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Foreword

Leonardo da Vinci’s approximately 60 illustrations for the book The Divine 
Proportion presented polyhedra for the very first time in history so spectacularly 
that they seemed to jump out of the paper as three-dimensional representations. 
1800 years after Plato and Archimedes, they caused a true “polyhedra mania”: 
Nuremberg artists Albrecht Durer, Wenzel Jamnitzer, and Lorenz Stoer drew poly-
hedra extensively; Dutchmen Simon Stevin and Claes Pietersz van Deventer pub-
lished about them; Johannes Kepler rediscovered the complete list of regular 
polyhedra from the time of the Greeks and added two new ones in 1619 by includ-
ing pentagrams. In the seventeenth century, the interest in the artistic presentation of 
polyhedra declined although their mathematical study continued. In 1809, 
Frenchman Louis Poinsot discovered two new solids by allowing intersecting faces. 
Englishman John Flinders Petrie added three infinite regular polyhedra in 1926, in 
collaboration with Canadian Donald Coxeter. American architect Buckminster 
Fuller caused an artistic revival, and his designs were so influential that the 1996 
Nobel Prize winners in chemistry who discovered the C60 molecule gave it the 
name Buckminsterfullerene, although the shape of that molecule corresponds to the 
truncated icosahedron, already known to Archimedes. 2011 Chemistry Nobel Prize 
winner Daniel Shechtman likes to emphasize the divine proportion in his quasicrys-
tals. In Europe, the work of Dutch artist Maurits Cornelis Escher led to a revival of 
the artistic study of polyhedra, and later Belgian Luc Tuymans and Danish Icelander 
Olafur Eliasson also represented them. Eventually, polyhedra conquered the whole 
world as they even inspired versatile Chinese artist Ai Weiwei, for instance. Thus, 
artistically and scientifically the polyhedral topic surely still is of interest. And per-
haps even more than before, as modern 3D-software brings it within reach of any 
motivated computer enthusiast.

This was amply illustrated at the Geometrias'19 Conference in Porto, of which 
this book collects some highlights (not necessarily in order of their presentation at 
the conference). Some contributions were developed further into full papers, for the 
purpose of their inclusion in this book. The participants still hold vivid memories of 
the presentation on synthetic methods for constructing polyhedra, where one could 
actually see a snub cube being created on the screen, as the result of a kind of 
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equilibrium process. Anyone who ever tried to draw a snub cube using even the 
most sophisticated 3D-software, quickly experiences this is impossible, thus con-
firming the fact that it can’t be constructed in a finite number of steps with lines and 
circular arcs. Historical aspects are emphasized by a contribution on small stellated 
dodecahedrons in Genoa, Italy, and that is quite unusual, as Kepler-Poinsot solids 
do not seem so popular. A paper on confocal quadratic surfaces gives a more theo-
retical intermezzo, while regular participants of geometry-related conferences are 
probably happy to see a continuation of the work on concave deltahedral rings. This 
contrasts with the considerations on the gyroid, which is probably new to most read-
ers. Admittedly, double-layered polyhedra are beautiful—even if one doesn’t grasp 
what they are about! Geodesic structures can’t be omitted in any self-respecting 
conference on polyhedra, while Vittorio Giorgini’s organic structures are, regretta-
bly, less well-known. Even Gaudí can be a topic, when combined with John 
Pickering’s form-finding method. Several talks and workshops about pedagogical 
aspects were on the conference program too, during the conference, and the intro-
duction to solid tessellations, included in this book, is but one of them. This variety 
of subjects of the Porto Geometrias'19 Conference, presented in an open exchange, 
created a pleasant ambience that will hopefully filter through these selected papers.

Dirk Huylebrouck holds a PhD in mathematics from the University of Ghent, 
Belgium. He lectured in Congo and Burundi for 12 years, interrupted by assign-
ments in Portugal and at Maryland University Europe. Next, he taught at the Faculty 
of Architecture of the KU Leuven (Belgium) and edited the column The Mathematical 
Tourist in the journal The Mathematical Intelligencer. Author of seven books in 
popular mathematics in Dutch, his first, Africa + Mathematics, has already been 
translated in English (2019, Springer).

Ostend, Belgium Dirk Huylebrouck
08 December 2021

Foreword
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Preface

Aproged, the Portuguese Geometry and Drawing Teachers Association, invited us 
to organize its 5th international conference and thus, Geometrias’19: Polyhedra and 
Beyond was held in the Department of Mathematics of the Faculty of Sciences, 
University of Porto, in September 5–7, 2019. The aim of this conference was to 
bring together international experts, scholars, researchers, and students from diverse 
backgrounds to engage in interdisciplinary discussions on theoretical research and 
practical studies on polyhedra and geometrical structures under development in dif-
ferent fields of knowledge and institutions. The Geometrias’19: Book of Abstracts1, 
published in its outcome, summarized the essence of this Conference, offering a 
clear testimony of how the atmosphere of dialog and shared knowledge created 
renewed mutual interests between the participants, encouraging new synergies.

This book reflects a selection of the investigations presented during Geometrias’19 
that were developed into full papers, so some contributions contain materials some-
how beyond the results presented in the talks, addressing different subjects and 
explorations of polyhedral theory within architecture, computer science, mathemat-
ics, and structural design, broadly construed.

For their contribution to the accomplishment of this book, we are especially 
grateful to the Scientific Committee members and additional reviewers for their 
commitment in revisiting these studies, and to all the authors for the development of 
their research and their openness during the reviewing procedures. An additional 
appreciation to our Foreword’s Author, for such an inspirational input.

We thank you all for your contributions and for understanding the time it took us 
to achieve this publication, of which we are very proud of.

Porto, Portugal Vera Viana  
Helena Mena Matos  

João Pedro Xavier  

1 Viana, V. (Ed.). (2019). Geometrias’19: Book of Abstracts. Porto: Aproged. https://doi.
org/10.24840/978-989-98926-8-2
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