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Chapter 1
Introduction

Since the discovery of the Raman effect in 1928, Raman spectroscopy has proven to 
be a powerful tool for the characterization of molecular structure in the gaseous, 
liquid, and solid phases. Raman and IR spectroscopy provide complementary infor-
mation on molecular vibrations; in cases of high symmetry however the two meth-
ods are mutually exclusive. The selection rules for the interaction of light and matter 
predict that asymmetric vibrations are excited in IR absorption and symmetric 
vibrations are active in Raman scattering. Together these spectroscopies have been 
essential techniques used for the structural analysis of organic and inorganic mole-
cules since 1930s. In recent years, Raman spectroscopy has also proven to be a 
useful tool for the analysis of biological systems. Conformational changes of pep-
tides and proteins in aqueous solutions, as well as nucleic acids and polynucleo-
tides, have been studied. A general discussion of the comparisons of Raman and IR 
spectroscopy can be found in the books by Ingle and Crouch [1] and Nakamoto [2].

The Raman effect was discovered by its namesake, Sir Chandrasekhara Venkata 
Raman, in 1928 by using sunlight as the excitation source focused onto a sample. 
The weakly scattered light was detected with the aid of his eye through a telescope. 
The fact that such a feeble effect was detected is a testament to Raman’s brilliance 
as well as to the sensitivity of the human eye. Raman received the Nobel Prize only 
2 years after his discovery.

Early Raman studies concentrated on the development and use of more intense 
and higher resolution light sources. The earliest Raman spectra were collected using 
resonance lamps as well as low-pressure mercury-arc light sources. The develop-
ment of the powerful Ar+ and Kr+ ion lasers having power outputs in the blue/green 
(488, 514.5, 351.1 nm) and red (most prominent lines being 521, 568, and 647 nm) 
regions of the electromagnetic spectrum, respectively, has afforded great improve-
ment in Raman scattering sensitivity and resolution. These and other lasers, together 
with the improvements in modern dual, double-grating, spectrometers, and position 
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sensitive photodetectors, have greatly expanded the application of Raman 
spectroscopy.

The introduction of the laser in Raman spectroscopy has allowed for the develop-
ment of many new innovations in the field: resonance Raman spectroscopy, nonlin-
ear Raman scattering, stimulated Raman scattering, coherent anti-stokes Raman 
spectroscopy (CARS), etc. In addition, the ability to tightly focus laser light has 
allowed for the development of micro-Raman spectroscopy techniques. The Raman 
microprobe couples a Raman spectrometer with an optical microscope in order to 
study surface layers such as polymers, thin films, nanostructured materials, and 
biological molecules. Laser improvements however are followed by new experi-
mental challenges. A major difficulty in the application of Raman spectroscopy is 
the potential for laser damage to the material under investigation. It is seldom pos-
sible to use the full laser power available in a Raman study, especially if the sample 
is strongly absorbing at the frequency of the laser line. Sample heating effects such 
as sublimation, evaporation, and oxidation are serious limitations to Raman spec-
troscopy in all phases.

To combat the negative effects of employing high laser power, several methods 
have been developed. For liquids, a rotating cell is often used to avoid over-heating 
of the sample, but this is not practical for inhomogeneous solid-state samples. 
Raman spectroscopy of cooled samples under vacuum is presently a very common 
method requiring low-temperature cells and vacuum pumping. Oxidation effects are 
sometimes reduced by blowing dry nitrogen or argon gas over the irradiated sample 
or maintaining the sample at low temperature under a vacuum. Co-deposition of the 
molecules under investigation with a cold host bath (e.g., Argon) is often used as 
well [3]. Surface-enhanced Raman spectroscopy (SERS) offers a substantial solu-
tion for eliminating laser-induced harm to the sample. SERS is a relatively recent 
technique that can result in an enhancement of roughly 104–106 in Raman signal 
intensity for some molecules [4]. The theoretical limits for nonresonance-enhanced 
SERS is approximately 1011 while resonance enhancement (SERRS) can increase 
this limit to as high as 1014. Thus, lower laser power can be employed in order to 
yield the same signal intensities thereby reducing the damaging effects of the laser. 
Similarly, lower limits of detection sensitivity are possible with these techniques. 
This method requires the application of a small layer of the molecules of interest on 
a roughened metal surface. Although many experimental studies have been devoted 
to understanding the SERS process and some theoretical explanations have been put 
forward, it is fair to say that SERS is not completely understood and the interactions 
with the metal surface are known to shift vibrational energies, sometimes signifi-
cantly [5]. The application and development of SERS, while limited, represents a 
major advance in the field.

These methods, while effective, are complex in nature and often costly. In this 
book, we describe a simple method of performing Raman spectroscopy of samples 
submerged under liquid nitrogen (−195.79 °C: 77 K; −320 °F) which reduces or 
eliminates some of the problems described above. Cooling the sample to liquid 
nitrogen temperature exhibits great improvements in sensitivity and spectral resolu-
tion over room temperature Raman spectroscopy. It also allows the selection of the 
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