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Chapter 1
Introduction

Joo-Young Kim

1.1 Hardware Acceleration for Artificial Intelligence and
Machine Learning

Artificial intelligence (AI) and machine learning (ML) technology enable computers
to mimic the cognitive tasks believed to be what only humans can do, such as
recognition, understanding, and reasoning [1]. A deep ML model named AlexNet
[2], which uses eight layers in total, won the famous large-scale image recognition
competition called ImageNet by a significant margin over shallow ML models in
2012. Since then, deep learning (DL) revolution has been ignited and spread to
many other domains such as speech recognition [3], natural language processing
[4], virtual assistance [5], autonomous vehicle [6], and robotics [7]. With significant
successes in various domains, DL revolutionizes a wide range of industry sectors
such as information technology, mobile communication, automotive, and manufac-
turing [8]. However, as more industries adopt the new technology and more people
use it daily, we face an ever-increasing demand for a new type of hardware for the
workloads. Conventional hardware platforms such as CPU and GPU are not suitable
for the new workloads. CPUs cannot cope with the tremendous amount of data
transfers and computations required in the ML workloads, while GPUs consume
large amounts of power with high operating costs.

AI chip or accelerator is the hardware that enables faster and more energy-
efficient processing for AI workloads (Fig. 1.1). Over the past few years, many
AI accelerators have been developed to serve the new workloads, targeting from
battery-powered edge devices [9–11] to datacenter servers [12]. As McKinsey pre-
dicted in the report [13], the AI semiconductor industry is expected to grow 18–19%
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Fig. 1.1 AI chip and its market prediction

every year to 65 billion, accounting for about 19% in the entire semiconductor
market in 2025. So far, the AI hardware industry is led by big tech companies.
Google developed their own AI chip named tensor processing unit (TPU) that can
work with TensorFlow [14] software framework. Amazon developed Inferentia chip
[15] for high-performance ML inference. Microsoft’s BrainWave [16] uses FPGA
infrastructure to accelerate ML workloads at scale. Even an electric car maker
Tesla developed the full self-driving (FSD) chip for autonomous vehicles. There
are many start-up companies in this domain. Habana Labs, acquired by Intel in
late 2019, developed Gaudi processor for AI training. Graphcore has developed
intelligent processing unit (IPU) [17] and deployed in datacenters. Groq’s tensor
streaming processor [18] optimizes data streaming and computations with fixed task
scheduling. Cerabras’s wafer-scale engine [19] tries to use a whole wafer as a ML
processor to keep a large model without external memories.

1.2 Machine Learning Computations

In this section, we introduce the basic models of deep neural networks (DNNs)
and their computations. A DNN model is composed of multiple layers of artificial
neurons, where neurons of each layer are inter-connected with the neurons in the
neighbor layers. The mathematical model of the neuron comes from Frank Rosen-
blatt’s Perceptron [20] model, as shown in Fig. 1.2. Inspired by the human neuron
model, it receives multiple inputs among many input neurons and accumulates
their weighted sums with a bias. Then it decides the output through an activation
function, where the activation function is non-linear and differentiable, having a
step-like characteristic shape. As a result, the output of a neuron is expressed with
the following equation:
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Fig. 1.2 Artificial neuron: perceptron model

Fig. 1.3 Fully connected layer

y = f (w1x1 + w2x2 + ... + wnxn + b) (1.1)

Based on the network connection, there are three major layers in the DNN
models, which determines the actual computations: fully connected, convolutional,
and recurrent layer.

1.2.1 Fully Connected Layer

Figure 1.3 shows the fully connected layer that interconnects the neurons in the input
layer to the neurons in the next layer. The input vector is the values of input neurons,
a 3 × 1 vector in this case, and the output vector is the values of output neurons, a
4×1 vector. Each connection of the fully connected network between the two layers
represents a weight parameter in the model. For example, W01 represents a weight
parameter of the connection between the input neuron 0 and the output neuron 1.
Collectively, the network becomes a 4 × 3 weight matrix. In addition, each output
neuron has a bias, so the layer has 4×1 bias vector. For each output neuron, we can
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Fig. 1.4 Convolutional layer

write the output value y using Eq. 1.1. As a result, the equations can be formulated
into a matrix-vector equation as follows:

y = f (Wx + b) (1.2)

If the model includes multiple layers, which is the case of deep neural networks, the
matrix operations will be cascaded one by one. Traditional multi-layer perceptron
(MLP) models as well as the latest transformer models [21] are based on the fully
connected layer.

1.2.2 Convolutional Layer

The convolutional layer iteratively performs 3-d convolution operations on the input
layer using multiple weight kernels to generate the output layer, as illustrated in
Fig. 1.4. The input layer has multiple 2-d input feature maps, sized H × H × C, and
the size of each kernel is K × K × C. For computation, it performs 3-d convolution
operations from top-left to bottom-right for each kernel with a stride of U . A single
convolution operation accumulates all the inner products between the input and the
kernel. As a result of scanning for a kernel, it gets a single output feature map sized
E × E. By repeating this process for all kernels, the convolutional layer produces
the final output layer, sized to E × E × M . The equation for an output point in the
convolutional layer is as follows:
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Fig. 1.5 Recurrent layer

O[u][x][y] = B[u] +
C−1∑

k=1

K−1∑

i=1

K−1∑

j=1

I[k][Ux + i][Uy + j ]W[u][k][i][j ],

0 ≤ u < M, 0 ≤ x, y < E,E = (H − R + U)

U

(1.3)

Many convolution neural network (CNN) models use a number of convolutional
layers with a few fully connected layers at the end for image classification and
recognition task [22].

1.2.3 Recurrent Layer

Figure 1.5 shows the recurrent layer that has a feedback loop from the output to
the input layer in the fully connected setting. In this layer, the cell state of the
previous timestamp affects the current state. Its computation is also matrix-vector
multiplication but involves multiple steps with dependency. Its cell and output value
are expressed as follows. The hyperbolic tangent is usually used for activation
function in the recurrent layer.

ht = f (Uhxt + Vhht−1 + bh),Ot = f (Whht + bo) (1.4)

Recurrent neural networks (RNNs) such as GRUs [23] and LSTMs [24] are based
on this type of layer and popularly used for speech recognition.
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1.3 von Neumann Bottleneck

1.3.1 Memory Wall Problem

Von Neumann architecture [25] is a computer architecture proposed by John von
Neumann in 1945, which broadly consists of a compute unit that executes a program
written by a user and a memory unit that stores both the user’s program and
data required to run the program. Most modern computer systems, including CPU
and GPU, fall into this architecture. With the Moore’s law that states the number
of transistors on a computer chip doubles every 18 months [26] and the process
technology scaling, its compute performance has been rapidly improved, as shown
in Fig. 1.6. On the other hand, the memory device has been developed to increase
its capacity, not the performance. Therefore, the performance gap between the two
separated devices gets wider and wider, and it becomes a major performance issue
in the system. This memory wall problem causes the data movement issue or limits
the memory bandwidth between the compute and memory device. It is often called
von Neumann bottleneck because all the computers with von Neumann architecture
inevitably have this bottleneck simply because they have separated compute and
memory devices.

1.3.2 Latest AI Accelerators with High-Bandwidth Memories

The von Neumann bottleneck has been mitigated with a hierarchical memory
structure. Processors include the fastest but smallest SRAM-based cache on-chip
to leverage the temporal and spatial locality. Outside of the processor chip, there
exists the main memory of the system based on DRAM. DRAM is fast and has
a larger capacity than SRAM. After that, the system has solid-state drives (SSD)
for high storage capacity. However, as the DNN models get deeper and bigger to
the tera-bytes level, the ML workloads require even higher bandwidth between the
processor chip and the main memory. Even worse, the process technology scaling

Fig. 1.6 von Neumann Bottleneck and memory wall problem
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faces strong challenges with the end of Moore’s law below 10 nm technology node
[27].

To overcome the von Neumann bottleneck and the slow-down of process scaling,
many companies propose array-type architectures to accelerate data-intensive ML
processing along with 3-d stacking DRAM technology called high-bandwidth
memory (HBM) [28] to provide higher bandwidth between the compute and
memory devices. Google developed their own AI chip named TPU to serve the
inference and training workloads in datacenters with a better cost and energy
efficiency [12]. Intel recently released the NNP-T processor [29] and Habana Labs
Gaudi processor [30] for training workloads. Start-up companies such as Graphcore
[31] and Groq [18] are also based on this architecture. However, although these
AI accelerators with HBM technology can mitigate the bandwidth bottleneck up
to a couple TB/s level, they cannot address it eventually as they still fall into von
Neumann architecture. In addition, the HBM suffers from high-power dissipation
and low capacity [32]. Table 1.1 shows the summary of the hardware specifications
of the latest AI accelerators [33].

1.4 Processing-in-Memory Architecture

1.4.1 Paradigm Shift from Compute to Memory

An architectural paradigm called processing-in-memory (PIM) takes an alternative
approach to the conventional von Neumann architecture to solve the memory
bandwidth problem. It is not a new concept, as it is first introduced in 1970s [34] and
has many subsequent works [35, 36]. Recently, PIM has gotten increasing attention
amid the memory wall crisis caused by modern ML applications requiring high
bandwidths.

In PIM architecture, instead of fetching data from the memory unit to compute
unit, data stays in the memory, while the merged logic performs computations in
place without moving data outside. As Fig. 1.7 illustrates, this approach is a radical
change in the computer architecture; the traditional and near-memory architectures
basically have the same memory hierarchy to utilize the external memory bandwidth
efficiently, but the PIM merges the compute and memory devices so that it does
not have any problems in external data movement. This fundamental shift from
compute-centric architecture to memory-centric or combined architecture gets
much attention to solve the von Neumann bottleneck, especially for data-intensive
applications such as AI and ML. On top of performance improvement, it saves
significant energy by replacing expensive external data transfers with on-chip data
movements.
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Fig. 1.7 Processing-in-memory architecture

1.4.2 Challenges

Although it looks promising, PIM has many challenges as it needs to integrate logic
units into the memory module. The three notable challenges in PIM design are
process accessibility, architecting, and designing considering physical constraints,
and software stack and usability.

Among many memory technologies, SRAM is the only memory type that we
can build using a commercially available logic process. This is why many PIM
prototypes are based on SRAM [37–40]. It is possible to fabricate with a logic
process and easy to customize both memory cell and peripheral circuits. As the cell
size is the biggest among others, SRAM-based PIM has the least area restriction
on the logic integration. Except SRAM, DRAM and non-volatile memory (NVM)
processes are difficult to access. Memory vendors such as Samsung, SK Hynix, and
Micron have their own memory processes, but they are not open to outside. Since the
process design kit (PDK) is not accessible, most researchers cannot even simulate
the basic circuits. There have been many PIM architecture proposals for DRAM
[41, 42]; however, they only evaluate the architectures at a performance simulator
level without much physical design. Since the DRAM process is vastly different
from the logic process, focusing on increasing cell capacity and cell density, it is
hard to convince that the proposed PIM architectures are feasible to be fabricated
with only simulations.

It is imperative for chip designers to choose what function they should put into
the memory in the PIM design. They cannot implement various functions or too
generic logic as the silicon area is limited. In addition, the chip will lose the memory
capacity for the area of the logic merged. Another challenge is that the logic design
should be physically aligned with the memory cell design to maximize the internal
bandwidth.
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Table 1.2 PIM opportunities and challenges

PIM opportunities PIM challenges

1. Non-von Neuman Architecture
→ Can solve von Neumann bottleneck.

2. Converged Logic + Memory
→ Can achieve high internal bandwidth.

3. Suitable for data-intensive workloads
→ Good for AI/ML applications

4. Little external data movement
→ Can achieve high energy efficiency

1. Process accessibility
: Memory process is difficult to use

2. Limited area resource
: What function logic should the designer
add?

3. Physical layout constraint
: To maximize the internal compute
bandwidth

4. SW stack for PIM deployment
: Revisit a whole SW stack for wide
adoption

The software stack is the last hurdle in the PIM design. It is essential for the wide-
spreading adoption of PIM as a new device. Unlike traditional memory devices,
PIM is not a passive device anymore as it can perform logic operations at the same
time. What this means is that we need a fundamental change in the software side
either. For real PIM system optimizations, we need to revisit a whole software stack,
including programming language, compiler, driver, and run-time. Otherwise, it will
not be able to outperform the existing von Neumann computer’s performance and
usability. Table 1.2 summarizes the opportunities and challenges of PIM technology.

1.5 Book Organization

This book organizes as follows. In Chap. 2, we study the backgrounds of the
PIM technology, including basic memory operations of various memories such as
SRAM, DRAM, and Resistive RAM (ReRAM). We also discuss the PIM’s design
constructions and approaches in this chapter. From Chaps. 3–5, we will investigate
significant PIM designs in the major memory technologies: SRAM, DRAM, and
ReRAM. Each chapter will cover comprehensive design technologies required for
PIM, including in-memory circuit processing, memory macro design, data mapping
strategy, and architecture. In Chap. 6, we will focus on the PIMs designed for
ML training. We will discuss the systems side of PIM, including software and
programming interface, in Chap. 7, for the wide adoption of the technology. Finally,
we will conclude our book with future remarks in Chap. 8.
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