An Introduction to RISC-V

Inside an
Open-Source Processor

An Introduction to RISC-V

Monte Dalrymple

(lektor

@ This is an Elektor Publication. Elektor is the media brand of
Elektor International Media B.V.

PO Box 11

NL-6114-ZG Susteren

The Netherlands

@ Al rights reserved. No part of this book may be reproduced in any material form, including
photocopying, or storing in any medium by electronic means and whether or not transiently or incidentally
to some other use of this publication, without the written permission of the copyright holder except in
accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a
licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1P 9HE.
Applications for the copyright holder’s written permission to reproduce any part of this publication should be

addressed to the publishers.

@ Declaration. The Author and the Publisher have used their best efforts in ensuring the correctness of the
information contained in this book. They do not assume, and hereby disclaim, any liability to any party for
any loss or damage caused by errors or omissions in this book, whether such errors or omissions result from

negligence, accident or any other cause.

@ British Library Cataloguing in Publication Data

Catalogue record for this book is available from the British Library

® ISBN 978-3-89576-443-1 Print
ISBN 978-3-89576-444-8 Ebook

® © Copyright 2021: Elektor International Media B.V.

Prepress production: Jack Jamar, Graphic Design | Maastricht

Elektor is part of EIM, the world’s leading source of essential technical information and electronics products for pro engineers,
electronics designers, and the companies seeking to engage them. Each day, our international team develops and delivers
high-quality content - via a variety of media channels (including magazines, video, digital media, and social media) in several
languages - relating to electronics design and DIY electronics. www.elektor.com

o 4

Dedicated to Beau, Caleb, Alexis and Johan

Inside an Open-Source Processor

Table of Contents

Chapter 1 e Introduction ittt i s et a e 13
1.1 Goalsof ThiS BOOK o oo i i e e e e 13
1.2 Target Audience. o it 13
1.3 Typeface Conventions. i i e e e 13
1.4 What to EXpect i e e e 14

Chapter 2 ¢ RISC-V Instruction Set Architecture 16
2.1 OVEIVIEW. o o it e e e e 16

2.1.1 Instruction Formats 17
2.1.2 Immediate Data Instruction Positions 19
2.1.3 Register Set. 21
2.1.4 Standard EXtensions. 22
2.1.5 Opcode Table Conventions.t 23
2.2 Base Integer Instruction Set 23
2.2.1 Integer Arithmetic Instructions 25
2.2.2 Logical Operation Instructions 26
2.2.3 ShiftInstructions o 26
2.2.4 Compare Instructionsottt 26
2.2.5 Constant Generation Instructions. 27
2.2.6 Unconditional Jump Instructions., 28
2.2.7 Conditional Branch Instructions 29
2.2.8 Load and Store Instructions. 30
2.2.9 Memory Ordering Instructions 31
2.2.10 Environment Call and Breakpoint Instructions 31
2.2.11 Miscellaneous Instructions. i 32
2.2.12 HINT Instructions. i e e e e 32
2.3 Control and Status Register Extension 33
2.3.1 Read-Write CSR Instructions 34
2.3.2 Set CSRINStructions. it e e e 35
2.3.3 Clear CSRINStructions 36
2.4 Integer Multiplication and Division Extension. 36
2.4.1 Multiplication Instructions 37
2.4.2 Division Instructions. 37
2.5 Atomic Instruction Extension. 38
2.5.1 Atomic Memory Operation Instructions 39
2.5.2 Load-Reserved/Store-Conditional Instructions 40
2.6 Single-Precision Floating-Point Extension, 40
2.6.1 SP Floating-point Load and Store Instructions 42
2.6.2 SP Floating-point Computation Instructions. 42
2.6.3 SP Floating-point Sign Injection Instructions 43
2.6.4 SP Floating-point Conversion Instructions 43
2.6.5 SP Floating-point Compare Instructions. 44

Table of Contents

2.6.6 SP Floating-point Classify Instructions 44

2.6.7 SP Floating-point Move Instructions 44

2.7 Double-Precision Floating-Point Extension, 44
2.7.1 DP Floating-point Load and Store Instructions 45

2.7.2 DP Floating-point Computation Instructions. 46

2.7.3 DP Floating-point Sign Injection Instructions. 47

2.7.4 DP Floating-point Conversion Instructions. 47

2.7.5 DP Floating-point Compare Instructions 48

2.7.6 DP Floating-point Classify Instructions 48

2.8 Quad-Precision Floating-Point Extension i 48
2.8.1 QP Floating-point Load and Store Instructions 49

2.8.2 QP Floating-point Computation Instructions. 50

2.8.3 QP Floating-point Sign Injection Instructions. 51

2.8.4 QP Floating-point Conversion Instructions. 51

2.8.5 QP Floating-point Compare Instructions 52

2.8.6 QP Floating-point Classify Instructions 53

2.9 Compressed (16-bit opcode) Extension. i 53
2.9.1 Compressed Integer Arithmetic Instructions 56

2.9.2 Compressed Logical Instructions 57

2.9.3 Compressed Shift Instructions 57

2.9.4 Compressed Constant Generation Instructions. 58

2.9.5 Compressed Unconditional Jump Instructions 58

2.9.6 Compressed Conditional Branch Instructions 59

2.9.7 Compressed Load and Store Instructions. 59

2.9.8 Miscellaneous Compressed Instructions. 59

2.9.9 Compressed Floating Point Instructions. 60

2.9.10 Compressed HINT Instructions. 61

2.10 Bit Manipulation Extension 61
2.10.1 Logic-With-Negate Instructions 62

2.10.2 Shift and Rotate Instructions i 63

2.10.3 Single-Bit Instructions e 63

2.10.4 Sign-Extend Instructions. 64

2.10.5 Reversal Instructions i 64

2.10.6 Packing Instructions 64

2.11 External Debug Support s 65
Chapter 3 e Privileged Architecture ittt nnan 66
3.1 Privilege Levels 66
3.2 Control and Status Registers 67
3.2.1 ISA and Extensions (Misa) 73

3.2.2 VendorID (mvendorid) v oot 74

3.2.3 Architecture ID (marchid) 74

3.2.4 Implementation ID (mimpid) o o o 74

3.2.5 HartID (mhartid).o oo 75

3.2.6 Machine Status (mstatus) 75

o7/

Inside an Open-Source Processor

3.2.7 Machine Trap Handler Base-Address (mtvec) 76

3.2.8 Machine Interrupt-Enable (mie) 77

3.2.9 Machine Interrupt-Pending (mip) o i i 77

3.2.10 Machine Cycle Count (mcycle and mcycleh). 78

3.2.11 Machine Instructions-retired Count (minstret and minstreth). 79

3.2.12 Time (timeandtimeh) 79

3.2.13 Machine Counter-Inhibit (mcountinhibit) 80

3.2.14 Machine Scratch (mscratch) 80

3.2.15 Machine Exception PC (Mepc) v v v oo oo i e 81

3.2.16 Machine Exception Cause (MCause) v i v i i i 81

3.2.17 Machine Trap Value (mtval). 84

3.2.18 Debug Control and Status (decsr) i 84

3.2.19 Debug PC (APC) .+« v v v i i e 85

3.2.20 Debug Scratch 0 (dscratchQ) i 86

3.2.21 Debug Scratch 1 (dscratchl) 86

3.3 Physical Memory Attributes 86
3.4 Physical Memory Protection. 86
3.5 Supervisor Address Translation 87
3.6 Hypervisor EXtension 87
3.7 Privileged Instructions 87
3.7.1 Trap Return Instructions 88

3.7.2 Interrupt Management Instructions 88

3.7.3 Supervisor Memory-Management Instructions 89

3.7.4 Hypervisor Memory-Management Instructions 89

3.6.5 Hypervisor Virtual Machine Load and Store Instructions 89

3.8 User-Level Interrupts Extension. i 90
Chapter 4 e Initial Design Work i ittt it e s sttt s e e e e e 91
4.1 External Bus Interface 91
4.2 INStruction TiMIiNgG . . . oo e 93
4.3 Load from Memory Timing. . . . v e e 96
4.4 Store to Memory TimMiNg . . . v 97
4.5 Atomic Memory Operation TIMiNgottt e e e e 98
4.6 CSRInterface and TimiNg ot e e e e 99
4.7 Wait for Interrupt Timing o oo e e 101
4.8 Breakpoint TIMIiNg . . . oo e 102
4.9 RESEL TIMING . . o o oo e 104
Chapter 5 ¢ Organizingthe Designo ittt it st s e nn e 105
5.1 Verilog Coding Standards i e 105
5.2 Logic Synthesis Options it i e 106
5.3 Instruction Decode Macro Definitions i i 108
5.4 Standard CSR Address Definitions i 109
5.5 Exception Code Definitions i e 110
5.6 Top-level Module Connections ittt e e e e e 113

Table of Contents

Chapter6 e Insidethe CPUttt et e 117
6.1 Start-up and Pipeline Control. 119
6.2 Stage 1: Memory Address Generation. 120
6.3 Load/Store/AMO LOGIC . . . v v i 122

6.3.1 Dedicated AMO ALUottt e 126
6.3.2 Write Data Multiplexing. oo oo i i 127
6.3.3 Memory Interface. 128
6.3.4 Read Data Assembly. i 129
6.4 Stage 2: MemOry ACCESS. . . o v v v it e e e e e e 131
6.5 Stage 3: Pre-Decode 131
6.5.1 Stage 3 Program Counter 135
6.5.2 Compressed Opcode COMMON . .+« v v v i i e e 136
6.5.3 Compressed Quadrant 0 Expansion 137
6.5.4 Compressed Quadrant 1 Expansion 137
6.5.5 Compressed Quadrant 2 Expansion 138
6.5.6 Opcode Select 139
6.5.7 Opcode Fields 139
6.6 Stage 4: Register Read and Late Decode. 140
6.6.1 Register File, with Write Bypass 142
6.6.2 BasicDecodes e 144
6.6.3 ALUDECOAES . . . vttt e e 146
6.6.4 ALUExternal Decodes. i e 147
6.6.5 ALU Test Decodes. i ittt e e 148
6.6.6 BitSelectDecodes e 148
6.6.7 Invert BlnputDecode., 149
6.6.8 Non-ALU Decodes.t i ittt e e 149
6.6.9 Shift Amount Source Decodes i 150
6.6.10 Unique Instruction Decodes. i 151
6.6.11 Register Write Decode. it 151
6.6.12 CSRCheckandDebug 152
6.7 Stage 5: EXecute 153
6.7.1 Register Bypass oo i e 156
6.7.2 Shift/Rotate Common o i e e 157
6.7.3 ShiftLeft. e 157
6.7.4 ShiftRight. e 159
6.7.5 Rotate. 160
6.7.6 Shuffle e 160
6.7.7 PaCK . . o e 162
6.7.8 SingleBitSelect. 162
6.7.9 Main ALU.o e 163
6.7.10 Branch Tests i e 165
6.7.11 EXCeplions. oot e 166
6.7.12 Exception Status 168
6.7.13 Control Outputso i 168

Inside an Open-Source Processor

6.8 CSRINterface 170
6.9 Stage 6: Register Write. i 172
6.9.1 Control Outputs e 173

6.9.2 Register Write Interface 174

Chapter 7 e Inside the Control and Status Registers 175
7.1 Valid Address Checko i 178
7.2 Control/Status Registers i 180
7.3 Debug Control/Status Registers. 182
7.4 CSRRead Data 183
7.5 CycleCounter 184
7.6 Instructions-Retired Counter i i e e e 186
Chapter 8 e Insidethe Interrupts. i ittt ittt st e s 189
8.1 Interrupt-Pending. i e 191
8.2 Interrupt Outputs. 191
8.3 Local Interrupts 192
Chapter 9 ¢ Hardware-SpecificModules ittt 194
9.1 Register File Module 195
9.1.1 Lattice iCE40 Register File i 195

9.1.2 Xilinx Series-7 Register File. i 196

9.2 Adder Module 197
9.2.1 Lattice ICE40 Adder e e e 198

9.2.3 Xilinx Series-7 Adder 199

9.3 Subtractor Module 199
9.3.1 Lattice iCE40 Subtractor. i 200

9.3.2 Xilinx Series-7 Subtractor. 201

9.4 Incrementer Module. 201
9.4.1 Lattice iCE40 Incrementer. i 202

9.4.2 Xilinx Series-7 InCrementer. vttt ettt 202

9.5 CounterModule 203
9.5.1 Lattice iCE40 Counter. i e 203

9.5.2 Xilinx Series-7 Counter i e 204

Chapter 10 ¢ Putting Everything Together. it 205
Chapter 11 e Design Verification Testbench. i 208
11.1 Timing Generator. it 208
11.2 ProCessor MEMOKY . v v vt e e e e e 210
11.3 Wait State Generation. e 211
11.4 Instantiate the Design e 212
11.5 Error LOg. . v vttt e e e e 213
11.6 End-of-Pattern Detect. i 214
11.7 Test TasKs . . . o it e e 214
11.8 Test Patterns e e 215

e 10

Table of Contents

Chapter 12 ¢ A RISC-V Microcontroller ittt i et e n s 217
12.1 Microcontroller OVErVIEW. . . . v v v i e e e 217
12.1.1 Microcontroller Module Connections v 217

12.1.2 Unused CPU Featuresot e e 218

12.1.3 Processor Instantiation 218

12.1.4 Program/Data MemoOry oo i ittt e 219

12.1.5 BusInterface.o e 220

12.1.6 Parallel Portso 221

12.1.6 Serial Port. o 222

12.1.7 Options and Definitions. 223

12.2 Memory Module 224
12.2.1 Lattice ICE40 MemMOrY v o i it e e e e e e e e 225

12.2.2 Xilinx Series-7 MemOry . . o v v v vt e e e e e e e e 227

12.3 Serial Port. . . o oo e 228
Chapter 13 e Alchrity FPGA DevelopmentSystem i 230
13.1 FPGA DevelopmentBoards 230
13.1.1 Alchrity Cu. . o oo e 231

13.1.2 Alchrity Au. . o o o e 231

13.1.3 Alchrity Au+ . o oo e 232

13.2 Element Boards 233
13.2.1 Alchrity Br Prototype. o oo 233

13.2.2 Alchrity Io . . v o o e 234

13.2.3 Alchrity Ft . ..o 235

13.3 Bank Signal Assignments 236
13.3.1 Bank A . 236

13.3.2 Bank B . .o 238

13.3.3 Bank C . oot e 239

13.3.4 Bank D ..o oot 240
Chapter 14 ¢ Example FPGA Implementation. it ittt i it i e n s 242
14.1 Example Hardware 242
14.1.1 Top Level Connections. oo i i it e e e e 242

14.1.2 Instantiatingthe MCU. e e e e 243

14.1.3 Pin Mapping. . o v v it i e e e e e e 243

14.1.4 Special Connectionsottt 244

14.1.5 100MHz Divider o oo 245

14.1.6 125 Hz Interrupt e 246

14.2 Example Software 247
14.2.1 Start-up Code o i i e 247

14.2.2 Trap Acknowledge Routine. i 248

14.2.3 Timekeeping Code ittt e 249

14.2.4 Display SCan oot e 251

14.3 Memory Initialization 253
14.3.1 Verilog Memory Initialization 254

o 11

Inside an Open-Source Processor

14.3.2 Lattice Memory Initialization 254

14.3.3 Xilinx Memory Initialization 254

14.4 FPGA Project Setup 255
14.4.1 Lattice (Alchrity CU) TipS. « v v v v i e e e e e e et 255

14.4.2 Xilinx (Alchrity Auand AU+) TipS . . o oo v oo i i e e e e e 256

14.5 FPGA ReSUILSt 256
14.5.1 Alchrity CuDetails 257

14.5.2 Alchrity AuDetailso 260

14.5.3 Alchrity Au+ Details oo oo 262

14.6 Hardware Programmingot 264
Chapter 15 e What NOW? ittt ittt e sttt st e s e e nnnnns 265
15.1 Hardware Projects oo it i e e e 265
15.2 Software Projects. i i 266
AppendiX A @ RESOUICES. . . . v v v v vttt s st et s a s s a s s a s s e s s s s s n s s n s s 267
Official RISC-V . o i oo e e 267
Alchrity FPGA Development o o i e e 267
RISC-V Programming. . . o v o vt ot e e e e e e e e e e e e e e e e e 268
YRV Verilog Codeot e e e 268

1 T 269

e 12

Chapter 1 e Introduction

Chapter 1 e Introduction

The popularity of the Reduced Instruction Set Computer (RISC) concept is generally cred-
ited to separate projects at the University of California, Berkeley and Stanford University
in the early 1980s. The latest generation of a RISC instruction set architecture from UC
Berkeley is called RISC-V (pronounced “risk-five”) and has been spun off to a non-profit
foundation (www.riscv.org) in an attempt to create a basis for an open instruction set archi-
tecture and open-source hardware.

The RISC-V instruction set architecture (ISA) is still new enough that many people don’t
know much about it, and this book will attempt to help change that.

1.1 Goals of This Book

There are two main goals for this book. The first goal is to introduce the 32-bit RISC-V
ISA, with an emphasis on how it can be used in embedded control applications. The
second goal is to document the design process while implementing this instruction set
architecture. After the design is complete we will implement the design in an affordable
FPGA development board so that you can investigate the finished design. By the end of
the book you should understand the design well enough to modify it to add or subtract
features relevant to your application.

The CPU documented here is fully open-source and licensed under the Solderpad Hard-
ware License v 2.1.

1.2 Target Audience

A wide variety of readers should find the information here useful. Practicing engineers
who need an open-source CPU for a professional or hobby project will appreciate that the
internal operation of the design is fully documented and easily modified. Electrical en-
gineering and computer science students will benefit from a real-world design example,
and this book (and design) can be used as the basis for projects that add the RISC-V
instructions and modes that are not really needed for embedded control applications.
Sophisticated electronics hobbyists should finally be able to implement that custom pro-
cessor they’ve always dreamed about.

1.3 Typeface Conventions
Typeface conventions are an important part of this kind of book. Four different typefaces
will be used to distinguish something from normal text:

bold regular typeface will be used for instruction mnemonics, register names, register
numbers, and assembly language code.

e 13

Inside an Open-Source Processor

Bold italic typeface will be used for operands in instruction mnemonics.

Italic typeface will be used when referring to files, external documents, or terms from the
RISC-V Instruction Set Manual that may not be familiar to many people.

A monospace font will be used for all Verilog code and signal names. This type of font
should always be used for Verilog code for readability, because it keeps things lined up
from line to line. This font will also be used when showing actual opcode encoding.

1.4 What to Expect

This book is about implementing a processor that uses the 32-bit RISC-V ISA, with an
emphasis on the features needed for embedded control applications. It is not a book
about computer architecture, instruction set design, or assembly language programming.
All of those subjects have been extensively covered elsewhere.

The RISC-V Instruction Set Manual, Volume I: Unprivileged ISA and the RISC-V Instruc-
tion Set Manual, Volume II: Privileged Architecture are the official specifications for
RISC-V. For brevity, we will usually refer to them jointly as just the RISC-V Instruction
Set Manual. Only those parts of these specifications that are required to implement the
design presented here will be discussed in detail. In most cases, if you plan to extend
the design you will need to refer to these official specifications for all of the nuances and
subtleties specified in those documents. When referring to these official specifications be
prepared to encounter terms that will be new unless you are familiar with the latest con-
cepts in computer architecture. This book will attempt to avoid terminology that may be
unfamiliar to the target audience.

The reader should be familiar with logic design and have a basic understanding of how
a CPU works. Some familiarity with assembly language will also be required. The design
will be implemented using the Verilog hardware description language (HDL), so some
familiarity with that language will also be required.

This book will cover the process of implementing the design in a common FPGA devel-
opment board, so if you want to use a different FPGA family or development board, you
will need to know how to do that. Nearly all of the Verilog code provided in the book is
independent of technology. The only exceptions to this rule are the RAM used for the CPU
register file and optional dedicated logic for addition and subtraction. Only the CPU reg-
ister file really needs to be technology-specific but should be easy to port to any target
technology.

The first section of the book is a review of the RISC-V ISA, especially those parts of the
ISA that pertain to embedded control applications. If you are already familiar with the
RISC-V ISA you can probably skim through this section, although it is important to under-
stand which parts of the RISC-V ISA will be implemented and which parts will be omitted
from this particular design.

e 14

Chapter 1 e Introduction

The next section covers the initial design work, which is where the overall timing and
various bus interfaces are specified. This is probably the most important part of the book,
because mistakes here will be very hard to undo. Understanding these interfaces and
timing is critical to being able to modify the design to suit your own needs.

Once the initial design work is done, we’ll cover the implementation of the different
parts of the CPU. If the initial design work has been done properly the Verilog coding is
straightforward.

Once the Verilog coding is complete the overall project is about half done! In the real
world the design will need to be verified. Most of this work will be left to the reader, and
there are RISC-V ISA verification suites available to assist with this task.

A CPU by itself is of little use, so in the next section a small microcontroller with I/O and
memory will be designed.

The next two sections will discuss a family of FPGA development boards and cover some
of the information required to load the microcontroller design into one of these devel-

opment boards. Also included is a small code example that implements a 24-hour clock.

The final section has some suggestions for further enhancements to the clock example as
well as a number of potential modifications to the Verilog of the RISC-V CPU itself.

e 15

Inside an Open-Source Processor

Chapter 2 e RISC-V Instruction Set Architecture

The RISC-V Instruction Set Architecture (ISA) is actually a family of four separate, but re-
lated, base instruction sets. These four ISAs have either a different width for registers or
a different number of registers but are related because they all use the same instruction
encoding for much of the base instruction set.

The four base instruction sets are called RV32I (the 32-bit Base Integer ISA), RV32E (the
32-bit Base Integer Embedded ISA), RV64I (the 64-bit Base Integer ISA) and RV128I (the
128-bit Base Integer ISA). Of these, only RV32I and RV64I have been frozen at this time.

RV32I contains 32 32-bit registers and accommodates a 32-bit address space. This is the
base ISA that we will implement in the design presented here.

The only difference between RV32E and RV32I is that RV32E contains just 16 32-bit reg-
isters, rather than the 32 32-bit registers of RV32I. The RISC-V Instruction Set Manual
justifies this difference for an “embedded” version of the ISA by asserting that 16 regis-
ters constitute 25% of the area and require 25% of the power for a RISC-V core, and that
this reduction is required for embedded systems. The author disagrees.

RV64I1 contains 64-bit registers and handles 64-bit addresses. All of the instructions that
constitute RV32I are also present in RV64I, except that these instructions now operate
on 64-bit quantities rather than 32-bit quantities. This means that the same code can
run on both architectures, but the results will be different. RV64I contains separate in-
structions for performing 32-bit operations that will return the same result as RV32I in
the lower word of a register, with only the sign extension in the upper word of a register.
The RISC-V Instruction Set Manual acknowledges that this may have been a mistake, but
that it is too late to change things now. If you plan to extend this design to RV64I pay
particular attention to the subtleties introduced by this decision.

RV128I will contain 128-bit registers and handle 128-bit addresses. This version of the
RISC-V ISA will contain the same issues relative to RV64I as that ISA does to RV32I.

2.1 Overview

RISC-V memory is byte-addressable and is inherently little-endian. The actual memory
bus width is considered an implementation detail, and can be as wide or as narrow as
the application requires. As a reminder, the byte numbering for a little-endian system is
shown in Figure 2.1, which shows a 32-bit width for data.

e 16

Chapter 2 e RISC-V Instruction Set Architecture

Bits 31:24 23:16 15:8 7:0
Bytes byte 3 byte 2 byte 1 byte 0
Halfwords halfword 1 halfword 0
Word word

Figure 2.1: Bit/Byte/Halfword/Word Numbering.

RISC-V operates on twos-complement numbers, although there are provisions for un-
signed numbers for addresses. Immediate data is almost always sign-extended to the full
32-bit width before use.

All of the base RISC-V ISAs employ a fixed 32-bit instruction size, and all instructions
must be word-aligned in memory. This means that the two least-significant bits of the
instruction address must both be zero or an Instruction Address Misaligned exception
will be generated. However, the RISC-V Instruction Set Manual also provides for vari-
able-length instructions, where the length is a multiple of 16 bits, including the option of
16-bit instructions. In the case of 16-bit instructions only the least-significant bit of the
instruction address must be zero.

The length of a RISC-V instruction is encoded in the least-significant bits of the instruc-
tion. Although the RISC-V Instruction Set Manual specifies a method for encoding up to
192-bit instructions, only 16-bit and 32-bit instructions are currently frozen in the speci-
fication. Table 2.1 shows the instruction length encoding.

Instruction least-significant word instruction width

XXXXXXXX_XXXXXXX0 16-bit
XXXXXXXX_XXXXXX01 16-bit
XXXXXXXX_Xxxxx011 32-bit
XXXXXXXX_Xxxx0111 32-bit
Xxxxxxxx_xxx01111 32-bit
XXXXXXXX_xx011111 48-bit
XXxxxxxx_x0111111 64-bit
xnnnxxxx_x1111111 804+16*nnn (nnn # 111)
x111xxxx_x1111111 reserved for > 192 bits

Table 2.1: Instruction Length Encoding.

2.1.1 Instruction Formats

Almost all currently defined RISC-V instructions use one of just six basic 32-bit instruc-
tion formats, which significantly simplifies the instruction decode. Figure 2.2 shows these
instruction formats.

e 17

Inside an Open-Source Processor

31 30 25 24 21 20 19 15 14 12 11 8 7 6 0

Figure 2.2: Instruction Formats.

e 18

Chapter 2 e RISC-V Instruction Set Architecture

The R-type instruction format is used for Register-Register operations. With this format
an instruction reads two source operands from registers and writes the result of the op-
eration to another register. The source operands are unaffected unless one of the source
registers is used as the destination.

The I-type instruction format is used for Register-Immediate operations. With this format
instructions read one source operand from a register, take the second operand from the
immediate field in the opcode, and write the result of the operation to a register. The
source operand is unaffected unless the source register is also used as the destination.
With the I-type instruction format the immediate operand is 12 bits in length and is
sign-extended to the full 32 bits for use in the operation. This gives a range of -2048 to
+2047 for immediate data. The unconditional sign extension is very useful in most cases,
but can sometimes be a hindrance, as will be highlighted later.

The S-type instruction format is used exclusively for Store operations, and the immedi-
ate data is always an address offset. As with other immediate data, the 12-bit offset is
always sign-extended, giving an offset range of -2048 to +2047 from the base address
a the register.

The B-type instruction format is used exclusively for Branch instructions, and the 12-bit
immediate data is again an address offset. In this format the offset in the instruction is
sign-extended and then shifted left by one bit to guarantee that it is even, giving a range
of -2'2 to +2'2 - 2 for the branch. The bits in the offset are arranged to line up as much
as possible with the bits in the offset in the S-type instruction format.

The U-type instruction format is used for instructions that require wider immediate data.
In this format immediate operands are twenty bits wide and fill the most-significant bits
of a 32-bit word, with the lower 12 bits of the word all set to zero.

The J-type instruction format is used exclusively for one type of Jump instruction, and the
12-bit immediate data is again an address offset. In this format the offset in the instruc-
tion is sign-extended and then shifted left by one bit to guarantee that it is even, giving
a range of -2*? to +2*? - 2 for the jump. The bits in the offset are arranged to line up as
much as possible with the bits in the offsets in the U-type and I-type instruction formats.

2.1.2 Immediate Data Instruction Positions

Table 2.2 shows the bit positions for the immediate data for those instructions containing
immediate data. In most cases only a two-way multiplexer is required to select the des-
tination bit for the immediate data. This simplifies the logic required but makes it much
more difficult to interpret a memory dump. In all cases the most-significant bit, which will
be sign-extended, is in the same bit position within the opcode.

e 19

Inside an Open-Source Processor

TU|ET | YT |ST|OT |ZT|8T 6T |TT | T |C | €| ¥ | S|9|Z | 8|6 0|0 adAy-r

TT | €T | T | GT | OT | ZT | 8T |67 | 0T |TC|CC| € |vC |G |9C | LC |8C|6C|0E|TE adAy-n

1T €| ¥ S|9|Ls|8|6|0T|T adA)-g
0 €| ¥ S|9 ¢, |8]6]|0T|TI adAy-S
0| T|C|€|¥|S|9|L]|8]6|0T|TI adAy-1

L OT|TT|CT|€T|¥T|ST|9T LT|8T|6T|0C|TC|CC|€ |¥T|SC|9C LT|8C 6C|0E|TE jewoy

uonisod 3ig uondNLysuI

Table 2.2: Instruction Format Immediate Data.

e 20

Chapter 2 e RISC-V Instruction Set Architecture

2.1.3 Register Set

The rd, rs1 and rs2 register-select fields in instructions are encoded as shown in Ta-
ble 2.3. Registers are named x0 through x31, with register x0 hardwired to contain a
read-only zero. Having x0 hardwired to zero allows for a number of pseudo-instructions
that are convenient for assembly language programming.

The RISC-V Instruction Set Manual also specifies a standard Application Binary Interface
(ABI) with descriptive register names and standard register usage. Most RISC-V assem-
blers recognize, or even require, these descriptive register names.

rd, rsl, rs2 encoding Register Name Register ABI Name Register ABI Description
00000 x0 zero Hard-wired zero

00001 x1 ra Return address

00010 x2 sp Stack pointer

00011 x3 gp Global pointer

00100 x4 tp Thread pointer

00101 x5 to Temporary register 0
00110 x6 t1 Temporary register 1
00111 x7 t2 Temporary register 2
01000 x8 s0/fp Saved reg 0/Frame pointer
01001 x9 sl Saved register 1

01010 x10 a0 Function return value 0
01011 x11 al Function return value 1
01100 x12 a2 Function argument 2
01101 x13 a3 Function argument 3
01110 x14 a4 Function argument 4
01111 x15 a5 Function argument 5
10000 x16 a6 Function argument 6
10001 x17 a7 Function argument 7
10010 x18 s2 Saved register 2

10011 x19 s3 Saved register 3

10100 x20 s4 Saved register 4

10101 x21 s5 Saved register 5

10110 x22 s6 Saved register 6

10111 x23 s7 Saved register 7

11000 x24 s8 Saved register 8

11001 x25 s9 Saved register 9

11010 x26 s10 Saved register 10
11011 x27 si1 Saved register 11

o 21

Inside an Open-Source Processor

11100 x28 t3 Temporary register 3
11101 x29 t4 Temporary register 4
11110 x30 t5 Temporary register 5
11111 x31 t6 Temporary register 6

Table 2.3: Register Set.

2.1.4 Standard Extensions

The RISC-V Instruction Set Manual also contains a number of draft or ratified standard
extensions beyond the base RISC-V ISAs. Most of these extensions are denoted by a
single letter and are shown in Table 2.4. A number of standard extensions are still in de-
velopment and will not be discussed here. These extensions are shaded in the table. The
design presented here includes only a fraction of these standard extensions, as shown in
the right-most column of the table, but readers are invited to add any standard extension
to the design.

e 22

Identifier Standard Extension Status This Design

A Atomic Instructions Ratified Partial

B Bit Manipulation Draft Partial

C Compressed Instructions Ratified Complete

Counters Counters Draft Partial

D Double-Precision Floating Point Ratified

F Single-Precision Floating Point Ratified

H Hypervisor Extension Draft

I Base Instruction Set Ratified Complete

] Dynamically Translated Languages Draft

K Scalar Cryptography Draft

L Decimal Floating Point Draft

M Integer Multiplication and Division Ratified

N User-level Interrupts Draft

P Packed-SIMD Draft

Q Quad-Precision Floating Point Ratified

T Transactional Memory Draft

\ Vector Operations Draft

Zam Misaligned Atomics Draft Complete

Zicsr Cpntrol and Status Register Instruc- Ratified Complete
tions

Zifencei Instruction-Fetch Fence Ratified Complete

Zihintpause Pause Hint Ratified

Ztso Total Store Ordering Frozen

Table 2.4: Standard Extensions.

Chapter 2 e RISC-V Instruction Set Architecture

2.1.5 Opcode Table Conventions

Throughout the remainder of this chapter the instruction encoding will be shown in ta-
bles with the various fields separated by an underscore (_) to make the fields more
apparent. Fields in the instruction encoding are listed using shortcuts for common fields.
These shortcuts should be self-explanatory in most cases but are listed in Table 2.5 for
completeness.

opcode shortcut Assembly language Extension
ar aq and rl, 1-bit ordering constraints A

cecc... 12-bit Control and Status Register (CSR) address Zicsr

ddd rd’, 3-bit destination register select C

ddddd rd, 5-bit destination register select

dnzdd rd, 5-bit destination register select, x0 not allowed C

dn2dd rd, 5-bit destination register select, x2 not allowed C

fmod fm, 4-bit fence mode select

jorw pred or succ, 4-bit In/Out/Rd/Wr ordering selects

imm, uimm, nzimm, nzuimm, offset, or uoffset,

mm. . . immediate data, various widths (may be scrambled)

rnd rnd, 3-bit static rounding mode F, D, Q
sbhsel sbsel, 5-bit constant (bit select) B
shamt shamt, 5-bit constant (shift/rotate amount)

sss rs1’, 3-bit source-1 register select

snzss rs1, 5-bit source-1 register select, x0 not allowed

SSSSS rs1, 5-bit source-1 register select

ttt rs2’, 3-bit source-2 register select

tnztt rs2, 5-bit source-2 register select, x0 not allowed

ttttt rs2, 5-bit source-2 register select

VVVVV rs3, 5-bit source-3 register select F D, Q

Table 2.5: Opcode Shortcuts

2.2 Base Integer Instruction Set

The RV32I Base Integer instruction set contains just forty instructions. These forty in-
structions are the absolute minimum for any RISC-V implementation and are sufficient to
emulate nearly all of the current RISC-V standard extensions. A list of these forty instruc-
tions is shown in Table 2.6 along with the opcode. This table is organized by opcode type
to make the information useful during the design process, but the individual instructions
will be described by functional group.

e 23

Inside an Open-Source Processor

Assembly Language
Defined Illegal

Opcode
111111111111 11111 11111111 1111111

=
]
m

ADD rd, rs1, rs2

0000000_ttttt_sssss_000_ddddd_0110011

SUB rd, rs1, rs2

0100000_ttttt_sssss_000_ddddd_0110011

SLL rd, rs1, rs2

0000000_ttttt_sssss_001_ddddd_0110011

SLT rd, rsi, rs2

0000000_ttttt_sssss_010_ddddd_0110011

SLTU rd, rsi1, rs2

0000000_ttttt_sssss_011_ddddd_01160011

XOR rd, rs1, rs2

0000000_ttttt_sssss_100_ddddd_0110011

SRL rd, rs1, rs2

000000O_ttttt_sssss_101_ddddd_0110011

SRA rd, rsi1, rs2

0100000_ttttt_sssss_101_ddddd_0110011

OR rd, rs1, rs2

0000000_ttttt_sssss_110_ddddd_0110011

AND rd, rsi1, rs2

0000000_ttttt_sssss_111_ddddd_0110011

LB rd, offset(rs1)

mmmmmmm_mmmmm_sssss_000_ddddd_0000011

LH rd, offset(rs1)

mmmmmmm_mmmmm_sssss_001_ddddd_0000011

LW rd, offset(rs1)

mmmmmmm_mmmmm_sssss_010_ddddd_0000011

LBU rd, offset(rs1)

mmmmmmm_mmmmm_sssss_100_ddddd_0000011

LHU rd, offset(rs1)

mmmmmmm_mmmmm_sssss_101_ddddd_0000011

ADDI rd, rsi1, imm

mmmmmmm_mmmmm_sssss_000_ddddd_0010011

SLLI rd, rsi1, shamt

0000000_shamt_sssss_001_ddddd_0010011

SLTI rd, rsi, imm

mmmmmmm_mmmmm_sssss_010_ddddd_0010011

SLTIU rd, rs1, imm

mmmmmmm_mmmmm_sssss_011_ddddd_0010011

XORI rd, rs1, imm

mmmmmmm_mmmmm_sssss_100_ddddd_00160011

- "H HHHH HH H H|XT|X|X|XW|XW|XW|XW|=XW|XW|OW|=D

SRLI rd, rs1, shamt 0000000_shamt_sssss_101_ddddd_0010011
SRAI rd, rs1, shamt 0100000_shamt_sssss_101_ddddd_0010011
ORI rd, rs1, imm mmmmmmm_mmmmm_sssss_110_ddddd_0010011
ANDI rd, rs1, imm mmmmmmm_mmmmm_sssss_111_ddddd_0010011
JALR rd, offset(rs1) mmmmmmm_mmmmm_sssss_000_ddddd_1100111
FENCE fmodior_wiorw_00000_000_00000_0001111
ECALL 0000000_00000_00000_000_00000_1110011
EBREAK 0000000_00001_00000_000_00000_1110011

SB rs2, offset(rs1)

mmmmmmm_ttttt_sssss_000_mmmmm_0100011

SH rs2, offset(rs1)

mmmmmmm_ttttt_sssss_001_mmmmm_0100011

SW rs2, offset(rs1)

mmmmmmm_ttttt_sssss_010_mmmmm_0100011

BEQ rs1, rs2, offset

mmmmmmm_ttttt_sssss_000_mmmmm_1100011

BNE rs1, rs2, offset

mmmmmmm_ttttt_sssss_001_mmmmm_1100011

BLT rs1, rs2, offset

mmmmmmm_ttttt_sssss_100_mmmmm_1100011

BGE rsl1, rs2, offset

mmmmmmm_ttttt_sssss_101_mmmmm_1100011

BLTU rs1, rs2, offset

mmmmmmm_ttttt_sssss_110_mmmmm_1100011

W W @ mW @ n| unn HHAH HIH|{H|H|H|H

e 24

Chapter 2 e RISC-V Instruction Set Architecture

BGEU rs1, rs2, offset mmmmmmm_ttttt_sssss_111_mmmmm_1100011 B
AUIPC rd, imm mmmmmmm_mmmmm_mmmmm_mmm_ddddd_0010111 u
LUI rd, imm mmmmmmm_mmmmm_mmmmm_mmm_ddddd_0110111 u
JAL rd, offset mmmmmmm_mmmmm_mmmmm_mmm_ddddd_1101111 J

Table 2.6: Base Integer Instruction Set.

2.2.1 Integer Arithmetic Instructions

ADD rd, rs1, rs2 (Add) and SUB rd, rs1, rs2 (Subtract) are the Register-Register arith-
metic operation instructions. In keeping with the pure RISC philosophy, these arithmetic
operations only generate the 32-bit result, and if carry or overflow checking is required it
must be handled separately in software. For subtract the rs2 register is subtracted from
the rs1 register.

For unsigned operands, overflow is the same as a carry out or borrow out of the most-sig-
nificant bit, and this can be directly tested by a conditional branch instruction immediately
after the operation, as long as the source operands have not been modified.

The general case for signed operands is much more complicated. For addition, checking
for overflow requires two extra instructions and a conditional branch, plus the use of two
temporary registers. For subtraction, checking for overflow requires three extra instruc-
tions and a conditional branch, plus the use of two temporary registers. In both cases the
original source registers can be used for the temporary registers if the source operands
do not need to be preserved.

There is one pseudo-instruction that uses a Register-Register arithmetic instruction:
NEG rd, rs (Two’s Complement or Negate) is just SUB rd, x0, rs.

ADDI rd, rs1, imm (Add Immediate) is the only Register-Immediate arithmetic opera-

tion. The unconditional sign extension for immediate data makes it unnecessary to have

a subtract instruction with an immediate operand.

The are a significant number of instruction operand combinations that will result in no

operation by the CPU, but the standard-defined encoding for No Operation uses the ADDI

instruction. The ADDI instruction is also used to implement a pseudo-instruction that

copies one register to another.

NOP (No Operation) is just ADDI x0, x0, 0.

MV rd, rs (Copy Register) is just ADDI rd, rs, O.

e 25

Inside an Open-Source Processor

2.2.2 Logical Operation Instructions

AND rd, rsi, rs2 (Logical AND), OR rd, rs1, rs2 (Logical OR) and XOR rd, rs1, rs2
(Logical Exclusive-OR) are the logical Register-Register operation instructions. As before,
because there are no flags in RISC-V the result must be explicitly tested for equality with
zero or sign if this type of status is required. Testing a result for zero or sign is as simple
as a conditional branch.

ANDI rd, rs1, imm (Logical AND Immediate), ORI rd, rs1, imm (Logical OR Immedi-
ate) and XORI rd, rs1, imm (Logical Exclusive-OR Immediate) are the Register-Imme-
diate logical operation instructions.

The unconditional sign extension of immediate operands is useful for an AND operation,
but less so for OR and XOR operations. For example, attempting to set bit 11 using an OR
operation means that bits 31-11 of the immediate will all be set, so all of these bits will
be set in register rd.

One pseudo-instruction uses a Logical Immediate instruction:
NOT rd, rs (One’s Complement or Logical NOT) is just XORI rd, rs, -1.

2.2.3 Shift Instructions

SLL rd, rs1, rs2 (Shift Left Logical), SRA rd, rsi1, rs2 (Shift Right Arithmetic) and SRL
rd, rs1, rs2 (Shift Right Logical) are the Shift instructions. The shift amount is specified
in the five least-significant bits of the rs2 register, allowing shifts of from zero to thir-
ty-one bits. The remaining bits of the rs2 register are ignored.

The two logical shifts shift in zeros, while the arithmetic shift replicates the sign bit.

There are no rotate instructions in RV32I, so rotates must be simulated by combining the
result from two shifts, while using two temporary registers.

SLLI rd, rs1, shamt (Shift Left Logical Immediate), SRAI rd, rs1, shamt (Shift Right
Arithmetic Immediate) and SRLI rd, rs1, shamt (Shift Right Logical Immediate) are the
Shift instructions with an immediate operand.. The shift amount is specified by five bits
of the immediate field in the opcode. This shift specifier is unsigned, allowing shifts of
from zero to thirty-one bits. The other bits in the immediate field are used as part of the
opcode.

2.2.4 Compare Instructions

SLT rd, rs1, rs2 (Set if Less Than) and SLTU rd, rs1, rs2 (Set if Less Than, Unsigned)
are the Compare instructions for signed and unsigned data. These instructions set the rd
register to 0x1 if the compare (rsl1 < rs2) is true and to 0x0 otherwise. These operations
provide an alternative to dedicated flags at the expense of using an entire register.

° 26

Chapter 2 e RISC-V Instruction Set Architecture

There are three compare pseudo-instructions:
SGTZ rd, rs (Set if Greater Than Zero) is just SLT rd, xO0, rs.
SLTZ rd, rs (Set if Less Than Zero) is just SLT rd, rs, x0.
SNEZ rd, rs (Set if Not Equal to Zero) is just SLTU rd, xO, rs.

SLTI rd, rs1, imm (Set if Less Than Immediate) and SLTIU rd, rs1, imm (Set if Less
Than Immediate, Unsigned) are the signed and unsigned Compare instructions with an
immediate operand. These instructions set the rd register to 0x1 if the compare (rs1
< imm) is true and to 0x0 otherwise. The immediate operand is always sign-extended,
even for the SLTIU instruction.

Only one immediate compare instruction provides a useful pseudo-instruction:
SEQZ rd, rs (Set if Equal to Zero) is just SLTIU rd, rs, 1.

2.2.5 Constant Generation Instructions

There are two Constant Generation instructions. With these instructions the immediate
operands are twenty bits wide and fill the most-significant bits of a 32-bit word, with the
lower 12 bits all set to zero.

AUIPC rd, imm (Add Upper Immediate to PC) allows the creation of 32-bit PC-relative
addresses for use with loads, stores and jumps by adding the immediate operand to the
program counter of this instruction and storing the result in the rd register.

LUI rd, imm (Load Upper Immediate) allows the creation of 32-bit constants or absolute
addresses, by loading the immediate operand directly to the rd register.

These two instructions are typically followed by an ADDI instruction to load the lower
12 bits. However, because the ADDI immediate operand is sign-extended before the
addition, care is required to compensate for this sign extension. Compensation requires
adding the most-significant bit of the ADDI operand to the 20-bit operand in one of these
instructions.

Most RISC-V assemblers provide a pair of pseudo-instructions that are automatically ex-
panded into the two-instruction sequence required for a 32-bit quantity:

LI rd, imm (Load Immediate) loads a 32-bit constant or absolute address into
register rd. The general implementation will consist of LUI rd, imm[31:12] +
imm[11] followed by ADDI rd, x0, imm[11:0]. The linker will perform the ad-
dition for the LUI immediate value during the link phase. Some assemblers are
intelligent enough to use only an LUI instruction or only an ADDI instruction if
the constant value is within the necessary range.

® 27

Inside an Open-Source Processor

LA rd, symbol (Load Address) loads a 32-bit PC-relative address into register rd.
The general implementation will consist of AUIPC rd, imm[31:12] + imm[11]
followed by ADDI rd, x0, imm[11:0]. The linker will calculate the required im-
mediate value and then perform the addition for the AUIPC immediate value
during the link phase.

2.2.6 Unconditional Jump Instructions

There are two types of Unconditional Jump instructions, and these two instructions can
implement most of the control transfer instructions familiar to assembly language pro-
grammers.

RISC-V has no dedicated stack pointer, but these two instructions provide for a link reg-
ister which is analogous to the top of a return stack. This register must be saved by a
subroutine in the case where the subroutine calls another subroutine. The RISC-V register
calling convention uses the x1 register as this return-address register, although these
instructions can use any register for this purpose.

JAL rd, offset (Jump and Link) adds the offset in the instruction to the program count-
er of this instruction. At the same time the program counter for the next instruction is
written to the rd register, used as the link register. The 20-bit offset in the instruction is
sign-extended and then shifted left by one bit to guarantee that it is even, giving a range
of —-2?° to +22° - 2 for the jump. An even offset is required because RISC-V instructions
must be halfword-aligned.

JALR rd, offset(rs1) (Jump and Link Register) adds the offset in the instruction to the
contents of register rs1 and writes the result to the program counter. At the same time
the program counter for the next instruction is written to the rd register. The offset for
this instruction is 12 bits, giving a range of -2 to +2!* - 1 for the offset.

One complication for this instruction is that the hardware must set the least-significant bit
of the result of the addition to zero, making the target address even, before it is loaded
to the PC. If this instruction is preceded by either AUIPC or LUI the effective range for
the jump is the entire address space.

There are two PC-relative jump pseudo-instructions:

J offset (Jump) is just JAL x0, offset. This is a plain PC-relative Jump, with no
return needed.

JAL offset (Jump and Link) is just JAL x1, offset, following the convention that

register x1 is used as the return-address register. This is analogous to a PC-rel-
ative subroutine call.

e 28

