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Introduction

Welcome!

This book aims to help the experienced dotnet developer understand what Orleans
is, what problems it solves, and how to get started with an Orleans project. No prior
knowledge of distributed systems is required, but it is useful to have a good grasp of C#,
ASP.NET Core, and unit testing.

The first two chapters provide a brief history and backstory, helping you understand
where Orleans began and the core concepts, namely, Grains and Silos.

The main body of the book starts with a “Hello World” example and then explores
several of the features of Orleans by building more functionality into this application.
This helps us to understand the functionality of Orleans by taking practical steps and
building something that’s a, sort of, real system.

I'have included a couple of chapters on more advanced features, including
optimizations. I don’t attempt to add all of these to the sample application, and instead
explain how they’re used and the problems they solve.

Software is built by people, and it was important to me to include some interviews in
this book from people who are/were in the core team as well as the community. I hope
you enjoy reading their perspectives.

Orleans is a great fit for some really interesting challenges, particularly around high-
scale, real-time systems, but it doesn’t fit every problem. Part of being an experienced
developer is knowing the best tool to use for a given problem. My hope is that this book
will help you develop your intuition, so when you have finished reading (however far you
get!), you'll know an Orleans-shaped problem when you see one.



CHAPTER 1

Fundamentals

Microsoft Orleans is a free, open source framework built on Microsoft .NET, which
provides the developer with a simple programming model enabling them to build
software which can scale from a single machine to hundreds of servers.

You can think of Orleans as a distributed runtime, which runs software across a
cluster of servers, treating them as a single address space. This allows the developer
to build software which keeps lots of data in memory, by spreading objects across the
cluster’s shared memory space. This enables low-latency systems, where requests can
be processed using data held in memory without deferring to a database. This allows the
system to deal with a high volume of traffic.

Orleans is designed to support cloud-native applications, with elasticity and fault
tolerance.

Orleans is a “batteries included” framework, which ships with many of the features
required for distributed systems built in.

Motivation for Orleans

When I first started serious programming in the early 1990s, it was just me, my PC, and
Turbo Pascal 7. The terrible software I wrote just ran on a single machine, an IBM PS/2
8086, which had a single CPU core and no network.

Fast-forward to the present day and the progress made in computer hardware is
astonishing. Computers now have multiple cores, with 440 being the current state of the
art. Cloud computing provides us with near instant rental to computers with per-minute
billing, almost limitless horizontal scalability, and accessible to anyone via a ubiquitous
global network - the Internet.

© Richard Astbury 2022
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CHAPTER 1  FUNDAMENTALS

While programming languages have also evolved, most mainstream languages are
still generally focused on running a sequence of instructions on a single computer. Some
languages’ runtimes don’t even have support for multithreading and distributing work
across multiple cores.

In order to satisfy the requirements of real-time web applications and IoT gateways,
developers are required to build systems that can deal with high volumes of traffic,
handle hardware failure, and do this with elasticity to optimize for cost. We need to
make efficient use of the hardware, which means running code efficiently on multicore
computers, horizontally scaled in the cloud.

I think most experienced developers would agree that programming concurrent
or distributed systems is hard. Bugs in concurrent code, such as race conditions, are
sometimes hard to detect, to replicate, to debug, and to test. Software that runs across
networks must respond to transient outage and delays, which are common in a cloud
environment. The developer will often have to consider eventual consistency or
reconciling state mutations across multiple nodes.

Languages have emerged that certainly help the developer to build concurrent and
networked software, with reference to Go and Rust in particular, but my opinion is that
while these languages offer constructs and safety for concurrent programming, they
don’t provide a finished solution for a developer to build software that’s distributed by
default.

In response to these challenges, the design I see the majority of developers take is
to make application code stateless and use the database to handle concurrency using
transactions and optimistic locking. This allows horizontal scalability of the application
server. The servers do not cooperate or communicate between each other, as every
state mutation is performed by the database. This requires the web server to gather
the required records from the database to respond to each request. This is an excellent
solution, which has been proven to work countless times. However, there are a couple of
problems that can emerge:

1. The database can become a performance bottleneck, and while
databases can be scaled vertically (i.e., upgrade the hardware),
you will eventually reach a limit. Some databases can be
horizontally scaled. However, this often comes with a loss in
some guarantees, such as eventual consistency rather than strong

consistency.



