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Preface

Dear reader,

The first volume of these conference proceedings was published only 1 year ago
on occasion of the Munich Symposium on Lightweight Design 2020. It was so
well received that we decided to make it from now on an inherent part of all future
symposia.

For almost 20 years, the Technical University of Munich, the Universitit der
Bundeswehr Miinchen and the University of Applied Sciences Munich have
invited all those interested in lightweight design and its industrial application
to the annual Munich Symposium on Lightweight Design. Based in the Munich
area, home of many research institutes, start-ups and large companies active in the
field of lightweight design, the Symposium has become an established event to
strengthen the exchange between science and industrial practice.

After the conference has become more and more popular, last year’s sympo-
sium 2021 was again a great success. Academic researchers and experts from
industry provided valuable insights into their current research activities and dis-
cussed technical challenges as well as future directions. More than 20 of these
presentations, covering the latest advances in additive manufacturing, structural
optimization, and the use of composites in lightweight design, can be found in
these proceedings.

Lastly, we wish to thank the team of our publisher Springer Vieweg for the
cooperation and their great support throughout the entire publication process.

Best regards

March 2022 Jasper Rieser
Felix Endress

Alexander Horoschenkoff

Philipp Hofer

Tobias Dickhut

Markus Zimmermann
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Efficient Computation of Spatial Truss
Structures for Design Optimization
Approaches Using Tube-Shaped
Thin-Walled Composite Beams

Michael Jager®™) and Sandro Wartzack

Engineering Design, Friedrich-Alexander-Universitat Erlangen-Niirnberg,
Martensstrale 9, 91058 Erlangen, Germany
jaeger@mfk.fau.de, wartzack@mfk.fau.de

Abstract. Spatial truss structures are a stiff, economical, and effective
lightweight design method, especially when using composites instead of
isotropic materials for the struts. An efficient computation of these struc-
tures is crucial for optimization approaches during the product design
process. The most common method for computing spatial truss struc-
tures relies on hinged connections with tension/compression-only struts,
which ignores the bending and coupling effects of composite beams. How-
ever, especially when using asymmetric laminates, these effects are no
longer neglectable. Within commercial finite element tools, the computa-
tion of large truss structures - which include these effects - is a very time-
consuming process. Particularly for slender, thin-walled beams a large
number of solid/shell elements is required. In this paper, an analytical
solution of the stiffness matrix for a tube-shaped thin-walled composite
beam is provided. It is based on the classical laminate plate theory and
Timoshenko’s exact solution including shear deformation and coupling
effects. By using three-dimensional exact Timoshenko beam elements,
the number of degrees of freedom can be reduced significantly while
coupling effects are maintained. This results in a remarkably lower com-
putation time especially needed for topology optimization. The results
are compared to a commercial finite element tool using both solid and
shell elements.

Keywords: Lightweight design - Spatial truss structures - Structural
optimization - Thin-walled composite beams + Timoshenko beam
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1 Motivation

Spatial truss structures are a well-established design method with a high
potential for lightweight design [1,2], especially when lightweight materials
are used and the topology is optimized during the design process. The most
common method for computing truss structures uses hinged connections and
tension/compression-only struts [3], which is a very fast and efficient compu-
tation method when using isotropic materials e.g. aluminium. However when
anisotropic materials are used, this method is no longer suitable, due to the cou-
pled mechanical behaviour of the material. Therefore a coupled model needs to
be used for analysis of composite beams like the classical laminate plate theory
in combination with the finite element method. Although this is a very pow-
erful tool for calculating composites, it is not advisable for optimizing spatial
truss structures due to the enormous computing costs. Classical approaches for
truss structure optimization, such as the ground structure method [4,5] and
more advanced methods like an adaptive ‘member adding’ scheme [6], rely on a
very large number of members to be calculated. Therefore an efficient method
for computing a large number of struts needs to be used, such as a thin-walled
composite beam provided by Librescu and Song [7]. Using this beam theory, an
analytical solution for the stiffness matrix for a tube-shaped thin-walled com-
posite beam will be derived in this paper, suitable for large scale optimization
approaches of spatial truss structures.

2 Thin-Walled Composite Beam Theory

Assumptions

Let h be the wall thickness along the beam assumed constant, let | be any
characteristic cross-sectional dimension of the beam (i.e. diameter, height or
width) and L its length [7]. In order to apply this thin-walled composite beam
theory, the struts must be slender and thin-walled

h/1<0.1, /L <0.1. (1)

A tube-shaped Timoshenko beam and its degrees of freedom (DOFs) at both
ends are shown in Fig. 1.

Uyl

Yy Uy2
A (9y2
| v
Oz /6’951 X 0.2 b2 __
Uz \ Ug / U0 Ug2
V4
L -
gl

Fig. 1. Timoshenko beam with constant cross section

\
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Additionally, only laminates with a circumferentially uniform stiffness (CUS)
configuration [7] (shown in Fig. 2) are considered. Therefore ply layers on oppos-
ing sides have to be mirrored

vi(y) = pi(—y), wi(2) = pi(—2), (2)

which is the case for struts manufactured by very common processes like winding,
pullwinding, pulltruding or prepreg winding.

.
X '

oy TN °

m

Fig. 2. Circumferentially uniform stiffness (CUS) laminate configuration [7]

Further assumptions for the beam model are, the shape of the cross-section is
assumed rigid and remains in its plane, the transverse shear strains are uniform
over the beam cross-section [7].

General Beam DAE
Using the symmetry of the CUS laminate configuration, the corresponding cross-
sectional stiffness matrix A for any closed thin-walled beam has the form

ail 0 0 aiy 0 0

0 Q44 0 0 asq 0

0 0 ass 0 0 a5 (3)
aiy 0 0 ary 0 0 ’

0 as34 0 O ass 0

0 0 aszs 0 0 a2

A_:

The equivalent properties of a;; for an isotropic beam are a11 & EA, aqq & GA,,
ass < GA,, arr & Glp, azgs & Ely, ax & EI, and a;; < 0, for i # j. The
derivation A will not be described here, for further information please refer to
Sect. 4.4-1 in Librescu and Song [7].
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Remark: Compared to Librescu and Song, the cross-sectional stiffness
matrix A is permuted to ensure the following displacement vector u(x) along
the centerline of the beam

u(z) = [ux(x) Uy (x) uz(x) 0(x) 0y () 92(x)]T, for z € [0, L], (4)

with the DOF's ordered equivalent to common finite element analysis software.
The corresponding differential-algebraic system of equations (DAEs) [7] for

a Timoshenko beam with symmetric cross section, CUS laminate configuration

and a tube-shaped cross section (a44 = ass, ase = ass, azqa = —ags) is given as

ajiuy + a7 0 =0, (5)

ayzuy, + a7r 0 = 07 (6)

—ags 0y + aas (uy +62) =0, (7)

ags 07 + asa (u] +6,) =0, (8)

a2 07 + ass (ul +20)) — aqs (u), +0.) =0, 9)
ag 0, — ags (uy +20,) — ass (u, + 6,) = 0. (10)

Remarks: Egs. (5) and (6) indicate a coupling between extension and twist along
the longitudinal axis of the beam for an asymmetric laminate (a17 # 0). Equa-
tions (7) to (10) also indicate a coupling between bending about the y- and
z-axis for an asymmetric laminate (ag5 # 0).

Solution of the DAE
Using the boundary conditions

UI(O) =  Ugl, uz(L) = Ug2, 9:1:(0) = 9:1:17 91(L> = 9:1:27
uy(0) = uy, uy(L) = uyo, 0y(0) = Oy1, 0y(L) = 042, (11)
Uz(o) = Uz, uz(L) =  Uz2, 0. (O) = —0.1, ez(L) = —0.9,

the DAE can be solved as follows
u(z) = N(z) ug, (12)

with uy representing the node displacement vector (cf. Fig. 1)

T
ur = [uzl Uyl Uzl 9:1:1 eyl 921 Ug2 Uy2 Uz2 6:02 0y2 922] ) (13)
and the matrix form functions N(z) =
mni11 0 0 0 0 0 niy 0 0 0 0 0
0 m2ane3 0 nas mge 0 mog—no3z 0 narr no212
1 1 0 —nognge 0 —ngg m2s 0 maz mag 0 —n2ie man (14)
Lc 0 0 0 ni1 O 0 0 0 0 ni7 O 0 ’
0 0 ns3 0 mns5—mog 0 0 —ms3 0 m511 N2
0 mn53 0 0 —nog—ms5 0 —ms3 0 0 nag —msn



Efficient Computation of Spatial Truss Structures ... 5

The matrix entries of N(x) are

ny = ¢ (L—x),

nr = ad,

N9y = 2ai4x3—3Lai4x2—1202x+Lcl,

noy = 3cez(L—x)w,

nos = —c3 (2L —z) (L —2) x,

nos = Laj a®+ (6a35 —2c; +18¢2)x? — (6a35 — c1 +6¢2) L,
nggs = L —nog, (15)
no1n = —c3 (L —x) (L + )z,

note = Laj,a® — (6a3;5 +c1 —18¢co)a? + 6 L (a35 — co) z,

ns3 = 6a3, (L —x),

nss = 3Lal 2®> —4(c; —9c)x+ Ley,

nsi1 = 3Lajx? —(2¢; —36¢o)x,

with

2 2 2 2
1 =L%aj, +12 (a2 aas — a3s), o = Q22 Gaa — A55, C3 = 2a25 Qaa.
(16)

3 Element Stiffness Matrix

The element stiffness matrix K for a thin-walled tube-shaped beam is obtained
by the strain energy W [8]. With using the same ansatz functions as the dis-
placement functions u(z) in Eq. (12), an exact Timoshenko beam element is
obtained.

L 1 L
W= 7/ el Aedx = iuIT/ B(z)" AB(z)dz u, (17)
0 0

K

with € being the gradient of the one-dimensional displacement measures repre-
sented by B(z) ur and ' denoting the derivative with respect to x

Uy N,
u; + 92 N/21 + Nﬁi
u! +6 N%,. + N5;
e=| "7, "= N | m=Bl@)wu (18)
x 47
07; N:5¢
ez Nﬁi
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B(x) can be expressed using the derivative of the form function matrix N(z) as

by 0 0 0 O 0 —-bi;1 O 0 0 0 0
bao bas O bas bag O —baa —baz O ba11 b212

1
0
B—— 0 *b23 b22 0 *b26 b25 0 bQ3 7622 0 *b212 b211 (19)
0 0 0b71 O 0 0 0 0 —b;1 O 0 ’
0 0 bs3 O bss—bag O 0 —bszg 0O  bsi1 ba3
0 bs3 0 0 —bag—bss O —bsz 0 0  baz —bs11
with

biu = c1, bao = 12c¢y,

bos = —3c¢3 (L —2x), bos = Leg(2L—3w),

bos = 6(L —2x)a3s +6Lcy, boin = Les(L—32), (20)

b212 =—6 (L* 21’) a%s +6LCQ, b53 = 76(124 (L*Q’I),
bss = —6Lai4$+461 — 36 co, bs11 = —6Lai4x+201 — 36 ¢cs.

Using B(z) and A, the beam stiffness matrix K can be evaluated as

K]_]_ K12 _K11 _KIZT

L T
1 K -K K
K= B(z)TAB(z)de = — 22 12 24 21
| BT AB@a - p | Ke e Rl
Ks»
with
[ kg 0 0 [ kag 0 0
K = 0 koo 0 , Kaz = 0 kss 0 )
0 0 k 0 0 k
- 2 . - > (22)
k14 0 0 —kuaa 0 0
Ki2 = 0 kos  kos |, Kaosa= 0 ksi1 ksi2 |,
| 0 —kos ko | | 0 —ks12 ks |
ki =aiici, kss =4co(L?ass +3ag), koo = 12¢2a44,
kis =aizcr,  ksii =2c2 (L% ass —6az), kas = —12coass, (23)
kss = arrcr, kog = 6co Layy, ks12 = —12coazs L.
Remarks: For vanishing coupling effects (a17 = a2 = 0) i.e. a beam with

isotropic material, the beam stiffness matrix is equivalent to the one presented
by Karadeniz et al. [8].

4 Numerical Examples

In this section, the beam model with the stiffness matrix in Eq. (21) is com-
pared to finite element analyses performed in ANSYS 2021R1 using both solid
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(SOLID185) and shell (SHELL181) elements. First, a single tube model with a
highly anisotropic laminate is compared, followed by a single tube model with
a quasi symmetric laminate. Finally, a comparison for a spacial truss structure
with a total number of 64 tubes is drawn. For all examples, the finite element
model with solids is considered to be trusted and used as reference.

For all simulations the following material for each unidirectional ply is used.
Young’s modulus in fibre direction £ = 134639 MPa, Young’s modulus perpen-
dicular to the fibre direction F; = 9894 MPa, shear modulus G || = 4559 MPa
and Poisson’s ratio v = 0.2630.

Single Beam - Highly Anisotropic Laminate

For the first comparison, a tube with the following dimensions is used: length
L = 1000 mm, inner diameter d = 26 mm, wall thickness i = 2 mm. The laminate
is made from 4 layers with a thickness of t; = 0.5 mm each and the corresponding
ply-angles (inside to outside) are p; = [90°,12°,30°,45°]. The corresponding
finite element discretization is shown in Fig. 3.

Fig. 3. Finite element discretization of the single tube for solid elements

Along the perimeter, the cross-section is discretized in o = 5° sections result-
ing in 72 equal elements with an average width of approximately 1.2 mm. Along
the length, the tube is discretized in 50 elements with a length of 20 mm each. For
the finite element model with solid elements, this gives a total number of 14 400
elements and 56 208 DOFs. The equivalent shell model has 3600 elements and
21174 DOFs. The FE model is clamped at one end face and load is applied on
the opposing end face. For comparison a single beam element based on Eq. (21) is
used, the beam is clamped at node one (uz1 = uy1 = uz1 = b1 =0y = 0.1 =0)
and the load is applied to the second node.

Load Case Tension An axial force of F, = 10kN is applied, the results are
shown in Fig. 4.
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7li5.0%
5
Il
3 —— Beam
©0.0%1 m —%— Ansys Shell
0 200 400 600 800 1000

X inmm

(a) Relative error of displacement 6., = azu%“z relative to the solid model

7.51 - Beam
° 50l —%— Ansys Shell
Ex ' Ansys Solid
D 5 /
001 —=— : : : : :
0 200 400 ) 600 800 1000
X in mm

(b) Rotation 0, caused by coupling of tension and torsion

Fig. 4. Single tube with highly anisotropic laminate under tension F, = 10kN

The displacement u, and rotation 6, of the tube under axial tension are
well met by the beam model within an error range of less than 2%. The beam
model shows a slightly stiffer behaviour than the solid model, but a much smaller
deviation than the shell equivalent with an overall less stiff behaviour than the
solid model.

Load Case Bending A bending force of F,, = 50N is applied similarly at the end
of the tube, the results are shown in Fig. 5.

1 - Beam
| —%— Ansys Shell
Ansys Solid

PR o
o :n,ﬁ,n——'

0 o—oo i i i i
0 200 400 600 800 1000
X in mm

(a) Displacement u, under bending

0.0

! —— Beam

E N —%— Ansys Shell A

= -0.24 : Ansys Solid 3

N DL

3

—0.44 T T 4 4 T T
0 200 400 600 800 1000
X inmm

(b) Displacement . caused by coupling under bending

Fig. 5. Single tube with highly anisotropic laminate under bending Fy, = 50 N
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The beam model still shows a stiffer behaviour than the solid model, resulting
in errors of approximately —13.8% in u, and —31.9% in the coupled u, direction.
The shell model shows a less stiff behaviour than the solid model, with errors of
approximately 7% in wu, and 5.6% in the coupled u, direction.

Single Beam - Slightly Anisotropic Laminate

For this example a more application-oriented laminate made from 6 layers is
used. The ply thicknesses are ¢; = [0.2,0.4,0.4,0.2,0.4,0.4] mm and the cor-
responding ply-angles (inside to outside) ¢; = [90°,12°, —12°,90°,12°, —12°].
This results in a quasi symmetric, but slightly anisotropic laminate. All other
parameters are retained.

Load Case Tension The displacement u, and rotation 6, of the tube under axial
tension are shown in Fig. 6. They are very well met by the beam model within an
error range of less than 0.6%. In this case the beam model shows a significantly
better behaviour in comparison to the shell model with an error above 10% for
the displacement and a coupled rotation in the opposite direction.

10.0%{ | BN NN

. —— Beam
?‘; —%— Ansys Shell
Sl 5.0%
[} U707
3
o

0.0%

0 200 400 600 800 1000
X in mm

(a) Relative error of displacement 6,, = % relative to the solid model

—— Beam
° —%— Ansys Shell
Ansys Solid

0.01 = e o

0 200 400 600 800 1000
X in mm

0]
ol

(b) Rotation 6, caused by coupling of tension and torsion

Fig. 6. Single tube with slightly anisotropic laminate under tension F, = 10kN

Load Case Bending For the bending load case, the results are shown in Fig. 7.
The beam model shows a very accurate result for u, with an error under 0.5%.
The shell model shows similar results compared to the tension load case, with
an relative error around 12% for u, and a false coupling behaviour for the u,
displacement.
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101 —m Beam
% —%— Ansys Shell
c 5 Ansys Solid
-
3>
0 c C' : — &7 T T T T T
0 200 400 600 800 1000
X in mm
(a) Displacement u, under bending
£
g€ -0.02 —— Beam
c —%— Ansys Shell
;—0.044 Ansys Solid
—0.06

0 200 400 600 800 1000
X in mm

(b) Displacement u. caused by coupling under bending

Fig. 7. Single tube with slightly anisotropic laminate under bending F, = 50N

Traverse - Slightly Anisotropic Laminate

As final example, a spatial truss structure with 64 tubes made from the slightly
anisotropic laminate is compared. The cross section dimensions of the tubes
were retained from the examples above, except for the length of each beam. The
geometry is shown in Fig. 8, the total size of the traverse is 5000 x 500 x 500 mm?.

1000,00 (mem) X

S——cme —
250,00 750,00

Fig. 8. Traverse model under bending F, = —10kN

The truss structure is clamped at the four nodes on the left side, a bending
force of F, = —10kN is applied at the tip. The displacement is evaluated in
Figs.9 and 10 along the yellow marked path shown in Fig. 8.

The beam model of the truss structure is composed of 64 beam elements with
a total number of 156 DOFs. The u, displacement deviates from the results of
the solid model (4 040 376 DOFs) by only 0.6%. In comparison, the shell model’s
displacement u, differs by approximately 8% to 9%.
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Fig. 9. Traverse with slightly anisotropic laminate under bending F, = —10kN

The beam model also mets the coupled u, displacement very well with an
error less than 1%, compared to the shell model (1047324 DOFs) with errors
up to 35% as shown in Fig. 10b.

10.0%
—— Beam
3. 5.0%-
\‘g : —%— Ansys Shell
3
I 0.0%1
3
o
~5.0% 1
0 1000 2000 3000 4000
X in mm

(a) Relative error of displacement 6, = azl%‘z relative to the solid model

Wﬂ*‘*—ﬂ—/

—%— Ansys Shell

2000 3000 4000

X in mm

0 1000

(b) Relative error of displacement 6y, = % relative to the solid model

Fig. 10. Relative error of displacement for a traverse with slightly anisotropic laminate
under bending F, = —10kN

Comparing the computation time for this truss, the beam element is orders
of magnitude faster. Solving the solid model with Ansys takes 221.02s (4 CPU
cores), preparing the ACP solid model not included (approx. 1200s). The shell
model takes 48.95s to solve, while the beam model finishes in only 11.86 ms.
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5 Conclusion

In the presented contribution the analytical stiffness matrix for tube-shaped
thin-walled composite beams has been derived. This allows efficient computing
of spatial truss structures while coupling effects within asymmetric laminates
are maintained. The number of DOF's can be reduced to a fraction compared to
a finite element analysis with solid or shell elements, while errors remain within
a reasonable range. Simulations based on highly asymmetric laminates still have
potential for further improvement, while truss structures with more application-
oriented laminates provide very good results compared to the finite element
analysis. Therefore the provided analytical stiffness matrix is well suited for
computationally intensive tasks like topology optimization during the product
design process of lightweight spatial truss structures made from composites.
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