Yl “ A g

Microsoft Orleans
for Developers

Build Cloud-Native, High-Scale,
Distributed Systems in .NET Using Orleans

Richard Astbury

Apress:

Microsoft Orleans for
Developers

Build Cloud-Native, High-Scale,
Distributed Systems in .NET
Using Orleans

Richard Astbury

Apress’

Microsoft Orleans for Developers: Build Cloud-Native, High-Scale, Distributed
Systems in .NET Using Orleans

Richard Astbury
Woodbridge, UK

ISBN-13 (pbk): 978-1-4842-8166-6 ISBN-13 (electronic): 978-1-4842-8167-3
https://doi.org/10.1007/978-1-4842-8167-3

Copyright © 2022 by Richard Astbury

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-8167-3

This book is dedicated to all those who have contributed to the
Orleans community.

Table of Contents

About the AUROFcccccemmismninsnssssss s n s san s an s nnnannn s nnnnnnns xi
About the Technical REVIEWETcccccussssmmmssssnsssssnsssssnsmsssnsssssnsssssnsssssnsssssnssnssnnsnss xiii
INtroductionccciiimmmismsmnsessss s XV
Chapter 1: FUndamentalscccuunmsssmmsmmmmmmmmsssssssssmmmmmmssssssssssnnssessssssssssssnssessssnns 1
Motivation fOr OFIBANS.........ccoveeerereree e rnnnnn s 1
Brief HiStory 0f Orl@aNS........c.oucciiiiiric s sn s 4
0rleans TIMEIINEc.cocveriiierire s 4
USE CASES ...vvvuveueueseresesseseeesesssssssssesesssssss s seses s e e s se e s ne e b s ne e R e e nn e pnnn s 5
ATCNITECIUIES......ee e e e e e e R e e e 6
o TSR 6
SUIMIMAIY ...t esse e e e n s e e R e e b e se e R e e Re e e e e e e e Re e s Re e e nnn e nnn e s 6
Chapter 2: Grains and Sil0Scccvusssesnmmssssnsnmmsssssnnmmsssssnnssssssnnssesssssnsnsssssnnnnsssssnnnnssss 7
(€T 11 OSSOSO 7
L= TN o 1T o) RS 9
GraiNS LifE CYCIE c.uevverreerrerereesesserersessssessessessessssessessesasssssessessesssssssessessessssessessessensssessesesssssnsessens 9
Turn-Based CONCUITENCY........cccvererrnieriesesie s s s sss s s s s e s s s se s sre st s e s e e sre s s e nnennens 10
Message Delivery GUAraNtEEScouovrererresermsesrsesesrssesesesessssessssesessssessssessssssesssssssssessssssenns 10
LT (1LY (0] £ SRS RST 11
SHI0S ettt et R e R e E e e R e Re e r e e nrnRe e 12
THE SCREAUIET ...t 13
Cluster Membership ProtOCOL.........cccvvcevverererersereresessesseseseesessessessessssessessessssssssssessesssssssessees 13
E 1] 1= OO SRS S 14
31C] (2] T 11T 14

TABLE OF CONTENTS

Chapter 3: Hello WOrld.......cocccmrmnnsnmmnmmmssssnssmssssssssssssssssssssssnsssssssssnsssssssnssssssssnnnsnnss 15
o (0 (=0 S 1T (1 (S 15
LT 11 SR] 1TSS 16

12000 16
Creating Your First Grains INterface.........coccvvvirinnnnininsnsne s sessessens 17
Creating Your First Grains Class ... s e ssssessessessssessessens 19
Creating Your First HOSL ...t 22
Creating Your First Client ... st 24
B0 111 T SRR 27

Chapter 4: Debugging an Orleans Application...........ccciunmnmmnmnsssssnnmnsssssssmsssssssnnnns 29
(00T o 1 T SRS 29
L= 1 34

Configuring Application INSIGTS........ccvrrrriri e nnens 34
Writing @ CUSTOM CONSUMETccvereertriererrestsseressessesessesseseesessessessessssessessesssssssessessesssnessesses 35
£ 11114 7R 35

Chapter 5: Orleans Dashboard..........ccccussseennessssnnnnmssssssssessssnssssssssnnsssssssnsnesssssnnnssss 37

INSTAIALION ... e 37
GraiNS TYPE OVEIVIBWeeveueireererieeris e ses e ses e sesse e e s e e s e sesss e e s se s s e ses et ss e sse e sessesens 39
SHlOS OVEBIVIBW ...euveuereerrerseserersereessssessessessssssessesaesessessesaesassessessessesssssssessesasssssensessessesssnensesaes 41
[T TS =T 4O 42
AAVANCEA USAJEeeeeeerererieerererseesseseresseessessessessessesaesseessessessesssesaessesssessesasssesssessesssnneen 43

SUIMIMAIY....e et e e e e e e s Re e e e e e e e e Re e s ee e ne e e e s Re e e se e nen e e nnnnnas 44

Chapter 6: Adding PersiStenceccovrusssmmnmmssssnsnmmssssnsnssssssnnnssssssnnnssssssnnnsssssnnnnnssss 45
3T0] 0101 S L S 45
Adding State t0 the Grainscccccviverniernes s r s 46
Configuring the Storage Provider..........cccvririniene s s sssssssesne s 49
£ 11114 7R 51

TABLE OF CONTENTS

Chapter 7: Adding ASP.NET COr€......cccurssssunnssssssnnsssssssnssssssssnnnsssssssnnssssssnsnsssssnnnnssnss 53
Adding an ASPNET Weh API PrOJECT........ccorerirrrcrrsc et se s sannes 53
Calling Grains from Controller ACHONS ... s 55
B30T 111 T PSSR 57

Chapter 8: Unit Testingccciumnsssmmmmmmsssnnnmmssssnsnmmssssssnmsssssssnssssssssnsssssssnnssssssnnnsnsss 59
Adding @ TESE PIOJECTccveecrce e e 59
Adding Silos ConfigUIatioN..........ccecriererinsrire s sr e se e s re e e e nne e 61
Adding @ TeSt MELNO(.........ccceiiiirire e e 62
11T 1117 OO P 63

Chapter 9: SIreams.......ccccuimmrmsssnmmsssnmmsssnsssssnsesssnsesssnsesssnsesssnsesssnsesssnnesssnnesssnnssssnns 65
SErEAM PrOVIUEIS ... 65
Configuring the HOSt ..o s 66
Publishing Events from Grainsc.cucoienennmnnessnssssssesssse s sssssssssssessssessns 67
Subscribing to Streams i GFaINSccccvvereveirsriere e s s ae s 71
Streams in the ClIENt ... s 74
11T 1117 OO R 76

Chapter 10: Timers and Remindersc..ccccuremssssnnsmssnsssssss 77
TIMErs VS. REMINUEYScoueeeeecrircrereeee s e s e ne e 77
3TeT 0y T 0T 1= T T S 77
Adding a Timer t0 the RODOIGIAINccccevveriricernserreser e 78
Adding a Reminder to the RODOIGIAIN.........ccceeverriereresersere e s e ss s e ssesaens 81
£ 11114 7R 84

Chapter 11: TranSactions........ccsusemmssnmmssnsssansssansssnsssassssassssnsssansssansssnsssansssansssnnssansss 85
Motivation for TranSaCHONS.........c.covrcrrerrer e 85
WRAL IS ACID? ... s bbb bbb ne e 86
Creating an Azure ST0rage ACCOUNTccoveeerenmrresesessesese s s e s e sssssssesessssssnssenens 86
Configuring TrANSACLIONScccvererriiernsesrsesere s e r s nnre e 87
GraiNS INTEITACES.....c.ciererririeerire s 88

vii

TABLE OF CONTENTS

Implementing Grains ClaSSES.......cverivrrerserernnerseresesessessessessssessessessessssessessesssssssessessessssessesses 90
D [0 0T 0T (0] T OO 93
SUIMIMANY....eeeeeeeeeee s e se e e e e e s ae e e e e e e e e Re e s ee e se e e e e se e e se e nennn e nsennns 95
Chapter 12: Event Sourced Grains.......ccccccersssssssssssnmmmsssns 97
L OSSR 97
INtroducing EVENt SOUMCING......ccvieeriesiiisirese s 97
Defining the STALE ..o —————————— 98
Implementing the GrainS ClaSScvvvrrrrerennrersereresessessesessesesse e ssesessessessesssssssessessessssessesaes 99
Adding the CONTIOIIETcoceuieeece e r s s 102
UNCONTIrMEd STALEceeeecee e 103
£ 10T 1117 T 104
Chapter 13: Updating Grains.......ccuseummmssssnnmmssssssnnmsssssssnsssssssnsssssssssnsssssssssssssssnnnss 105
Updating Grains LOGICuecvrrererrererresersnsessnsessssasessssessssessssesesssssssssessssssssssssssssssssssnssssnsssassssnns 105
INTEIfACE VEISIONING ...cvecercrierirserse s s s s s e s ae s a s e e s aese s saesae e e e naennens 106
000 T o [T T TR = R 107
£ 1111117 O 108
Chapter 14: Optimization........cccevsseemnmmsssssnnmnmssssnmnssssn s annn s 109
LTS 0] T 109
[3TETe] 01 1410 SR 110
CanCellation TOKENScceuererinernsesrsessse s s sr s ne e 111
0NE-WaAY REAUESTS.ccererrireeiiriere st sese s e se s sae e s e s sre s s e s s sae e s e saesaesaese s e saesaesessenaesaes 112
LT 1o (0] 1] SRR 112
IMMUEADIE ... e 113
L] 4P L T 113
Controlling Grains Life CYCIE.......ccccvveerersererenerrssesesssesesesessesesssse s sessssesssssssssesessssessssssssssenns 114
11T 111 1T o SRS 114

viil

TABLE OF CONTENTS

Chapter 15: Advanced Features........ccicuummemmmmssssnnnmsssssnssssssssssssssssssnssssssssnssssssnnnnss 115
ReqUEST CONTEXL.......coeeeeeeccrr ettt et et 115
GraiNS Call FIlIS.......c.coe et 116
GrainS PlaCEBMENL..........ccveerrrererene s nr e 118
STAMTUD TASKS ...eevieerrreerise s g e ne e 119
C T T T oo 120
012 4 PR 124

Chapter 16: INTervieWsccuiceurrmssssnnnmmssssssnmsssssssssssssssssssssssnnsssssssnnssssssnnnssssssnnnnss 129
ROGEE CrEYKE.eeieeeereecriee s sttt as e se e e st e e e s e e ae e e et e e e e e bt e e e 129

When did you first decide to use Orleans?..........cccovcrnvrniesnissssre s sesesseens 129
WRY OFIEANS? ...ttt e s et se e e b e st s e be e sae e e s ae e eneneas 130
How would you build something without an actor framework?...........ccccoecvvvrrvenereccrnnne. 130
You’re currently using Orleans in production; could you describe your architecture?........ 131
How easy is Orleans t0 Manage?cccccvvererercrniesenesene e seses e sesseses s ssssessssesessssessnnes 131
Over the years, you’ve picked Orleans for several projects; what keeps bringing
L0V 72 T O 131
What do you see as Orleans’ greatest strengths/WeaknesSes?........ccvevererrersereressesserserees 132
What would you change about Orleans?...........oceeerernnesssesenessssesesessssesesesessssssssssesens 132
Why do you think Orleans isn’t more popular?...........cooveevrrrennnnenesesssssesesesesssssssesenens 132
SEIGRY BYKOV ...t e 133
Where did the name for Orleans COmMe fromM?coverrerrrcnereserese e 133
What was it like to take an internal research project and publish it as open source?........ 133
What benefits did you see from open sourcing Orleans?..........ccocccvvrirennnnnniesnsensensenns 134
Were there any use cases for Orleans that took you by SUrprise?cceeeeveeernccrenienens 134
Where do development teams get the most value from using Orleans?..........cccceeceveerenne. 135
You have moved on from Orleans now, but where do you see the future of
cloud-native applications goiNg?ccvivrrrrirnnnnnse e e 135
1T - 137

ix

About the Author

Richard Astbury works at Microsoft UK, helping software teams build software systems
to run in the cloud. Richard is a former Microsoft MVP for Windows Azure. He is often
found developing open source software in C# and Node.js, navigating the river on his
paddle board, and riding his bike. He lives in rural Suffolk, UK, with his wife, three
children, and golden retriever.

xi

About the Technical Reviewer

Sergey Bykov is one of the creators of Orleans and a long-time lead of the project since
its inception within Microsoft Research. During his nearly 20 years at Microsoft, he has
worked on servers, embedded systems, online and gaming services. His passion has
always been about providing tools and frameworks for software engineers, to help them
build better, faster, more reliable and scalable systems and applications with less effort.
He continues to follow that passion, now at Temporal Technologies.

You can read Sergey’s blog at https://dev.to/sergeybykov and follow him on
Twitter @sergeybykov.

xiii

https://urldefense.com/v3/__https:/dev.to/sergeybykov__;!!NLFGqXoFfo8MMQ!vy1ZOf7GW7Xz_pT9zpPsS5tWVFAXlylnTGesmUiWXcJlu0cs7f_zQ3gpLDBRWjlthAGx11x3x5hEQQHS0A$

Introduction

Welcome!

This book aims to help the experienced dotnet developer understand what Orleans
is, what problems it solves, and how to get started with an Orleans project. No prior
knowledge of distributed systems is required, but it is useful to have a good grasp of C#,
ASP.NET Core, and unit testing.

The first two chapters provide a brief history and backstory, helping you understand
where Orleans began and the core concepts, namely, Grains and Silos.

The main body of the book starts with a “Hello World” example and then explores
several of the features of Orleans by building more functionality into this application.
This helps us to understand the functionality of Orleans by taking practical steps and
building something that’s a, sort of, real system.

I'have included a couple of chapters on more advanced features, including
optimizations. I don’t attempt to add all of these to the sample application, and instead
explain how they’re used and the problems they solve.

Software is built by people, and it was important to me to include some interviews in
this book from people who are/were in the core team as well as the community. I hope
you enjoy reading their perspectives.

Orleans is a great fit for some really interesting challenges, particularly around high-
scale, real-time systems, but it doesn’t fit every problem. Part of being an experienced
developer is knowing the best tool to use for a given problem. My hope is that this book
will help you develop your intuition, so when you have finished reading (however far you
get!), you'll know an Orleans-shaped problem when you see one.

CHAPTER 1

Fundamentals

Microsoft Orleans is a free, open source framework built on Microsoft .NET, which
provides the developer with a simple programming model enabling them to build
software which can scale from a single machine to hundreds of servers.

You can think of Orleans as a distributed runtime, which runs software across a
cluster of servers, treating them as a single address space. This allows the developer
to build software which keeps lots of data in memory, by spreading objects across the
cluster’s shared memory space. This enables low-latency systems, where requests can
be processed using data held in memory without deferring to a database. This allows the
system to deal with a high volume of traffic.

Orleans is designed to support cloud-native applications, with elasticity and fault
tolerance.

Orleans is a “batteries included” framework, which ships with many of the features
required for distributed systems built in.

Motivation for Orleans

When I first started serious programming in the early 1990s, it was just me, my PC, and
Turbo Pascal 7. The terrible software I wrote just ran on a single machine, an IBM PS/2
8086, which had a single CPU core and no network.

Fast-forward to the present day and the progress made in computer hardware is
astonishing. Computers now have multiple cores, with 440 being the current state of the
art. Cloud computing provides us with near instant rental to computers with per-minute
billing, almost limitless horizontal scalability, and accessible to anyone via a ubiquitous
global network - the Internet.

© Richard Astbury 2022
R. Astbury, Microsoft Orleans for Developers, https://doi.org/10.1007/978-1-4842-8167-3_1

https://doi.org/10.1007/978-1-4842-8167-3_1

CHAPTER 1 FUNDAMENTALS

While programming languages have also evolved, most mainstream languages are
still generally focused on running a sequence of instructions on a single computer. Some
languages’ runtimes don’t even have support for multithreading and distributing work
across multiple cores.

In order to satisfy the requirements of real-time web applications and IoT gateways,
developers are required to build systems that can deal with high volumes of traffic,
handle hardware failure, and do this with elasticity to optimize for cost. We need to
make efficient use of the hardware, which means running code efficiently on multicore
computers, horizontally scaled in the cloud.

I think most experienced developers would agree that programming concurrent
or distributed systems is hard. Bugs in concurrent code, such as race conditions, are
sometimes hard to detect, to replicate, to debug, and to test. Software that runs across
networks must respond to transient outage and delays, which are common in a cloud
environment. The developer will often have to consider eventual consistency or
reconciling state mutations across multiple nodes.

Languages have emerged that certainly help the developer to build concurrent and
networked software, with reference to Go and Rust in particular, but my opinion is that
while these languages offer constructs and safety for concurrent programming, they
don’t provide a finished solution for a developer to build software that’s distributed by
default.

In response to these challenges, the design I see the majority of developers take is
to make application code stateless and use the database to handle concurrency using
transactions and optimistic locking. This allows horizontal scalability of the application
server. The servers do not cooperate or communicate between each other, as every
state mutation is performed by the database. This requires the web server to gather
the required records from the database to respond to each request. This is an excellent
solution, which has been proven to work countless times. However, there are a couple of
problems that can emerge:

1. The database can become a performance bottleneck, and while
databases can be scaled vertically (i.e., upgrade the hardware),
you will eventually reach a limit. Some databases can be
horizontally scaled. However, this often comes with a loss in
some guarantees, such as eventual consistency rather than strong

consistency.

