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Foreword

Remote sensing using satellites with optical detection capability has been possible
for some decades now, since the first Landsat missions of the 1970s. However, the
uptake and use of satellite remote sensing for environmental applications has not
been commensurate with emerging technological improvements in sensor spectral,
spatial, radiometric, and geometric capability. Additionally, some of the potential
of satellite remote sensing for environmental monitoring is only now starting to be
realized with the development of coordinated strategies to support data acquisition,
processing (e.g., using ‘artificial intelligence’) and visualization products. This book
on Satellite Remote Sensing of Terrestrial Hydrology by Dr. Christopher Ndehedehe
is timely and relevant because it provides a state-of-the-art synthesis of the field
of remote sensing hydrology. It should be essential reading for many interested
students, educationalists, and practitioners; from undergraduate students who seek
fundamental knowledge about how remote sensing can improve their understanding
of hydrological systems, to advanced practitioners who wish to update their techno-
logical, analytical, and/or hydrological skills. In between is a large and diverse group
who will benefit from the many components of remote sensing hydrology described
in this book, with application for hydrologists, graduate students studying in the area,
and environmental managers who are interested in utilizing the potential of remote
sensing to assist with improved decision-making for water management.

Changes in global surface water storage in the ‘Era of the Anthropocene’ is an
area that is reiterated throughout this book, including impacts on vegetation cover,
climate change and relationships to floods and droughts, and the impact of large
surface water reservoirs. A series of case studies from across the globe reinforces the
seriousness of the rate of change in our hydrological systems. These case studies have
been selected as global hotspots to demonstrate the speed of hydrological change,
issues of water scarcity and drought, and the geopolitical context that influences the
quality of decision-making for water management.

Satellite Remote Sensing of Terrestrial Hydrology presents exciting new oppor-
tunities from satellite technological advances and analytical platforms. For example,
the book provides background information and case studies related to the Gravity
Recovery and Climate Experiment satellite observations. The resulting geospatial
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data can provide regional-scale assessments of groundwater storage that can be linked
to surfacewater availability and vegetation cover. TheGoogle Earth Engine and other
cloud-based platforms discussed in the book are making satellite data increasingly
accessible and are being used to perform critical pre-processing steps to ease the
barrier to entry in the exploration of satellite data. The book also includes a forward-
looking perspective in the discussion of new satellite hydrology missions like the
SurfaceWater Ocean Topography mission scheduled for launch in 2022. The combi-
nation of theoretical understanding, synthesis of technological advances and case
studies makes this book especially useful.

Dr. Christopher Ndehedehe is an academic in the Australian Rivers Institute at
Griffith University who, despite being in the early stages of his career, has estab-
lished himself as a global leader in hydrological remote sensing and environmental
geoscience. He is pioneering the development of new geospatial tools to support
assessments of tropical floodplain hydrology and the impacts of climate change on
surface water, groundwater, and ecological resources. Dr. Ndehedehe is a prolific
writer who has bridged multiple scientific disciplines in compiling chapters in Satel-
liteRemote Sensing ofTerrestrialHydrology. The bookprovides all the tools required
to successfully apply remote sensing in terrestrial hydrological assessments and
should be essential reading for anyone with an interest in this subject.

March 2021 David Hamilton
Deputy Director – Australian Rivers

Institute
Griffith University

Brisbane, QLD, Australia



Preface

The use of multi-mission optical satellite systems in environmental monitoring,
including applications in hydrology and water resources has been the focuse in the
last few decades. These satellite technologies provided a continuous and systematic
stream of geospatial information across different time scales that underpinned an
improved understanding of environmental processes and systems.Without any doubt,
the application of satellite technologies in global environmental monitoring has
contributed to new directions in policy, creating innovative opportunities to address
several socio-economic and environmental issues confronting society. However, the
potential of recent technological advances in satellite remote sensing, be it optical
or geodetic systems, is still not well articulated and not fully understood. Dedi-
cated satellite hydrology missions for direct monitoring of terrestrial water storage
and fluxes have only recently emerged and others are scheduled to be launched
in the coming months. But the opportunities that exist through the use of existing
innovative satellite methods and frameworks to improve understanding, manage-
ment, and monitoring of natural systems and key Earth resources are yet to be fully
explored. The concept of satellite hydrology only became more pronounced after
the launch of the Gravity Recovery and Climate Experiment (GRACE) in 2002.
Satellite hydrology missions like GRACE and its successor (GRACE-Follow On)
and radar altimetry missions as well as the anticipated Surface Water Ocean Topog-
raphy mission, among other existing missions lead to a new satellite hydrology
concept called remote sensing hydrology. This concept as further advocated in this
book encapsulates the cross-disciplinary aspects of environmental geoscience and
remote sensing of the environment, as well as integrating several geospatial tools and
methods, including relevant cognate disciplines to provide quantitative evaluation of
terrestrial hydrology. The growing need to understand hydrological processes and
impacts of climate change as well as human actions (e.g., dams, water diversion
projects, land-use change, intensive groundwater extraction, deforestation, surface
water resources schemes, etc.) on global freshwater systems necessitated the discus-
sion on GRACE observations in this book. Being an important tool in the box to
navigate the challenges posed by lack of or limited observational data for freshwater

vii



viii Preface

monitoring (including groundwater, lakes, and reservoirs), its processing chains and
hydrological applications are also detailed in this book.

As discussed in this book, the rise in improved sensor capabilities in satellite
missions resulted in big remote sensing data. On the one hand, innovative pattern
recognition and machine learning algorithms are now increasingly being used to
improve key information extraction from the plenitude of big geospatial data. On the
other hand, cloud computing platforms, have facilitated the use of data from these
satellite systems, contributing to the growing applications of remote sensing observa-
tions in environmental monitoring in recent times. These cloud-based platforms are
now easy pathways to remote sensing data retrieval and processing as well as geospa-
tial analyses. In this day and age, large earth observation datasets are not only avail-
able and freely accessible from global repositories but can also be quickly processed
to generate timely information that underpins important organizational decisions.
These opportunities have facilitated informed decisions by government institutions,
scientists, and the public on the environment. This book discusses, explores, and
demonstrates key applications of various earth observations and earth resources satel-
lites ranging from optical remote sensing systems to satellite geodetic systems (e.g.,
gravity and radar missions) in advancing our fundamental understanding of envi-
ronmental systems (e.g., vegetation, freshwater ecosystems, droughts, groundwater,
lakes, agriculture, etc.). The complexities of hydrological systems and global envi-
ronmental change in this era of the Anthropocene due to human activities and the
impact emanating from variability in natural systems are discussed using a suite
of quantitative and empirical region-specific case studies. The book has 20 chap-
ters covering several multidisciplinary aspects of remote sensing hydrology and
environmental monitoring. The focus on satellite-based environmental monitoring
in this book ensures that opportunities through investments in innovative satellite
programmes to optimize key environmental decisions and policies are maximized.

Brisbane, QLD, Australia
March 2021

Christopher Ndehedehe
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Global Terrestrial Hydrology



Chapter 1
Remote Sensing Hydrology

Abstract The emergence of new optical sensors provides unique capability in com-
prehensivemonitoringof the environment.Asopposed towell-knownoptical satellite
Earth observation systems such as the Landsat and Sentinel missions, there are now
satellite systems dedicated to hydrological applications. The combination of geospa-
tial science with these systems provides an innovative satellite hydrology framework
that underpins our capability to directly monitor and assess changes in terrestrial
stored water and how they are impacted by human actions and climate change. In
this chapter, the concept of remote sensing hydrology has an emerging discipline
is discussed. A distinction between remote sensing hydrology and application of
remote sensing in hydrology is articulated. The latter has been the focus in the last
few decades, leveraging several methods to aid the processing of Earth resources
satellite for hydrological applications. However, new investments in satellite geode-
tic programmes (e.g., Gravity Recovery and Climate Experiment mission) and the
scheduled launch of the Surface Water and Ocean Topography mission in November
2022 gave birth to the former. These satellite geodetic systems are discipline-specific
and dedicated hydrology missions, providing level 1 information on the quantitative
aspects of freshwater resources. Together with novel computing technologies for big
Earth observation data, they provide improved monitoring capabilities of the earth
system that underpins our understanding of environmental processes and changes in
hydrological systems.

1.1 Introduction

Several improvements in remote sensing optical systems have occurred in recent
years. The use of these technologies in environmental monitoring and impact anal-
ysis from extreme events such as droughts, floods, and wildfires has been widely
documented. New satellite technologies with capabilities to monitor changes in ter-
restrial water storage have emerged, complementing the well-known optical systems
in baseline studies and freshwater ecosystem assessment. With the large amounts of
geospatial data generated from satellite Earth observation systems, cloud computing
platforms for big Earth observation data management and analysis such as Google
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Earth Engine, Sentinel Hub, Open Data Cube, and pipsCloud, among several others
emerged (e.g., Gomes et al. 2020;Wang et al. 2018; Gorelick et al. 2017) to facilitate
timely access and ease the application of these observations for decision support sys-
tem. These novel computing technologies for big Earth observation data, thoughwith
varied levels of sophistication, have since enhanced access to archived petabytes of
publicly available Earth observation data, as well as simplifying processing chains of
satellite remote sensingobservations. The fundamental objective ofEarth observation
systems in providing a continuous and systematic stream of geospatial information
across different time scales to improve understanding of environmental processes and
systems has been fostered by the emergence of cloud-based computing platforms.
Additionally, these platforms have emerged as excellent alternatives to conventional
infrastructures for spatial data sharing and processing. The dissemination of a new
generation of digital infrastructure for planetary-scale computing is now today’s real-
ity, creating opportunities to address the diverse socio-economic and environmental
issues confronting society. The efficacy, sophistication, and innovation behind these
technologies and systems are apparently evidenced in the rise of satellite remote
sensing applications in global environmental monitoring based on data retrieved
and processed with these platforms. This engagement and enthusiasm reaffirm these
cutting-edge platforms have been well received by the larger community of experts,
students, researchers, and relevant stakeholders who rely on Earth observation for
key decisions and regulations.

The application of these satellite technologies as well as cloud-based platforms
in monitoring as a key foundation for planning and supervision, as well as for the
systematic development of targeted water service delivery and policies, underpin
their value as valuable tools in freshwater accounting and management. State-of-the-
art satellite hydrology missions such as the Gravity Recovery and Climate Experi-
ment (GRACE, Landerer et al. 2020; Tapley et al. 2004) are such technologies that
have enabled the monitoring of freshwater changes and water accounting, including
assessment of important contributions to improve our understanding of global water
cycle and its responses to changes in climate and anthropogenic actions (Ndehedehe
and Ferreira 2020; Tapley et al. 2019; Thomas and Famiglietti 2019; Rodell et al.
2018; Famiglietti and Rodell 2013). Several of these human influence or activities,
including the construction of dams and river impoundments, water transfer projects,
land-use change, and extensive groundwater extraction for irrigation and industrial
applications have been quantified by combining multi-satellite hydrology missions
with novel computational models (e.g., Ndehedehe et al. 2021; Getirana et al. 2020;
Long et al. 2020; Zarfl et al. 2015). In the light of this recent advances, it is therefore
important to facilitate the dialogue between knowledge providers and stakeholders
through the use of this technology and geospatial tools. Existing opportunities in the
use of satellite Earth observations continue to grow, ensuring that the advancement
in space science and human capacity to fully utilize these data and information in
directing policy and environmental analysis, and implementation of action plans is
actualized.

Therefore, the use of sophisticated space-based observations depicting the bio-
physical and human dimensions of freshwater across the globe can expand our
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knowledge base on the causes and cascading impacts of climate change and the
human actions that drive environmental and hydrological processes. Satellite data
has been used to fill some of the existing data gaps, especially in emerging and some
advanced economies where such observations are increasingly lacking. In addition
to this, several data obtained from the model and by combining ground observations
with simulations (reanalysis products) have shown great potential in environmental
monitoring. The expectation of science at least by stakeholders and the end-users
of scientific products is that it must take the lead in providing new information
and evidence that advance human societies and improves relevant conditions. Earth
resources satellites and the innovative capabilities behind them and satellite geodetic
missions like GRACE and radar remote sensing techniques make this achievable.
With this in mind, this book aims to provide an understanding of this emerging and
novel field of study, called remote sensing hydrology. This concept and its practical
applications in terrestrial hydrology as well as remote sensing of the environment
and impact analysis are also detailed in this book.

The overarching goal of this book is to lay bare the concepts of remote sensing
hydrology as it relates to the applications of optical (e.g., Sentinel, Landsat, SPOT,
MODIS, etc.) and satellite geodetic (e.g., satellite gravity observations, radar altime-
try, etc.) systems in quantitative and multidisciplinary aspects of land water storage
(e.g., rivers, lakes, soil moisture, groundwater, floodplain wetlands, etc.) and assess-
ing the impacts of climate change on freshwater ecosystems. The use of observations
from these sensors, either independently or in combination with other data (e.g.,
reanalysis and model outputs) in remote sensing hydrology and impact assessment
from extreme climate events such as droughts, floods, andwildfires is highlighted and
demonstrated. With water being a key challenge in the twenty-first century, improv-
ing our contemporary understanding of global terrestrial hydrology, through the use
of these observations and space-borne measurements is crucial. Another important
aspect of this book is that it details the broad range of geospatial and relevant statisti-
cal methods and tools that are valuable in the analyses of hydrological time series and
multi-mission satellite observations.With the growing applications ofGRACEobser-
vations by Earth scientists, the book details practical utility of GRACE observations,
including processing chains and demonstrating the contribution of climate change
to the increased acceleration of global water cycle. In this regard, issues associated
with freshwater changes and availability in the Anthropocene are highlighted and
discussed using a plethora of region-specific case studies across the globe. Together,
this book provides a range of opportunities for practitioners and relevant agencies to
benefit from satellite-based information.

1.2 What is Remote Sensing Hydrology?

The emergence of new remote sensing platforms and sensors (Fig. 1.1) has revolu-
tionized the applications of remote sensing in general. In the context of quantitative
hydrology, new satellite systems like the European Space Agency state-of-art Sen-
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Fig. 1.1 Global satellite observation systems

tinel products, CryoSat-2, Ice, Cloud, and land Elevation Satellite (ICESat)-2 and
Soil Moisture and Ocean Salinity, among other satellite missions provide unique and
improved capability in comprehensive monitoring of the environment ranging from
surface water in lakes, rivers, and floodplains to land surface conditions (evapotran-
spiration, temperature, etc.), land cover states (e.g., vegetation, urban settlements),
soil moisture conditions, and extreme climate conditions such as floods, droughts,
and wildfires. As opposed to previous optical satellite Earth observation systems
such as the Landsat missions, there are now remote sensing systems dedicated to
hydrological and meteorological applications. Satellites such as the Tropical Rain-
fall Measuring Mission (TRMM) provided extensive spatial coverage of rainfall
across the globe on a relatively higher temporal (hourly, daily, monthly) and spatial
resolution (0.25◦). TRMM’s operation commenced in 1997, providing critical inputs
to tropical cyclone forecasting, numerical weather prediction, and precipitation cli-
matologies, among several other contributions and societal applications. NASA’s
CloudSat mission also provides information on the Earth’s atmosphere, oceans, land
surface, polar ice regions, and solidEarth. This satellite sends out pulses ofmicrowave
energy through the clouds, and some of the energy in the pulses is reflected back to
the spacecraft (https://cloudsat.atmos.colostate.edu/overview). The phase difference
or time lag between when the pulse is sent and when the reflected energy is received
back at the spacecraft is the basis for quantifying howmuch water or ice is contained
in the cloud. Observations from CloudSat have been used to improve understanding
of the Earth’s water budget, climatology, land surface processes, tropical cyclones,

https://cloudsat.atmos.colostate.edu/overview
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among other atmospheric circulation patterns, which drive the global water cycle. In
addition to these measurements, other advanced satellite systems such as GRACE
enabled the assessment of changes in global terrestrial water storage (sum of soil
moisture, groundwater, canopy water storage, ice/snow, and surface water storage in
rivers, reservoirs, lakes and wetlands/floodplains, etc).

1.2.1 Satellite Hydrology

With the opportunity of combining satellite hydrologymissions such as altimetry and
GRACE missions with other Earth resource satellites (e.g., Landsat), direct moni-
toring of surface water hydrology (e.g., changes of lake water levels and volumes)
and fluxes are gradually emerging. The combination of the second generation of
Ice, Cloud, and Land Elevation Satellite (ICESat-2) and Lidar (Light detection and
ranging) datasets with Landsat imagery in long-term monitoring of annual changes
in lake water levels and volumes (Fig. 1.2) is a good example of satellite hydrology
applications. One of the recent satellite hydrology missions is the ICESat, which
measures ice sheet mass balance, cloud and aerosol heights, as well as land topogra-
phy and vegetation characteristics (https://icesat.gsfc.nasa.gov/). The first generation
of ICESat was launched in January 2003, and it collected multi-year data on the ele-
vation of the Earth’s ice sheets, clouds, vegetation, and the thickness of sea ice off
and on until October 2009. Its precise observation of the surface elevation of the
Arctic sea ice enabled the measurement of ice thickness and volume. Figure 1.3a–d
illustrate the sea ice thickness in the Northern Hemisphere, excluding the Baltic Sea
and the Pacific for the months of February 2021 (3 and 25) and March 2021 (23
and 25). The insert on the upper right corner of Fig. 1.3a–d show the Arctic Sea Ice
volumes from January to December. The maps in Fig. 1.3 show fluctuations in the
thickness of ice. Sea ice is frozen seawater that floats on the ocean surface. It forms
in both the Arctic and the Antarctic during winter periods. They retreat during sum-
mer but do not completely disappear. This floating ice has a profound influence on
the polar environment, influencing ocean circulation, weather, and regional climate
(https://earthobservatory.nasa.gov/features/SeaIce). As illustrated in Fig. 1.3, their
observation and monitoring are possible and can be achieved using the ICESat-2
mission.

However, future space agency missions such as Surface Water and Ocean Topog-
raphy (SWOT) mission, which is currently under development (www.jpl.nasa.
gov/missions/surface-water-and-ocean-topography-swot) will directly provide this
capability, serving as another dedicated satellite hydrology mission and tool in box
for remote sensing hydrology, in addition to GRACE. The SWOT mission (see
more details in Sect. 1.3.2) is expected to provide detailed measurements of sur-
face water storage variations (i.e., wetlands, lakes, or reservoirs), complementing the
GRACEmission.As indicated in the SWOTmission document (https://swot.jpl.nasa.
gov/files/swot/SWOT_MSD_1202012.pdf), the scientific rationale for the develop-
ment of SWOT is twofold. Firstly, to make high-resolution, wide-swath altimetric

https://icesat.gsfc.nasa.gov/
https://earthobservatory.nasa.gov/features/SeaIce
www.jpl.nasa.gov/missions/surface-water-and-ocean-topography-swot
www.jpl.nasa.gov/missions/surface-water-and-ocean-topography-swot
https://swot.jpl.nasa.gov/files/swot/SWOT_MSD_1202012.pdf
https://swot.jpl.nasa.gov/files/swot/SWOT_MSD_1202012.pdf
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Fig. 1.2 Satellite monitoring of annual changes of lake water levels and volumes using Ice, Cloud,
and land Elevation Satellite (ICESat)-2 and Landsat. Source Xu et al. (2020)

measurements of the ocean surface topography will advance the understanding of the
oceanic mesoscale and sub-mesoscale processes. Secondly, the quest for a mission
that will measure the elevation of water on land that will boost fundamental advances
in the knowledge of the spatio-temporal distribution of storage and discharge of ter-
restrial water. Nevertheless, some other space agency missions relevant to hydrology
andwater resources have also been flagged for deployment in the coming years. They
include, the Copernicus Sentinel-6, and Water Cycle Observation Mission, which is
aimed at measuring snow water equivalent, soil moisture, precipitation, atmospheric
water vapour, and other state variables. ICESat-2 is another sophisticated hydrology
mission primarily designed to map ice sheet and in addition monitor surface water
elevations (e.g., Ndehedehe 2019; McCabe et al. 2017). ICESat-2 mentioned ear-
lier is second-generation of the laser altimeter ICESat mission and is optimized to
use a micro-pulse multi-beam approach. It is designed to determine ice sheet mass
balance as well as cloud property information, provide topography and vegetation
data around the globe, as well as the polar-specific coverage over the Greenland
and Antarctic ice sheets (https://icesat.gsfc.nasa.gov/). All these missions and others
provide substantial context to what is now known as remote sensing hydrology.

https://icesat.gsfc.nasa.gov/
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Fig. 1.3 Sea Ice thickness and volume observed by the Ice, Cloud, and Land Elevation Satellite
(ICESat). Source, Polar Portal (http://polarportal.dk/en/home/)

1.2.2 The Concept of Remote Sensing Hydrology

Remote sensing hydrology is therefore the science that relies on space technology
to monitor the occurrence, distribution, changes, and the characteristics of terres-
trial stored water in all its forms (snow, ice, lakes, rivers, groundwater, canopy water,
etc.) and their relationship with the environment and the Earth’s climate system. This
concept encapsulates the multidisciplinary aspects of environmental geoscience, and
remote sensing of the environment, integrating several geospatial tools and methods,
including allied sciences (e.g., statistics) to provide quantitative evaluation of terres-
trial hydrology. Within this context, statistical and geospatial methods, using remote
sensing and reanalysis data (a synthesis of satellite and ground observations), or
even the use of platforms for big data analysis (e.g., Google Earth Engine) to sup-
port decision-making and management of water resources are integral aspects of
remote sensing hydrology. Apparently, the application of satellite products in water
resources and hydrology, including soil moisture and groundwater has been reported
(e.g., Rango 1994).Over the years, these products have arguably been useful in under-
standing land surface hydrology and key state variables like soil moisture, especially
in regions where in situ networks are sparse or lacking. However, the combination of
geoinformation systems with new remotely sensed observations provides an inno-
vative remote sensing hydrology framework that underpins improved water-related
decisions. For example, with different digital image processing techniques, including

http://polarportal.dk/en/home/


10 1 Remote Sensing Hydrology

image enhancement and directional Sobel filters, accurate fracture maps, and derived
products (fracture density, coincidence map, and cross-points) have been generated
using Landsat 8 (visible and infrared bands) in combination with advanced digital
elevation models (Oussou et al. 2020). These fractured maps of aquifers are critical
to improving drinking water access and can directly feed into water resources plan-
ning on a broad or local scale. While remote sensing has facilitated the successful
location of important groundwater resources (Waters et al. 1990), the advent of space
science in the last two decades contributed immensely to the progress in Earth system
science, making it possible for frequent observations of large-scale, key water bud-
get quantities such as rainfall, evapotranspiration, and terrestrial stored water from
space. However, as discussed further in Sect. 1.3, some new remote sensing tech-
nologies are discipline-specific, providing measurements on surface water elevation
and changes in freshwater bodies.

1.3 Remote Sensing Hydrology Systems

The revolution in space technology ushered in a new era of sophisticated satellite
measurements of these quantities on several temporal (weekly, bimonthly, monthly,
etc.) and spatial scales (high, medium, and low resolution). Dedicated remote sensing
systems or platforms that will or can measure changes in surface water hydrology or
provide the capability to directly monitor terrestrial stored water fall into the cate-
gories of what is here described as remote sensing hydrology systems. Apparently, the
Landsat systems, SPOT, and some European Space Agency-based Sentinel products
(e.g., Sentinel-2) are Earth resources satellites that can be used to monitor changes
in surface water, among several other quantities such as vegetation and land sur-
face conditions. But they are not dedicated systems that directly measure changes
in surface water. Monitoring changes in surface water from these optical satellite
systems require the use of indicators and metrics, especially to help with quantifying
surface water extents, floods, water quality, etc. As global freshwater is undergoing
substantial changes because of the impacts of climate change, measurements from
remote sensing hydrology systems provide an increased opportunity to monitor such
impacts. Satellite observations of freshwater (groundwater, surface water in lake,
rivers, and floodplains) from new advanced satellite geodetic missions like the Grav-
ity Recovery and Climate Experiment (GRACE) is therefore important to keep track
of its variability. This mission has been providing an unparalleled perspective on
global freshwater changes through quantitative estimates of variations in land water
storage since its launch in 2002. The GRACE mission and its Follow-On are dis-
cussed in detail in Chap. 4. In this chapter, examples of remote sensing hydrology
missions, like those in satellite radar family, which are dedicated satellite hydrology
missions are highlighted.

With the anticipated launch of a key satellite hydrology program, the Surface
Water Ocean Topography (SWOT)mission, the concept of remote sensing hydrology
will be evenmore pronounced. Themission objectives of the SWOTprogramdetailed


