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Foreword

Leonardo da Vinci’s approximately 60 illustrations for the book The Divine
Proportion presented polyhedra for the very first time in history so spectacularly
that they seemed to jump out of the paper as three-dimensional representations.
1800 years after Plato and Archimedes, they caused a true “polyhedra mania’:
Nuremberg artists Albrecht Durer, Wenzel Jamnitzer, and Lorenz Stoer drew poly-
hedra extensively; Dutchmen Simon Stevin and Claes Pietersz van Deventer pub-
lished about them; Johannes Kepler rediscovered the complete list of regular
polyhedra from the time of the Greeks and added two new ones in 1619 by includ-
ing pentagrams. In the seventeenth century, the interest in the artistic presentation of
polyhedra declined although their mathematical study continued. In 1809,
Frenchman Louis Poinsot discovered two new solids by allowing intersecting faces.
Englishman John Flinders Petrie added three infinite regular polyhedra in 1926, in
collaboration with Canadian Donald Coxeter. American architect Buckminster
Fuller caused an artistic revival, and his designs were so influential that the 1996
Nobel Prize winners in chemistry who discovered the C60 molecule gave it the
name Buckminsterfullerene, although the shape of that molecule corresponds to the
truncated icosahedron, already known to Archimedes. 2011 Chemistry Nobel Prize
winner Daniel Shechtman likes to emphasize the divine proportion in his quasicrys-
tals. In Europe, the work of Dutch artist Maurits Cornelis Escher led to a revival of
the artistic study of polyhedra, and later Belgian Luc Tuymans and Danish Icelander
Olafur Eliasson also represented them. Eventually, polyhedra conquered the whole
world as they even inspired versatile Chinese artist Ai Weiwei, for instance. Thus,
artistically and scientifically the polyhedral topic surely still is of interest. And per-
haps even more than before, as modern 3D-software brings it within reach of any
motivated computer enthusiast.

This was amply illustrated at the Geometrias'l9 Conference in Porto, of which
this book collects some highlights (not necessarily in order of their presentation at
the conference). Some contributions were developed further into full papers, for the
purpose of their inclusion in this book. The participants still hold vivid memories of
the presentation on synthetic methods for constructing polyhedra, where one could
actually see a snub cube being created on the screen, as the result of a kind of
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equilibrium process. Anyone who ever tried to draw a snub cube using even the
most sophisticated 3D-software, quickly experiences this is impossible, thus con-
firming the fact that it can’t be constructed in a finite number of steps with lines and
circular arcs. Historical aspects are emphasized by a contribution on small stellated
dodecahedrons in Genoa, Italy, and that is quite unusual, as Kepler-Poinsot solids
do not seem so popular. A paper on confocal quadratic surfaces gives a more theo-
retical intermezzo, while regular participants of geometry-related conferences are
probably happy to see a continuation of the work on concave deltahedral rings. This
contrasts with the considerations on the gyroid, which is probably new to most read-
ers. Admittedly, double-layered polyhedra are beautiful—even if one doesn’t grasp
what they are about! Geodesic structures can’t be omitted in any self-respecting
conference on polyhedra, while Vittorio Giorgini’s organic structures are, regretta-
bly, less well-known. Even Gaudi can be a topic, when combined with John
Pickering’s form-finding method. Several talks and workshops about pedagogical
aspects were on the conference program too, during the conference, and the intro-
duction to solid tessellations, included in this book, is but one of them. This variety
of subjects of the Porto Geometrias'l19 Conference, presented in an open exchange,
created a pleasant ambience that will hopefully filter through these selected papers.

Dirk Huylebrouck holds a PhD in mathematics from the University of Ghent,
Belgium. He lectured in Congo and Burundi for 12 years, interrupted by assign-
ments in Portugal and at Maryland University Europe. Next, he taught at the Faculty
of Architecture of the KU Leuven (Belgium) and edited the column The Mathematical
Tourist in the journal The Mathematical Intelligencer. Author of seven books in
popular mathematics in Dutch, his first, Africa + Mathematics, has already been
translated in English (2019, Springer).

Ostend, Belgium Dirk Huylebrouck
08 December 2021



Preface

Aproged, the Portuguese Geometry and Drawing Teachers Association, invited us
to organize its Sth international conference and thus, Geometrias’19: Polyhedra and
Beyond was held in the Department of Mathematics of the Faculty of Sciences,
University of Porto, in September 5-7, 2019. The aim of this conference was to
bring together international experts, scholars, researchers, and students from diverse
backgrounds to engage in interdisciplinary discussions on theoretical research and
practical studies on polyhedra and geometrical structures under development in dif-
ferent fields of knowledge and institutions. The Geometrias’19: Book of Abstracts',
published in its outcome, summarized the essence of this Conference, offering a
clear testimony of how the atmosphere of dialog and shared knowledge created
renewed mutual interests between the participants, encouraging new synergies.

This book reflects a selection of the investigations presented during Geometrias’19
that were developed into full papers, so some contributions contain materials some-
how beyond the results presented in the talks, addressing different subjects and
explorations of polyhedral theory within architecture, computer science, mathemat-
ics, and structural design, broadly construed.

For their contribution to the accomplishment of this book, we are especially
grateful to the Scientific Committee members and additional reviewers for their
commitment in revisiting these studies, and to all the authors for the development of
their research and their openness during the reviewing procedures. An additional
appreciation to our Foreword’s Author, for such an inspirational input.

We thank you all for your contributions and for understanding the time it took us
to achieve this publication, of which we are very proud of.

Porto, Portugal Vera Viana
Helena Mena Matos
Jodo Pedro Xavier

'Viana, V. (Ed.). (2019). Geometrias’19: Book of Abstracts. Porto: Aproged. https://doi.
org/10.24840/978-989-98926-8-2
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