-
ence. Specifically, p-polarized light has the electric field vector parallel to the plane
of incidence, while s-polarized light consists of the electric field vector perpendicular
to the incident plane (Figure 1.2).

Typically, the energy range that is commonly used for spectroscopic ellipsom-
etry measurement is the ultraviolet–visible (UV–vis) regime (∼0.5–6 eV). In this
range, sample properties such as the optical band structures and bandgaps can
be investigated. Nevertheless, other regions of the electromagnetic spectrum
have also been used in spectroscopic ellipsometry measurements. For instance,
the use of mid-to-near-infrared range spectroscopic ellipsometry in the study of
low-energy structures in 1T′-phase two-dimensional transition metal dichalco-
genides (2D-TMDs), such as their fundamental gap and the anisotropic plasmons,
will be discussed in Section 3.4 of Chapter 3.

While spectroscopic ellipsometry is a fast, nondestructive, and surface-sensitive
(down to a few angstroms) optical characterization technique, the mathematical
analysis involved in extracting the optical parameters from the raw (Ψ, Δ) data is
not a straightforward process (see Section 1.5 and Figure 1.7). Generally, to ana-
lytically elucidate the optical parameters from the raw (Ψ, Δ) data, the sample in
consideration must be homogenous, isotropic, and of sufficient thickness. In more
general cases, complications will arise and optical models with associated numeri-
cal approximation techniques are required for the proper elucidation of meaningful
optical results.

Introduction to Spectroscopic Ellipsometry of Thin Film Materials: Instrumentation, Data Analysis, and Applications,
First Edition. Andrew T. S. Wee, Xinmao Yin, and Chi Sin Tang.
© 2022 WILEY-VCH GmbH. Published 2022 by WILEY-VCH GmbH.
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Figure 1.1 Schematic diagram of spectroscopic ellipsometry with the rotating-analyzer
configuration.
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Figure 1.2 Electric and magnetic fields for (a) p-polarized and (b) s-polarized waves [1].

1.1.1 p- and s-Polarized Lights and Fresnel Coefficients

The electromagnetic wave features of light can be expressed in terms of its electric,
E, and magnetic field, B, components [1]:

E⃗(r⃗, t) = E⃗0 exp[i(k⃗ ⋅ r⃗ − 𝜔t + 𝛿)] (1.1)

B⃗(r⃗, t) = B⃗0 exp[i(k⃗ ⋅ r⃗ − 𝜔t + 𝛿)] (1.2)

where k⃗ denotes the wave vector, 𝜔 denotes the angular frequency, and 𝛿 denotes the
initial phase.

When light is reflected or transmitted through a sample/medium via an oblique
angle, the electromagnetic wave can be resolved into two components – p-polarized
(in-plane incidence) and s-polarized (perpendicular to incident plane) E-field com-
ponents, respectively.

For a medium with refractive index n, based on Maxwell’s equations and bound-
ary conditions, the amplitude of the reflection coefficient for the p-polarized light is
expressed as

rp ≡

Erp

Eip
=

n{t} cos 𝜃i − ni cos 𝜃t

nt cos 𝜃i + ni cos 𝜃t
(1.3)

Likewise, the amplitude of the transmission coefficient for the p-polarized light can
be expressed as

tp ≡

Etp

Eip
=

2ni cos 𝜃i

nt cos 𝜃i + ni cos 𝜃t
(1.4)
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whereas the s-polarized counterparts are expressed as

rs ≡
Ers

Eis
=
(ni cos 𝜃i − nt cos 𝜃t)
(ni cos 𝜃i + nt cos 𝜃t)

(1.5a)

rp ≡

Ets

Eis
=

2ni cos 𝜃i

ni cos 𝜃i + nt cos 𝜃t
(1.5b)

These equations are known as the Fresnel equations. When the refractive indices
are complex, ñ, the Fresnel equations still hold. The complex dielectric function can
be obtained via the expression

ñ2
≡ 𝜀 (1.6)

Based on Snell’s law, the Fresnel equations for reflection can be further general-
ized as

rp =
ñ2

ti cos 𝜃i −
(

ñ2
ti − sin2

𝜃i
) 1

2

ñ2
ti cos 𝜃i +

(
ñ2

ti − sin2
𝜃i
) 1

2

(1.7a)

rs =
cos 𝜃i −

(
ñ2

ti − sin2
𝜃i
) 1

2

cos 𝜃i +
(

ñ2
ti − sin2

𝜃i
) 1

2

(1.7b)

where ñ denotes the complex refractive index and

ñti =
ñt

ñi
(1.8)

The reflectances of the p- and s-polarized lights are expressed by

Rp ≡

Irp

Iip
=
|||||
Erp

Eip

|||||
2

= |r2
p| (1.9a)

Rs ≡
Irs

Iis
=
||||Ers

Eis

||||2 = |r2
s | (1.9b)

where the light intensity I =n|E|2. Since the difference between rp and rs is maxi-
mized at the Brewster angle [2], ellipsometric measurements are usually performed
at incident angles, 𝜃i, typically in the range of 70–80∘ for the optical characterization
of semiconducting systems [3].

In multilayered systems, the resultant amplitude of the reflection coefficients is
expressed as the sum of individual components of the reflection and transmission
coefficients at each interface. The phase differences of each wave are considered in
the analysis.

1.1.2 Representation of Polarized Lights

Electromagnetic waves traversing along the z-direction can be expressed by super-
imposing two waves that are oscillating parallel to the x- and y-axes. The vector sum
of the respective E-fields, Ex and Ey, is given by
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E(z, t) = Ex(z, t) + Ey(z, t)

= Ex0
exp i(𝜔t − kz + 𝛿x)x̂ + Ey0

exp i(𝜔t − kz + 𝛿y )̂y (1.10)

where x̂ and ŷ denote the unit vectors along the respective axes. Ultimately, the phase
difference, 𝛿y−𝛿x, is the most important quantity that determines the state of the
polarization of the resultant wave.

To mathematically represent the polarization states and analyze the effects of the
optical components in a neat and elegant manner, they are expressed in the form of
Jones vectors and Jones matrices [4].

A complete representation of the polarization of a wave can be expressed in the
form of the Jones vector as

E(z, t) =
[

Ex0
exp i𝛿x

Ey0
exp i𝛿y

]
(1.11)

which can be further simplified as

E(z, t) =
[

Ex
Ey

]
(1.12)

where Ex = Ex0
exp i𝛿x and Ey = Ey0

exp i𝛿y.
Relative changes to the amplitude and phase are important in spectroscopic ellip-

sometry. Jones vectors are therefore expressed in terms of normalized intensities.
Linearly polarized waves along the x- and y-axes are expressed, respectively, as

Elin,x =
[

1
0

]
Elin,y =

[
0
1

]
(1.13)

When light is linearly polarized at an orientation of 45∘,

E+45∘ =
1√
2

[
1
1

]
(1.14)

In the formalism where optical components are expressed in the form of 2× 2 matri-
ces, they are known as Jones matrices. Based on this formalism, the operation per-
formed on the light by each component in spectroscopic ellipsometry, such as the
polarizer, analyzer, and compensator, can be represented as a 2× 2 matrix operator.

For instance, in the case of a linear polarizer with the azimuthal angle,α, relative to
the x–y coordinates of a linearly polarized light, Ei, the process of linear polarization
can be expressed as

Ef =
[

cos α 0
0 sin α

]
(1.15)

Transformations by a series of optical components can be represented by the corre-
sponding series of matrix operations.

While the Jones vector is a concise way for describing polarized light, it is unable
to express unpolarized light and light that is partially polarized. Therefore, the
Stokes parameters (vectors) are used for the description of lights with different
polarization [4].
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The components of the Stokes vector are

S0 = Ix + Iy = ExE∗x + EyE∗y (1.16a)

S1 = Ix − Iy = ExE∗x − EyE∗y (1.16b)

S2 = I+45∘ + I−45∘ = 2Ex0
Ey0

cosΔ (1.16c)

S3 = IR − IL = −2Ex0
Ey0

sinΔ (1.16d)

where Ix and Iy denote the intensities of the linearly polarization light along the
x- and y-axes, respectively. Likewise, I±45∘ represents light polarization ±45∘ to
the x-axis, while IL/IR represent intensities of left-/right-circularly polarized light.
Finally, Δ = 𝛿x−𝛿y.

The Stokes vector can also be expressed as

S =

⎡⎢⎢⎢⎢⎣
S0
S1
S2
S3

⎤⎥⎥⎥⎥⎦
(1.17)

Transformation of a Stokes vector can be expressed via a 4× 4 matrix represen-
tation, also known as a Mueller matrix. The calculation is performed in a fashion
similar to the Jones matrix. For instance, when linear polarization oriented at 45∘
passes a polarizer with transmission axis along the x-direction, the resultant light
that emerges from the polarizer is transformed via the following:

1
2

⎛⎜⎜⎜⎜⎝
1 1
1 1

0 0
0 0

0 0
0 0

0 0
0 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
1
0
1
0

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
1∕2
1∕2

0
0

⎞⎟⎟⎟⎟⎠
(1.18)

1.2 Principles of Ellipsometric Measurements

When light is reflected/transmitted from a sample, the p- and s-polarized compo-
nents of the incident light undergo changes to their amplitude and phase. Hence,
spectroscopic ellipsometry is a technique that capitalizes on these changes where
the essential optical parameters are derived. As mentioned, the raw quantities mea-
sured using ellipsometry are Ψ and Δ, representing the amplitude ratio and phase
difference between reflected or transmitted p- and s-polarized waves, respectively.
These two quantities are related complex reflection coefficients via the expression

𝜚 ≡ tanΨexp iΔ =
rp

rs
(1.19)

with rp and rs defined as ratios of the light reflected to the incident E-fields.
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Equation (1.19) can be further expressed as

tanΨexp iΔ =
rp

rs
=

Erp∕Eip

Ers∕Eis
= Erp∕Ers (1.20)

where the final step of simplification can be performed since Eip = Eis.
Different spectroscopic ellipsometry setups are available, of which the rawΨ andΔ

are measured by different means. Generally, the systems are classified into two main
categories – spectroscopic ellipsometers with rotating optical elements and those
with photoelastic modulators. In our study, focus will be on the system with rotating
optical elements (i.e. rotating analyzer with compensator). The working principle of
such spectroscopic ellipsometers will be described briefly in Section 1.2.1.

1.2.1 Rotating-Analyzer Ellipsometer

A rotating-analyzer spectroscopic ellipsometer (Figure 1.1) is one of the few ellip-
sometric setups that is widely used. The changes made to an incident light wave
when passing through a rotating-analyzer spectroscopic ellipsometer can be repre-
sented as a series of matrix operations PSAR, where P, S, and AR denote the polarizer,
the sample, and the rotating analyzer, respectively. In spectroscopic ellipsometry,
the wavelength of the incident photon is typically changed using a monochromator.
However, this slows down the operational speed of the system. Hence, in many spec-
troscopic ellipsometry systems, especially those for real-time monitoring, a grating
spectrometer is typically used in the detector probe, while white light is used as the
incident source.

By applying the Jones vectors and Mueller matrices, the output of the PSAR ellip-
sometric configuration can be expressed as

Lout = AR(A)R(−P)PLin (1.21)

where the Jones vector of the light wave at the detector can be expressed as

Lout =
[

EA
0

]
. Lin =

[
1
0

]
denotes the input Jones vector of the incident light source.

R(A) represents the rotation matrix with a rotation angle of the analyzer at A.
P denotes the rotation angle of the polarizer and S represents the Jones matrix
corresponding to the reflected light off the sample.

Hence, Eq. (1.21) is expressed in the matrix form as[
EA
0

]
=
[

1 0
0 0

] [
cos A sin A
− sin A cos A

] [
sinΨexp iΔ 0

0 cosΨ

] [
cos P − sin P
sin P cos P

] [
1 0
0 0

] [
1
0

]
If polarization angle P = 45∘, it will then take the form[

EA
0

]
=
[

1 0
0 0

] [
cos A sin A
− sin A cos A

] [
sinΨexp iΔ

cosΨ

]
(1.22)

which ultimately leads to the solution

EA = cos A sinΨexp iΔ + sin A cosΨ (1.23)
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on the rotating-analyzer configuration.

The light intensity registered at the detector can then be expressed as the modulus
square of EA:

I = |EA|2
= I0(1 − cos 2Ψ cos 2A + sin 2Ψ cosΔ sin 2A)

= I0(1 + S1 cos 2A + S2 sin 2A) (1.24)

where I0 represents the proportionality constant of the reflected light. The period of
the intensity variation is π radians (180∘). Generally, the Stokes parameters, S1 and
S2, in a rotating-analyzer ellipsometer (RAE) are measured as Fourier coefficients of
cos 2A and sin 2A, respectively. When the analyzer rotates at an angular frequency
of 𝜔, the general expression of the detector intensity is expressed as

I(t) = I0(1 + α cos 2𝜔t + β sin 2𝜔t) (1.25)

where the normalized intensity registered at the detector based on Eq. (1.25) is plot-
ted in Figure 1.3.

1.3 Experimental Setup

The spot size of the beam is in the range of 3–5 mm with additional detachable
microfocus, which can be used to focus the spot size to an even smaller dimension
of about 200 μm. Such a small beam spot is suitable for the optical characterization
of smaller samples to reduce the instances of back reflection and scattering in
transparent samples.

The input unit consists of a lens mount, a polarizer stage, and an alignment detec-
tor socket. Polarization state of the light beam is detected before its incidence on
the sample, which is mounted on the sample stage. After reflecting off the sample
surface, the detector unit converts the reflected beam into a voltage and measures



8 1 Spectroscopic Ellipsometry: Basic Principles

Cryostat

Input unitDetector

Turbo pump

Windows

V-VASE

Figure 1.4 Woollam VASE spectroscopic ellipsometer.

its polarization state. The software (WVASE32) is then used to analyze the raw data
from which the optical parameters of the sample are derived.

1.3.1 VASE Spectroscopic Ellipsometer

The setup of the Variable-Angle Spectroscopic Ellipsometer (VASE) by J. A. Wool-
lam Co., Inc. is displayed in Figure 1.4. The arc lamp provides a broadband light
source for the HS-190 monochromator (Czerny–Turner Scanning Monochromator),
which the software uses to supply a selected wavelength/photon energy of light for
the system. This spectroscopic ellipsometer provides both high accuracy and preci-
sion along with a wide spectral range of ∼190–2500 nm (∼0.5–6.5 eV), covering the
near-IR, visible, and near-UV regimes. With this broad spectral range, this system is
suitable for characterizing optical bandgaps and electronic transitions for semicon-
ducting and Mott-insulating systems (Figure 1.5).

RAE of the VASE spectroscopic ellipsometer helps to maximize data accuracy near
the “Brewster” angle [1], where the raw Ψ and Δ data are content-rich. The autore-
tarder is a computer-controlled waveplate that modifies the beam polarization (from
linear to circular polarization or vice versa) before reaching the sample. This pro-
cess provides greater accuracy for the measurement of the Δ parameter even when
the phase difference is close to the extremum angles of 0∘ and 180∘. This process
produces optimum measurement conditions for the sample.


