

ADVANCED TEXTBOOK SERIES

Remote Sensing Physics

An Introduction to Observing Earth from Space

Rick Chapman Richard Gasparovic

Remote Sensing Physics

Advanced Textbook Series

- 1. Unconventional Hydrocarbon Resources: Techniques for Reservoir Engineering Analysis Reza Barati and Mustafa M. Alhubail
- 2. Geomorphology and Natural Hazards: Understanding Landscape Change for Disaster Mitigation

Tim R. Davies, Oliver Korup, and John J. Clague

3. Remote Sensing Physics: An Introduction to Observing Earth from Space *Rick Chapman and Richard Gasparovic*

Remote Sensing Physics

An Introduction to Observing Earth from Space

Rick Chapman The Johns Hopkins University Applied Physics Laboratory, USA

Richard Gasparovic The Johns Hopkins University Applied Physics Laboratory (Ret.), USA

This Work is a co-publication of the American Geophysical Union and John Wiley and Sons, Inc.

This edition first published 2022 © 2022 American Geophysical Union

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Published under the aegis of the AGU Publications Committee

Matthew Giampoala, Vice President, Publications Carol Frost, Chair, Publications Committee For details about the American Geophysical Union visit us at www.agu.org.

The right of Rick Chapman and Richard Gasparovic to be identified as the authors of this work has been asserted in accordance with law.

Registered Office John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office 111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Chapman, Rickey David, 1955- author. | Gasparovic, Richard Francis, 1941- author.

Title: Remote sensing physics : an introduction to observing earth from space / Rick Chapman, The Johns Hopkins University Applied Physics Laboratory, USA, Richard Gasparovic, The Johns Hopkins University Applied Physics Laboratory (Ret.), USA.

Description: Hoboken, NJ : Wiley-American Geophysical Union, 2022. | Series: Advanced textbook series | Includes bibliographical references and index.

Identifiers: LCCN 2021038135 (print) | LCCN 2021038136 (ebook) | ISBN 9781119669074 (paperback) | ISBN 9781119669029 (adobe pdf) | ISBN 9781119669159 (epub)

Subjects: LCSH: Earth sciences–Remote sensing. | Environmental monitoring–Remote sensing. | Artificial satellites.

Classification: LCC QE33.2.R4 C472 2021 (print) | LCC QE33.2.R4 (ebook) | DDC 550.28-dc23

LC record available at https://lccn.loc.gov/2021038135

LC ebook record available at https://lccn.loc.gov/2021038136

Cover Design: Wiley

Cover Image: © The National Oceanic and Atmospheric Administration

Set in 9.5/12.5pt STIXTwoText by Straive, Chennai, India

Contents

	Pref	ace		xiii
	Acro	nyms		xv
	Abo	ut the (Companion Website	xxiii
1	Introduction to Remote Sensing			1
	1.1	How	Remote Sensing Works	4
	Refe	rences		9
2	Sate	llite Or	rbits	11
	2.1	Comp	putation of Elliptical Orbits	15
	2.2	Low I	Earth Orbits	16
	2.3	•	ynchronous Orbits	23
	2.4	Molni	iya Orbit	28
	2.5	Satell	ite Orbit Prediction	29
	2.6	Satell	ite Orbital Trade-offs	29
	Refe	rences		31
3	Infra	red Se	nsing	
	3.1 Introduction			33
	3.2	Radio	ometry	34
	3.3	8 Radiometric Sensor Response		37
		3.3.1	Derivation	37
		3.3.2	Example Sensor Response Calculations	40
		3.3.3	Response of a Sensor with a Partially-Filled FOV	40
	3.4	Black	body Radiation	41
		3.4.1	Planck's Radiation Law	41
		3.4.2	Microwave Blackbody	42
		3.4.3	Low-Frequency and High-Frequency Limits	43
		3.4.4	Stefan–Boltzmann Law	43
		3.4.5	Wein's Displacement Law	44
		3.4.6	Emissivity	44
		3.4.7	Equivalent Blackbody Temperature	44

v

vi	Contents		
----	----------	--	--

 3.5.1 Contributors to Infrared Measurements 3.5.2 Correction of Low-Altitude Infrared Measurements 3.5.3 Correction of High-Altitude Infrared Measurements 3.5.3 Correction of High-Altitude Infrared Measurements 3.6 Atmospheric Radiative Transfer 3.7 Propagation in Seawater 3.8 Smooth Surface Reflectance 3.9 Rough Surface Reflectance 3.10 Ocean Thermal Boundary Layer 3.11 Operational SST Measurements 3.11.1 AVHRR Instrument 3.11.2 AVHRR SST Algorithms 3.11.4 Example AVHRR Images 3.11.5 VIIRS Instrument 3.11.5 VIIRS Instrument 3.11.7 Applications 3.12 Land Temperature - Theory 3.13 Operational Land Temperature 3.14 Terrestrial Evapotranspiration 3.15 Geologic Remote Sensing 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing - Ocean Color 4.1 Introduction to Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.5.3 Case 2 Waters 4.5.4 Remote Sensing Reflectance 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Statellite Sensors 4.9.1 Ocean Chorphyll Fluorescence References 		3.5	IR Sea Surface Temperature	45
 3.5.3 Correction of High-Altitude Infrared Measurements 3.6 Atmospheric Radiative Transfer 3.7 Propagation in Seawater 3.8 Smooth Surface Reflectance 3.9 Rough Surface Reflectance 3.10 Ocean Thermal Boundary Layer 3.11 Operational SST Measurements 3.11.1 AVHRR Instrument 3.11.2 AVHRR Processing 3.11.3 AVHRR SST Algorithms 3.11.4 Example AVHRR Images 3.11.5 VIIRS Instrument 3.11.6 SST Accuracy 3.11.7 Applications 3.12 Land Temperature - Theory 3.13 Operational Land Temperature 3.14 Terrestrial Evapotranspiration 3.15 Geologic Remote Sensing 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing - Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Color 4.8 Atmospheric Corrections 4.9 Ocean Color Stellite Sensors 4.9.1 General History 4.9.2 SeaWIPS 4.9.3 MODIS 4.9.4 VIIRS 			3.5.1 Contributors to Infrared Measurements	45
 3.6 Atmospheric Radiative Transfer 3.7 Propagation in Seawater 3.8 Smooth Surface Reflectance 3.9 Rough Surface Reflectance 3.10 Ocean Thermal Boundary Layer 3.11 Operational SST Measurements 3.11.1 AVHRR Instrument 3.11.2 AVHRR Processing 3.11.3 AVHRR SST Algorithms 3.11.4 Example AVHRR Images 3.11.5 VIIRS Instrument 3.11.6 SST Accuracy 3.11.7 Applications 3.12 Land Temperature – Theory 3.13 Operational Land Temperature 3.14 Terrestrial Evapotranspiration 3.15 Geologic Remote Sensing 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing – Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Data – Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWIFS 4.9.3 MODIS 4.9.4 VIIRS 			3.5.2 Correction of Low-Altitude Infrared Measurements	46
 3.7 Propagation in Seawater 3.8 Smooth Surface Reflectance 3.9 Rough Surface Reflectance 3.10 Ocean Thermal Boundary Layer 3.11 Operational SST Measurements 3.11.1 AVHRR Instrument 3.11.2 AVHRR Processing 3.11.3 AVHRR SST Algorithms 3.11.4 Example AVHRR Images 3.11.5 VIRS Instrument 3.11.6 SST Accuracy 3.11.7 Applications 3.12 Land Temperature - Theory 3.13 Operational Land Temperature 3.14 Terrestrial Evapotranspiration 3.15 Geologic Remote Sensing 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing - Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Data - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 			3.5.3 Correction of High-Altitude Infrared Measurements	48
 3.8 Smooth Surface Reflectance 3.9 Rough Surface Reflectance 3.10 Ocean Thermal Boundary Layer 3.11 Operational SST Measurements 3.11.1 AVHRR Instrument 3.11.2 AVHRR Processing 3.11.3 AVHRR SST Algorithms 3.11.4 Example AVHRR Images 3.11.5 VIIRS Instrument 3.11.6 SST Accuracy 3.11.7 Applications 3.12 Land Temperature - Theory 3.13 Operational Land Temperature 3.14 Terrestrial Evapotranspiration 3.15 Geologic Remote Sensing 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing - Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 		3.6	Atmospheric Radiative Transfer	49
 3.9 Rough Surface Reflectance 3.10 Ocean Thermal Boundary Layer 3.11 Operational SST Measurements 3.11.1 AVHRR Instrument 3.11.2 AVHRR Processing 3.11.3 AVHRR SST Algorithms 3.11.4 Example AVHRR Images 3.11.5 VIIRS Instrument 3.11.6 SST Accuracy 3.11.7 Applications 3.12 Land Temperature - Theory 3.13 Operational Land Temperature 3.14 Terrestrial Evapotranspiration 3.15 Geologic Remote Sensing 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing - Ocean Color 4.1 Introduction to Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 		3.7	Propagation in Seawater	54
 3.10 Ocean Thermal Boundary Layer 3.11 Operational SST Measurements 3.11.1 AVHRR Instrument 3.11.2 AVHRR Processing 3.11.3 AVHRR SST Algorithms 3.11.4 Example AVHRR Images 3.11.5 VIIRS Instrument 3.11.6 SST Accuracy 3.11.7 Applications 3.12 Land Temperature – Theory 3.13 Operational Land Temperature 3.14 Errestrial Evapotranspiration 3.15 Geologic Remote Sensing 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing – Ocean Color 4.1 Introduction to Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 		3.8	Smooth Surface Reflectance	58
 3.11 Operational SST Measurements 3.11.1 AVHRR Instrument 3.11.2 AVHRR Processing 3.11.3 AVHRR SST Algorithms 3.11.4 Example AVHRR Images 3.11.5 VIIRS Instrument 3.11.6 SST Accuracy 3.11.7 Applications 3.12 Land Temperature – Theory 3.13 Operational Land Temperature 3.14 Terrestrial Evapotranspiration 3.15 Geologic Remote Sensing 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing – Ocean Color 4.1 Introduction to Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Zase 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 		3.9	Rough Surface Reflectance	60
 3.11.1 AVHRR Instrument 3.11.2 AVHRR Processing 3.11.3 AVHRR SST Algorithms 3.11.4 Example AVHRR Images 3.11.5 VIIRS Instrument 3.11.6 SST Accuracy 3.11.7 Applications 3.12 Land Temperature – Theory 3.13 Operational Land Temperature 3.14 Terrestrial Evapotranspiration 3.15 Geologic Remote Sensing 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing – Ocean Color 4.1 Introduction to Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Data – Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 		3.10	Ocean Thermal Boundary Layer	63
 3.11.2 AVHRR Processing 3.11.3 AVHRR SST Algorithms 3.11.4 Example AVHRR Images 3.11.5 VIIRS Instrument 3.11.6 SST Accuracy 3.11.7 Applications 3.12 Land Temperature – Theory 3.13 Operational Land Temperature 3.14 Terrestrial Evapotranspiration 3.15 Geologic Remote Sensing 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing – Ocean Color. 4.1 Introduction to Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Data – Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 		3.11	Operational SST Measurements	66
 3.11.3 AVHRR SST Algorithms 3.11.4 Example AVHRR Images 3.11.5 VIIRS Instrument 3.11.6 SST Accuracy 3.11.7 Applications 3.12 Land Temperature - Theory 3.13 Operational Land Temperature 3.14 Terrestrial Evapotranspiration 3.15 Geologic Remote Sensing 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing - Ocean Color 4.1 Introduction to Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Data - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 			3.11.1 AVHRR Instrument	66
 3.11.4 Example AVHRR Images 3.11.5 VIIRS Instrument 3.11.6 SST Accuracy 3.11.7 Applications 3.12 Land Temperature – Theory 3.13 Operational Land Temperature 3.14 Terrestrial Evapotranspiration 3.15 Geologic Remote Sensing 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing – Ocean Color 4.1 Introduction to Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Tata - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 			3.11.2 AVHRR Processing	68
 3.11.5 VIIRS Instrument 3.11.6 SST Accuracy 3.11.7 Applications 3.12 Land Temperature – Theory 3.13 Operational Land Temperature 3.14 Terrestrial Evapotranspiration 3.15 Geologic Remote Sensing 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing – Ocean Color. 4.1 Introduction to Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Data - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 			3.11.3 AVHRR SST Algorithms	70
 3.11.6 SST Accuracy 3.11.7 Applications 3.12 Land Temperature - Theory 3.13 Operational Land Temperature 3.14 Terrestrial Evapotranspiration 3.15 Geologic Remote Sensing 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing - Ocean Color 4.1 Introduction to Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 			3.11.4 Example AVHRR Images	71
 3.11.7 Applications 3.12 Land Temperature - Theory 3.13 Operational Land Temperature 3.14 Terrestrial Evapotranspiration 3.15 Geologic Remote Sensing 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing - Ocean Color 4.1 Introduction to Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 			3.11.5 VIIRS Instrument	73
 3.12 Land Temperature – Theory 3.13 Operational Land Temperature 3.14 Terrestrial Evapotranspiration 3.15 Geologic Remote Sensing 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing – Ocean Color			3.11.6 SST Accuracy	75
 3.13 Operational Land Temperature 3.14 Terrestrial Evapotranspiration 3.15 Geologic Remote Sensing 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing - Ocean Color 4.1 Introduction to Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Data - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 			3.11.7 Applications	77
 3.14 Terrestrial Evapotranspiration 3.15 Geologic Remote Sensing 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing - Ocean Color 4.1 Introduction to Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Data - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 		3.12	Land Temperature – Theory	77
 3.15 Geologic Remote Sensing 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing - Ocean Color		3.13	Operational Land Temperature	80
 3.15.1 Linear Mixture Theory and Spectral Unmixing 3.16 Atmospheric Sounding References 4 Optical Sensing - Ocean Color 4.1 Introduction to Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Data - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 		3.14	Terrestrial Evapotranspiration	86
 3.16 Atmospheric Sounding References 4 Optical Sensing - Ocean Color 4.1 Introduction to Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Data - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 		3.15	Geologic Remote Sensing	87
References 4 Optical Sensing - Ocean Color. 4.1 Introduction to Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Data - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence			3.15.1 Linear Mixture Theory and Spectral Unmixing	90
 4 Optical Sensing - Ocean Color. 4.1 Introduction to Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Data - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 		3.16	Atmospheric Sounding	91
 4.1 Introduction to Ocean Color 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Data - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 		Refe	rences	95
 4.2 Fresnel Reflection 4.3 Skylight 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Data - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 	4	Optio	cal Sensing – Ocean Color	
 4.3 Skylight 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Data - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 		4.1	Introduction to Ocean Color	99
 4.4 Water-Leaving Radiance 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Data - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 		4.2	Fresnel Reflection	103
 4.5 Water Column Reflectance 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Data - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 		4.3	Skylight	106
 4.5.1 Pure Seawater 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Data - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 		4.4	Water-Leaving Radiance	107
 4.5.2 Case 1 Waters 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Data - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 		4.5	Water Column Reflectance	110
 4.5.3 Case 2 Waters 4.6 Remote Sensing Reflectance 4.7 Ocean Color Data - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 			4.5.1 Pure Seawater	112
 4.6 Remote Sensing Reflectance 4.7 Ocean Color Data - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 			4.5.2 Case 1 Waters	113
 4.7 Ocean Color Data - Case 1 Water 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 			4.5.3 Case 2 Waters	114
 4.7.1 Other Uses of Ocean Color 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 		4.6	Remote Sensing Reflectance	115
 4.8 Atmospheric Corrections 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 		4.7	Ocean Color Data – Case 1 Water	117
 4.9 Ocean Color Satellite Sensors 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 			4.7.1 Other Uses of Ocean Color	118
 4.9.1 General History 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 		4.8	*	119
 4.9.2 SeaWiFS 4.9.3 MODIS 4.9.4 VIIRS 4.10 Ocean Chlorophyll Fluorescence 		4.9	Ocean Color Satellite Sensors	124
4.9.3 MODIS4.9.4 VIIRS4.10 Ocean Chlorophyll Fluorescence			5	124
4.9.4 VIIRS4.10 Ocean Chlorophyll Fluorescence			4.9.2 SeaWiFS	126
4.10 Ocean Chlorophyll Fluorescence			4.9.3 MODIS	130
			4.9.4 VIIRS	133
References		4.10	Ocean Chlorophyll Fluorescence	135
		Refe	rences	140

Contents	vii
	•

5	Opti	cal Sen	sing – Land Surfaces	
	5.1	Introd	luction	143
	5.2	Radia	tion over a Lambertian Surface	143
	5.3	Atmo	spheric Corrections	147
	5.4	Scatte	ring from Vegetation	147
	5.5	Norm	alized Difference Vegetation Index	153
	5.6	Vegeta	ation Condition and Temperature Condition Indices	158
	5.7	Vegeta	ation Indices from Hyperspectral Data	159
	5.8	Lands	at Satellites	161
	5.9	High-	resolution EO sensors	164
		5.9.1	Introduction	164
		5.9.2	First-Generation Systems	164
		5.9.3	Second-Generation Systems	168
		5.9.4	Third-Generation Systems	172
		5.9.5	Commercial Smallsat Systems	174
	Refe	rences		176
6	Micr	owave	Radiometry	
	6.1	Introd	luction to Microwave Radiometry	179
	6.2	Micro	wave Radiometers	180
	6.3	Micro	wave Radiometry	181
		6.3.1	Antenna Pattern	182
		6.3.2	Antenna Temperature	184
		6.3.3	Examples	185
	6.4	Polari	zation	185
		6.4.1	Basic Polarization	185
		6.4.2	Jones Vector	187
		6.4.3	Stokes Parameters	187
	6.5	Passiv	e Microwave Sensing of the Ocean	188
		6.5.1	Atmospheric Transmission	189
		6.5.2	Seawater Emissivity	189
		6.5.3	Fresnel Reflection Coefficients, Emissivity, and Skin Depth	190
		6.5.4	Sky Radiometric Temperature	191
		6.5.5	Sea Surface Brightness Temperature	193
		6.5.6	Wind Direction from Polarization	197
	6.6	Satelli	ite Microwave Radiometers	198
		6.6.1	SMMR	198
		6.6.2	SSM/I and SSMI/S	198
		6.6.3	SSM/I Wind Algorithm	200
		6.6.4	AMSR-E	203
		6.6.5	WindSat	204
	6.7	6.7 Microwave Radiometry of Sea Ice		207
	6.8	Sea Ic	e Measurements	213
	6.9	Micro	wave Radiometry of Land Surfaces	218
	6.10	Atmo	spheric Sounding	222
	Refe	References		

viii	Contents		
------	----------	--	--

7	Rada	ar	229
	7.1	Radar Range Equation	229
	7.2	Radar Cross-Section	232
	7.3	Radar Resolution	236
	7.4	Pulse Compression	239
	7.5	Types of Radar	244
	7.6	Example Terrestrial Radars	245
		7.6.1 Weather Radars	245
		7.6.2 HF Surface Wave Radar	248
	Refe	prences	249
8	Altir	neters	251
	8.1	Introduction to Altimeters	251
	8.2	Specular Scattering	254
	8.3	Altimeter Wind Speed	257
	8.4	Altimeter Significant Wave Height	260
	8.5	Altimeter Sea Surface Height	263
		8.5.1 Introduction	263
		8.5.2 Pulse-limited vs Beam-limited Altimeter	263
		8.5.3 Altimeter Pulse Timing Precision	264
		8.5.4 Altimeter Range Corrections	264
	8.6	Sea Surface Topography	268
	8.7	Measuring Gravity and Bathymetry	274
	8.8	Delay-Doppler Altimeter	275
	Refe	prences	278
9	Scat	terometers	281
	9.1	Ocean Waves	281
	9.2	Bragg Scattering	287
	9.3	RCS Dependence on Wind	291
	9.4	Scatterometer Algorithms	293
	9.5	Fan-Beam Scatterometers	297
	9.6	Conical-Scan Pencil-Beam Scatterometers	300
	9.7	Conical-Scan Fan-Beam Scatterometers	304
	Refe	prences	307
10	Synt	thetic Aperture Radar	309
		Introduction to SAR	309
	10.2	SAR Azimuth Resolution	313
		10.2.1 Doppler Time History	313
		10.2.2 Azimuth Extent, Integration Time, and Doppler Bandwidth	316
		10.2.3 Azimuth Resolution	316
		10.2.4 SAR Timing, Resolution, and Swath Limits	318
		10.2.5 The Magic of SAR Exposed	319

			Contents ix
	10.3	SAR Image Formation and Image Quality	320
		SAR Imaging of Moving Scatterers	322
		Multimode SARs	325
	10.6	Polarimetric SAR	326
		10.6.1 Polarimetric Response of Canonical Targets	327
		10.6.2 Decompositions	328
		10.6.3 Compact Polarimetry	329
	10.7	SAR Systems	330
		10.7.1 Radarsat-1	332
		10.7.2 Envisat	334
		10.7.3 PALSAR	335
		10.7.4 Radarsat-2	335
		10.7.5 TerraSAR-X	335
		10.7.6 COSMO-SkyMed	335
		10.7.7 Sentinel-1	336
		10.7.8 Radarsat Constellation Mission (RCM)	337
		10.7.9 Military SARs	337
	10.8	Advanced SARs	339
		10.8.1 Cross-Track Interferometry	339
		10.8.2 Along-Track Interferometry	341
		10.8.3 Differential Interferometry	344
		10.8.4 Tomographic Interferometry	344
		10.8.5 High-Resolution, Wide-Swath SAR	344
	10.9	SAR Applications	346
		10.9.1 SAR Ocean Surface Waves	347
		10.9.2 SAR Winds	353
		10.9.3 SAR Bathymetry	360
		10.9.4 SAR Ocean Internal Waves	364
		10.9.5 SAR Sea Ice	370
		10.9.6 SAR Oil Slicks and Ship Detection	374
		10.9.7 SAR Land Mapping Applications and Distortions	380
		10.9.8 SAR Agricultural Applications	386
	Refe	rences	388
11	Lida	·	
		Introduction	393
	11.2	Types of Lidar	393
		11.2.1 Direct vs Coherent Detection	394
	11.3	Processes Driving Lidar Returns	395
		11.3.1 Elastic Scattering	395
		11.3.2 Inelastic Scattering	396
		11.3.3 Fluorescence	397
	11.4	Lidar Range Equation	397
		11.4.1 Point Scattering Target	397

x	Contents	
---	----------	--

11.4.2 Lambertian Surface	398
11.4.3 Elastic Volume Scattering	398
11.4.4 Bathymetric Lidar	398
11.5 Lidar Receiver Types	400
11.5.1 Linear (full waveform) Lidar	400
11.5.2 Single Photon Lidar	401
11.6 Lidar Altimetry	402
11.6.1 NASA Airborne Topographic Mapper	402
11.6.2 Space-Based Lidar Altimeters (IceSat-1 & 2)	403
11.6.3 Bathymetric Lidar	405
11.7 Lidar Atmospheric Sensing	405
11.7.1 ADM-Aeolus	405
11.7.2 NASA CALIOP	408
References	411
12 Other Remote Sensing and Future Missions	
12.1 Other Types of Remote Sensing	413
12.1.1 GRACE	413
12.1.2 Limb Sounding	414
12.2 Future Missions	414
12.2.1 NASA Missions	415
12.2.2 ESA Missions	416
12.2.3 Summary	418
References	419
Appendix A Constants	
Appendix B Definitions of Common Angles	
Appendix C Example Radiometric Calculations	
Appendix D Optical Sensors	
D.1 Example Optical Sensors	435
D.1.1 Photodiodes	435
D.1.2 Charge-Coupled Devices	437
D.1.3 CMOS Image Sensors	439
D.1.4 Bolometers and Microbolometers	440
D.2 Optical Sensor Design Examples	442
D.2.1 Computing Exposure Times	442
D.2.2 Impact of Digitization and Shot Noise on Contrast Detection	444
References	445
Appendix E Radar Design Example	447

Contents	xi

Appendi	x F Remote Sensing Resources on the Internet		
F.1	Information and Tutorials	455	
F.2	Data	455	
F.3	Data Processing Tools	456	
F.4	Satellite and Sensor Databases	456	
F.5	Other	456	
Appendi	x G Useful Trigonometric Identities		
Index	ndex 459		

Preface

At no time in history has it been more imperative to understand the present condition of our Earth's environment, especially the impacts of myriad human-induced activities and their portents for the future of our planet. The information provided by Earth observations from space-based remote sensors has become a critical element for this crucial endeavor.

The development of technology for Earth remote sensing has been a true multidisciplinary effort involving a variety of scientific disciplines, sensor and satellite engineering technologies, as well as advances in computer technology. Beginning in the 1960s with early images of cloud patterns observed with various electro-optical sensors, scientists and engineers soon recognized the potential for new information obtainable with instruments operating throughout the electromagnetic spectrum. This quickly led to the launch of infrared sensors for measuring ocean, land, and atmospheric temperatures; optical sensors for ocean color data, vegetation coverage, and atmospheric gases and aerosols; along with microwave instruments for monitoring polar regions, ocean winds and waves, sea level rise, and land surface deformations.

Exploitation of these advances in remote sensing technology would not have been possible without the parallel explosion in computer processing capabilities needed to acquire, store, display and synthesize the massive global data sets transmitted daily from Earth-observing satellites. Now, nearly half a century later, weather and severe storm forecasts based on satellite observations have become part of daily life, along with rainfall and drought monitoring, and forest fire detection. Moreover, space-based remote sensing technology now affords the only practical means for long-term global monitoring and prediction of such climate variables as sea level rise, ocean temperatures and biological productivity, and atmospheric conditions.

The purpose of this text is to provide an introduction to the physical principles underlying the techniques being used for remote sensing of the Earth. Our focus is on providing the reader with coherent treatments of the basic physics needed to understand exactly what the various instruments are measuring, including how and why the raw signals must be calibrated and corrected for interference or contamination by various environmental factors in order to extract the physical parameters of interest.

We have endeavored also to describe the relevant sensor technologies in sufficient detail for the reader to appreciate the engineering approaches to the acquisition of remotely sensed data. The references cited in each chapter can provide the interested reader with significantly more in-depth information on these engineering aspects. Software systems currently available for processing, display, and extraction of information from remote sensor data is an area we have intentionally omitted. References to some useful starting points on this topic can be found in one of the Appendixes. An attempt has been made throughout to present the material at a level that should be understandable to upper-class undergraduate science and engineering students, as well as to early-year graduate students in these disciplines.

The book is conceptually divided into three main parts. The first part consists of a brief overview of Earth remote sensing (Chapter 1) and a description of satellite orbits relevant to instruments deployed for Earth observations (Chapter 2). The second major part, comprising Chapters 3 through 6, discusses observations made with passive sensors, i.e., those which make use of natural illumination from the sun and/or thermal radiation from the ocean, land surfaces, and Earth's atmosphere. Observations with active sensors which provide their own illumination, such as radars of various types and lidars, are treated in Chapters 7 through 11 of the final part. The book concludes with a brief overview of two sensing techniques not discussed previously, along with a short summary of future Earth observation missions being planned by NASA and the European Space Agency (Chapter 12).

A compendium of links to a wide variety of remote sensing resources available on the Internet can be found in Appendix F. An extensive bibliography with references to other books, journal publications, and technical reports is included to supplement the material presented in the individual chapters of the book. Our expectation is that these items will prove valuable to students and researchers alike.

A substantial fraction of the material in this book was originally developed for remote sensing courses taught by the authors over many years to Masters Degree students in the Applied Physics curriculum within the Engineering for Professionals Program at the Johns Hopkins Whiting School of Engineering. The authors hereby gratefully acknowledge the numerous and invaluable contributions from these student interactions.

The authors also want to thank the numerous colleagues who reviewed chapters of the book: Dr. Steve Borchardt, Dr. Joshua Broadwater, Dr. Eric Ericson, Dr. David Jansing, Dr. Kevin Kwon, Dr. Carl Lueschen, Mr. Frank Monaldo, Dr. David Porter, Dr. Keith Raney, and Dr. Scott Wunsch. We especially want to thank Dr. Adrienne Criss and Captain James Miller (USN, Ret.) for reviewing the book in its entirety, which was not a small undertaking. We acknowledge the efforts of Mr. Chris Jackson (NOAA) who reprocessed SAR wind data for Figures 10.48-10.52 and Dr. James Churnside (NOAA) who provided lidar data for Figure 11.10. We also appreciate the efforts of numerous editors and reviewers at the AGU and Wiley for their contributions to this book.

Acronyms

ADCPAcoustic Doppler Current ProfilerADEOSAdvanced Earth Observing SatelliteADMAtmospheric Dynamics MissionAISAutomatic Identification SystemALADINAtmospheric LAser Doppler INstrumentALIAdvanced Land ImagerALOSAdvanced Land Observing SatelliteALIKAAtimetr Ka-bandAMIActive Microwave InstrumentAMSRAdvanced Microwave Scanning RadiometerAMSRAdvanced Microwave Scanning Radiometer-EOSAMSUAdvanced Microwave Sounding UnitARMAtmospheric Radiation MeasurementASARAdvanced Synthetic Aperture RadarASCATAdvanced ScatterometerASCIIAmerican Standard Code for Information InterchangeASFAlaska SAR FacilityASTERAdvanced Spaceborne Thermal Emission and Reflection RadiometerATIAlong-Track InterferometryATISARAdvanced Topographic Laser Altimeter SystemATIASAdvanced Topographic Laser Altimeter SystemATIASAdvanced Very High Resolution RadiometerATIASAdvanced Very High Resolution RadiometerATISMAlong-Track Scanning RadiometerATISMAlong-Track Scanning RadiometerATIASBiackbodyBBBiackbodyBADDEBidirectional Reflectance Distribution FunctionBSFBaas Spread Function	ACE	Advanced Composition Explorer
ADMAtmospheric Dynamics MissionAISAutomatic Identification SystemALADINAtmospheric LAser Doppler INstrumentALIAdvanced Land ImagerALOSAdvanced Land Observing SatelliteALIMAltimeter Ka-bandAMIActive Microwave InstrumentAMSRAdvanced Microwave Scanning RadiometerAMSRAdvanced Microwave Scanning Radiometer-EOSAMSUAdvanced Microwave Scanning Radiometer-EOSAMSUAdvanced Microwave Sounding UnitARMAtmospheric Radiation MeasurementASARAdvanced Synthetic Aperture RadarASCATAdvanced ScatterometerASCIIAmerican Standard Code for Information InterchangeASFAlaska SAR FacilityASTERAdvanced Spaceborne Thermal Emission and Reflection RadiometerATAlong-TrackATIAlong-Track InterferometryATIASAdvanced Topographic Laser Altimeter SystemATMNASA Airborne Topographic MapperATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB8BlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	ADCP	Acoustic Doppler Current Profiler
AISAutomatic Identification SystemALADINAtmospheric LAser Doppler INstrumentALIAdvanced Land ImagerALOSAdvanced Land Observing SatelliteALIMAdvanced Land Observing SatelliteALIKAAltimeter Ka-bandAMIActive Microwave InstrumentAMSRAdvanced Microwave Scanning RadiometerAMSRAdvanced Microwave Scanning Radiometer-EOSAMSUAdvanced Microwave Sounding UnitARMAtmospheric Radiation MeasurementASARAdvanced Synthetic Aperture RadarASCATAdvanced Synthetic Aperture RadarASCATAdvanced Spaceborne Thermal Emission and Reflection RadiometerASFAlaska SAR FacilityASTERAdvanced Spaceborne Thermal Emission and Reflection RadiometerATAlong-TrackATIAlong-Track InterferometryATISARAlong-Track InterferometryATISARAlong-Track Scanning RadiometerATMNASA Airborne Topographic MapperATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB8BlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	ADEOS	Advanced Earth Observing Satellite
ALADINAtmospheric LAser Doppler INstrumentALIAdvanced Land ImagerALOSAdvanced Land Observing SatelliteALOSAdvanced Land Observing SatelliteALtiKaAltimeter Ka-bandAMIActive Microwave InstrumentAMSRAdvanced Microwave Scanning RadiometerAMSRAdvanced Microwave Scanning Radiometer-EOSAMSUAdvanced Microwave Sounding UnitARMAtmospheric Radiation MeasurementASARAdvanced Synthetic Aperture RadarASCATAdvanced Synthetic Aperture RadarASCIIAmerican Standard Code for Information InterchangeASFAlaska SAR FacilityASTERAlong-TrackATIAlong-Track InterferometryATIAlong-Track Interferometric SARATLASAdvanced Topographic Laser Altimeter SystemATMNASA Airborne Topographic MapperATSRAlong-Track Scanning RadiometerBS1Brown 1981 modelBBBlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	ADM	Atmospheric Dynamics Mission
ALIAdvanced Land ImagerALOSAdvanced Land Observing SatelliteALOSAdvanced Land Observing SatelliteALtiKaAltimeter Ka-bandAMIActive Microwave InstrumentAMSRAdvanced Microwave Scanning RadiometerAMSRAdvanced Microwave Scanning Radiometer-EOSAMSUAdvanced Microwave Sounding UnitARMAtmospheric Radiation MeasurementASARAdvanced Synthetic Aperture RadarASCATAdvanced ScatterometerASCIIAmerican Standard Code for Information InterchangeASFAlaska SAR FacilityASTERAdvanced Spaceborne Thermal Emission and Reflection RadiometerATAlong TrackATIAlong-Track InterferometryATIASAdvanced Topographic Laser Altimeter SystemATMNASA Airborne Topographic MapperATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB81Brown 1981 modelB8BlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	AIS	Automatic Identification System
ALOSAdvanced Land Observing SatelliteALUSAltimeter Ka-bandAMIActive Microwave InstrumentAMSRAdvanced Microwave Scanning RadiometerAMSRAdvanced Microwave Scanning Radiometer-EOSAMSUAdvanced Microwave Scanning UnitARMAtmospheric Radiation MeasurementASARAdvanced Synthetic Aperture RadarASCATAdvanced ScatterometerASCIIAmerican Standard Code for Information InterchangeASFAlaska SAR FacilityASTERAlong-Track InterferometryATIAlong-Track Interferometric SARATLASAdvanced Topographic Laser Altimeter SystemATMNASA Airborne Topographic MapperATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB81Brown 1981 modelB8BlackbodyBRDFBeam Spread Function	ALADIN	Atmospheric LAser Doppler INstrument
ALtiKaAltimeter Ka-bandAMIActive Microwave InstrumentAMSRAdvanced Microwave Scanning RadiometerAMSR+EAdvanced Microwave Scanning Radiometer-EOSAMSUAdvanced Microwave Sounding UnitARMAtmospheric Radiation MeasurementASARAdvanced Synthetic Aperture RadarASCATAdvanced ScatterometerASCIIAmerican Standard Code for Information InterchangeASFAlaska SAR FacilityASTERAdvanced Spaceborne Thermal Emission and Reflection RadiometerATAlong TrackATI Along-Track InterferometryATISARAdvanced Topographic Laser Altimeter SystemATMNASA Airborne Topographic MapperATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB81Brown 1981 modelB8BlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	ALI	Advanced Land Imager
AMIActive Microwave InstrumentAMSRAdvanced Microwave Scanning RadiometerAMSRAdvanced Microwave Scanning Radiometer-EOSAMSUAdvanced Microwave Sounding UnitARMAtmospheric Radiation MeasurementASARAdvanced Synthetic Aperture RadarASCATAdvanced ScatterometerASCIIAmerican Standard Code for Information InterchangeASFAlaska SAR FacilityASTERAdvanced Spaceborne Thermal Emission and Reflection RadiometerATAlong TrackATIAlong-Track InterferometryATISARAlong-Track Interferometric SARATLASAdvanced Topographic Laser Altimeter SystemATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB81Brown 1981 modelB8BlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	ALOS	Advanced Land Observing Satellite
AMSRAdvanced Microwave Scanning RadiometerAMSRAdvanced Microwave Scanning Radiometer-EOSAMSUAdvanced Microwave Sounding UnitARMAtmospheric Radiation MeasurementASARAdvanced Synthetic Aperture RadarASCATAdvanced ScatterometerASCIIAmerican Standard Code for Information InterchangeASFAlaska SAR FacilityASTERAdvanced Spaceborne Thermal Emission and Reflection RadiometerATAlong TrackATIAlong-Track InterferometryATISARAdvanced Topographic Laser Altimeter SystemATMNASA Airborne Topographic MapperATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB81Brown 1981 modelB8BlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	ALtiKa	Altimeter Ka-band
AMSR-EAdvanced Microwave Scanning Radiometer-EOSAMSUAdvanced Microwave Sounding UnitARMAtmospheric Radiation MeasurementASARAdvanced Synthetic Aperture RadarASCATAdvanced ScatterometerASCIIAmerican Standard Code for Information InterchangeASFAlaska SAR FacilityASTERAdvanced Spaceborne Thermal Emission and Reflection RadiometerATAlong TrackATI Along-Track InterferometryAARAATLASAdvanced Topographic Laser Altimeter SystemATMNASA Airborne Topographic MapperATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB8BiackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	AMI	Active Microwave Instrument
AMSUAdvanced Microwave Sounding UnitARMAtmospheric Radiation MeasurementASARAdvanced Synthetic Aperture RadarASCATAdvanced ScatterometerASCATAdvanced ScatterometerASCIIAmerican Standard Code for Information InterchangeASFAlaska SAR FacilityASTERAdvanced Spaceborne Thermal Emission and Reflection RadiometerATAlong TrackATIAlong-Track InterferometryATISARAdvanced Topographic Laser Altimeter SystemATMNASA Airborne Topographic MapperATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerBBBlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	AMSR	Advanced Microwave Scanning Radiometer
ARMAtmospheric Radiation MeasurementASARAdvanced Synthetic Aperture RadarASCATAdvanced ScatterometerASCIIAmerican Standard Code for Information InterchangeASFAlaska SAR FacilityASTERAdvanced Spaceborne Thermal Emission and Reflection RadiometerATAlong TrackATIAlong-Track InterferometryATIASAdvanced Topographic Laser Altimeter SystemATSRAlong-Track Scanning RadiometerATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB81Brown 1981 modelBFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	AMSR-E	Advanced Microwave Scanning Radiometer-EOS
ASARAdvanced Synthetic Aperture RadarASCATAdvanced ScatterometerASCATAdvanced ScatterometerASCIIAmerican Standard Code for Information InterchangeASFAlaska SAR FacilityASTERAdvanced Spaceborne Thermal Emission and Reflection RadiometerATAlong TrackATIAlong-Track InterferometryATISARAlong-Track Interferometric SARATLASAdvanced Topographic Laser Altimeter SystemATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB81Brown 1981 modelBFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	AMSU	Advanced Microwave Sounding Unit
ASCATAdvanced ScatterometerASCIIAmerican Standard Code for Information InterchangeASFAlaska SAR FacilityASTERAdvanced Spaceborne Thermal Emission and Reflection RadiometerATAlong TrackATIAlong-Track InterferometryATISARAlong-Track Interferometric SARATLASAdvanced Topographic Laser Altimeter SystemATSRAlong-Track Scanning RadiometerATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB81Brown 1981 modelBBBlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	ARM	Atmospheric Radiation Measurement
ASCIIAmerican Standard Code for Information InterchangeASFAlaska SAR FacilityASTERAdvanced Spaceborne Thermal Emission and Reflection RadiometerATAlong TrackATIAlong-Track InterferometryATISARAlong-Track Interferometric SARATLASAdvanced Topographic Laser Altimeter SystemATMNASA Airborne Topographic MapperATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB81Brown 1981 modelBBBlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	ASAR	Advanced Synthetic Aperture Radar
ASFAlaska SAR FacilityASTERAdvanced Spaceborne Thermal Emission and Reflection RadiometerATAlong TrackATIAlong-Track InterferometryATISARAlong-Track Interferometric SARATLASAdvanced Topographic Laser Altimeter SystemATMNASA Airborne Topographic MapperATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB81Brown 1981 modelBBBlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	ASCAT	Advanced Scatterometer
ASTERAdvanced Spaceborne Thermal Emission and Reflection RadiometerATAlong TrackATIAlong-Track InterferometryATISARAlong-Track Interferometric SARATLASAdvanced Topographic Laser Altimeter SystemATMNASA Airborne Topographic MapperATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB81Brown 1981 modelBBBlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	ASCII	American Standard Code for Information Interchange
ATAlong TrackATIAlong-Track InterferometryATISARAlong-Track Interferometric SARATLASAdvanced Topographic Laser Altimeter SystemATMNASA Airborne Topographic MapperATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB81Brown 1981 modelBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	ASF	Alaska SAR Facility
ATIAlong-Track InterferometryATISARAlong-Track Interferometric SARATLASAdvanced Topographic Laser Altimeter SystemATMNASA Airborne Topographic MapperATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB81Brown 1981 modelBBBlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	ASTER	Advanced Spaceborne Thermal Emission and Reflection Radiometer
ATISARAlong-Track Interferometric SARATLASAdvanced Topographic Laser Altimeter SystemATMNASA Airborne Topographic MapperATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB81Brown 1981 modelBBBlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	AT	Along Track
ATLASAdvanced Topographic Laser Altimeter SystemATMNASA Airborne Topographic MapperATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB81Brown 1981 modelBBBlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	ATI	Along-Track Interferometry
ATMNASA Airborne Topographic MapperATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB81Brown 1981 modelBBBlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	ATISAR	Along-Track Interferometric SAR
ATSRAlong-Track Scanning RadiometerAVHRRAdvanced Very High Resolution RadiometerB81Brown 1981 modelBBBlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	ATLAS	Advanced Topographic Laser Altimeter System
AVHRRAdvanced Very High Resolution RadiometerB81Brown 1981 modelBBBlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	ATM	NASA Airborne Topographic Mapper
B81Brown 1981 modelBBBlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	ATSR	Along-Track Scanning Radiometer
BBBlackbodyBRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	AVHRR	Advanced Very High Resolution Radiometer
BRDFBidirectional Reflectance Distribution FunctionBSFBeam Spread Function	B81	Brown 1981 model
BSF Beam Spread Function	BB	Blackbody
	BRDF	
	BSF	Beam Spread Function
BW Bandwidth	BW	Bandwidth
CAD Computer Aided Drafting	CAD	Computer Aided Drafting

vi	Acronyms	

CALIOP	Cloud-Aerosol Lidar with Orthogonal Polarization
CALIPSO	Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
CAVIS	Clouds, Aerosols, Water Vapor, Ice and Snow instrument
CCD	Charge-Coupled Device, Coherent Change Detection
CCI	Climate Change Initiative
CDOM	Colored Dissolved Organic Material
CFOSAT	China-France Oceanography Satellite
CIE	International Commission on Illumination
CLW	Cloud Liquid Water
CMOD	C-band Geophysical Model Function
CMODIS	Chinese Moderate Resolution Imaging Spectrometer
CMODIS	Complementary Metal-Oxide Semiconductor
CNES	· ·
	French National Centre for Space Studies
CNSA	China National Space Administration
COCTS	Chinese Ocean Color and Temperature Scanner
COSMO-SkyMed	Constellation of Small Satellites for Mediterranean basin Observation
CPI	Coherent Processing Interval
CSA	Canadian Space Agency
CSV	Comma Separated Values format
CYGNSS	Cyclone Global Navigation Satellite System
CZCS	Coastal Zone Color Scanner
CZI	Coastal Zone Imager
D2P	Delay-Doppler Altimeter
DAAC	NASA Distributed Active Archive Center
DC	Direct Current (0 frequency)
DEM	Digital Elevation Model
DIAL	Differential Absorption Lidar
DLR	German Aerospace Center
DMSP	Defense Meterological Satellite Program
DOD	U.S. Department of Defense
DP	Differential Phase Shift
DR	Differential Reflectivity
DSCOVR	Deep Space Climate Observatory
E&M	Electricity and Magnetism
ECOSTRESS	ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station
EGM2008	Earth Gravitational Model 2008
EHF	Extremely High Frequency
ELF	Extremely Low Frequency
EM	Electromagnetic
EnMAP	Environmental Mapping and Analysis Program
ENVISAT	Environmental Satellite
EO	Electro-optic
EOF	Empirical Orthogonal Functions
EOS	Earth Observing System
EOSDIS	Earth Observing System Data and Information System
200210	2

x

ERS	European Remote-Sensing Satellite
ESA	European Space Agency
ET	Evapotranspiration
ETM	Enhanced Thematic Mapper
ETM+	Enhanced Thematic Mapper Plus
EUMETSAT	European Organisation for the Exploitation of Meteorological Satellites
EVI	Enhanced Vegetation Index
FAA	U.S. Federal Aviation Administration
FLH	Fluorescence Line Height
FM	Frequency Modulated
FOR	Field of Regard
FOV	Field of View
GAC	Global Area Coverage
GCOM-C	Global Change Observation Mission - Climate
GEDI	Global Ecosystem Dynamics Investigation
GEO-CAPE	GEOstationary Coastal and Air Pollution Events
GEO	Geostationary Earth Orbit
GeoCarb	Geostationary Carbon Observatory
GG	Glazman and Greysukh 1993 model
GISAT	Geo Imaging Satellite
GLAS	Geoscience Laser Altimeter System
GLI	Japanese Global Imager
GLONASS	Global Navigation Satellite System
GmAPD	Geiger-mode Avalanche Photo Diodes
GML	Geiger Mode Lidar
GNSS	Global Navigation Satellite System
GOCI	Geostationary Ocean Color Imager
GOES-3	Geodynamics Experimental Ocean Satellite 3
GOES	Geostationary Operational Environmental Satellites
GOSAT	Greenhouse gases Observing SATellite
GPM	Global Precipitation Measurement
GPO	U.S. Government Publishing Office
GPS	Global Position System
GRACE	Gravity Recovery and Climate Experiment
GRACE-FO	Gravity Recovery and Climate Experiment-Follow On
GSD	Ground Sample Distance
GSFC	Goddard Space Flight Center
HDF	Hierarchical Data Format
HEO	High Earth Orbit
HERA	Hybrid Extinction Retrieval Algorithm
HF	High Frequency
HFSWR	High-Frequency Surface Wave Radar
HH	Horizontal Transmit – Horizontal Receive
HICO	Hyperspectral Imager for the Coastal Ocean
HITRAN	High-resolution Transmission Molecular Absorption Database

xviii Acronyms

1	
HRPT	High-Resolution Picture Transmission
HSI	Hyperspectral Imaging
HV	Horizontal Transmit – Vertical Receive
HV SC	HeaVy-Snow Covered ice
HySI	Hyperspectral Imager
HyspIRI	Hyperspectral Infrared Imager
IF	Intermediate Frequency
IFOV	Instantaneous Field of View
IGS	Information Gathering Satellites
InGaAs	Indium Gallium Arsenide
INSAR	Interferometric SAR
IR	Infrared
ISRO	Indian Space Research Organisation
ISS	International Space Station
JAXA	Japan Aerospace Exploration Agency
JB	Jianbing
JERS	Japanese Earth Resources Satellite
JHU/APL	The Johns Hopkins University Applied Physics Laboratory
JPL	NASA Jet Propulsion Laboratory
JPSS	Joint Polar Satellite System
KARI	Korea Aerospace Research Institute
LAC	Local Area Coverage, LEISA Atmospheric Corrector
LCM	Linear Composite Model
LED	Light Emitting Diode
LEISA	Linear Etalon Imaging Spectrometer Array
LEO	Low Earth Orbit
LF	Low Frequency
LFM	Linear Frequency Modulated
LIS	Lightning Imaging Sensor
LO	Local Oscillator
LOS	Line of Sight
LS	Landsat
LST	Land Surface Temperature, Local Solar Time
LWIR	Long-wave Infrared
MABL	Marine Atmospheric Boundary Layer
MAIA	Multi-Angle Imager for Aerosols
MB	Megabyte, Main Beam
MCW	Modified Chelton and Wentz model
MEO	Mid-Earth Orbit
MERIS	Medium-spectral Resolution, Imaging Spectrometer
MF	Medium Frequency
MFY	Medium First-Year ice
MHS	Microwave Humidity Sounder
MOBY	Marine Optical Buoy
MODIS	Moderate-resolution Imaging Spectrometer

MODTRAN	Moderate Resolution Atmospheric Transmission
MOS	Modular Opto-electric Sensor
MP	Melt Ponds
MSS	Multispectral Scanner
MWIR	Medium-wave Infrared
NASA	National Aeronautics and Space Administration
NASDA	National Space Development Agency of Japan
Nd:YAG	Neodymium-Doped Yttrium Aluminum Garnet
NDBC	U.S. National Data Buoy Center
NDVI	Normalized Difference Vegetation Index
NDWI	Normalized Difference Water Index
ΝΕδΓ	Noise Equivalent Delta Radiance
ΝΕδΤ	Noise Equivalent Delta Temperature
NEXRAD	Next-Generation Radar
NF	Noise Figure
NIR	Near-Infrared
NISAR	NASA-ISRO Synthetic Aperture Radar
NISTAR	National Institute of Standards and Technology Advanced Radiometer
NOAA	National Oceanographic and Atmospheric Administration
NOMAD	NASA bio-Optical Marine Algorithm Dataset
NPOESS	National Polar-orbiting Operational Environmental Satellite System
NPP	National Polar-Orbiting Partnership
NRC	U.S. National Research Council
NRCS	Normalized Radar Cross-Section
NRL	U.S. Naval Research Laboratory
NSCAT	NASA Scatterometer
NWP3	Freilich and Dunbar 1993 model
OC3V	Ocean Chlorophyll 3-band VIIRS Algorithm
OC4	Ocean Chlorophyll 4-band Algorithm
OCI	Ocean Color Imager
OCM	Ocean Colour Monitor
OCO	Orbiting Carbon Observatory
OCTS	Ocean Color and Temperature Scanner
OES	Ocean Ecosystem Radiometer
OLCI	Ocean Land Color Imager
OMPS	Ozone Mapping and Profiler Suite
OSC	Orbital Sciences Corporation
OSCAT	OceanSat-2 Scanning Scatterometer
OSMI	Ocean Scanning Multispectral Imager
OSTM	Ocean Surface Topography Mission
PACE	Plankton, Aerosol, Cloud and ocean Ecosystem
PALSAR	Phased Array type L-band Synthetic Aperture Radar
PAR	Photosynthetically Available Radiation
PCR	Pulse Compression Ratio
PD	Power Density
	-

PDF	Probability Density Function
PHyTIR	Prototype HyspIRI Thermal Infrared Radiometer
PNG	Portable Network Graphics format
POES	Polar Operational Environmental Satellites
POLDER	POLarization and Directionality of the Earth's Reflectances
PR	Pressure Ridges
PREFIRE	Polar Radiant Energy in the Far-InfraRed Experiment
PRF	Pulse Repetition Frequency
PRI	Pulse Repetition Interval
PT-JPL	Priestley–Taylor Jet Propulsion Laboratory
QE	Quantum Efficiency
RAM	Random Access Memory
RCM	Radarsat Constellation Mission
RCS	Radar Cross-Section
RF	Radio Frequency
RFSCAT	Rotating Fan Beam SCATterometer
RISAT	Radar Imaging Satellite
RMS	Root Mean Square
ROCSAT	Republic of China Satellite
ROIC	Readout Integrated Circuits
RVI	Radar Vegetation Index
S-NPP	Suomi National Polar-Orbiting Partnership
SABIA-Mar	Satélites Argentino-Brasileño para Información Ambiental del Mar
SAGE-III	Stratospheric Aerosol and Gas Experiment III
SAOCOM	Argentine Microwaves Observation Satellite
SAR	Synthetic Aperture Radar
SARAL	Satellite with ARgos and ALtiKa
SASS	Seasat Scatterometer
SB	Smoothed Brown model
SDP	Simplified Deep Space Perturbations
SDPS	SeaWiFS Data Processing System
SeaBASS	SeaWiFS Bio-optical Archive and Storage System
SeaWiFS	Sea-viewing Wide Field-of-view Sensor
SGLI	Second generation GLobal Imager
SGP	Simplified General Perturbations
SHF	Super High Frequency
SIR-C	Spaceborne Imaging Radar-C band
SLC	Scan Line Corrector
SLF	Super Low Frequency
SMAP	Soil Moisture Active Passive
SMI	Standard Mapped Image
SMMR	Scanning Multichannel Microwave Radiometer
SMOS	Soil Moisture and Ocean Salinity
SNR	Signal-to-Noise Ratio
SOA	Chinese State Ocean Administration

SORCE Solar Radiation and Climate Experiment SPL Single Photon Lidar SRAL Sentinel Radar Altimeter SS MD SubSurface Male Data de	
SRAL Sentinel Radar Altimeter	
SS MP SubSurface Melt Ponds	
SSA Small-Slope Approximation	
SSM/I Special Sensor Microwave/Imager	
SSMIS Special Sensor Microwave Imager/Sounder	
SST Sea Surface Temperature	
SVD Singular Value Decomposition	
SW Surface Wave	
SWH Significant Wave Height	
SWIR Short-wave Infrared	
TCITemperature Condition IndexTCTETotal Solar Irradiance Calibration Transfer Experiment	
TDI Time-Delay and Integration TDRSS Tracking and Data Relay Satellite System	
TDWR Terminal Doppler Weather Radar	
TEMPO Tropospheric Emissions: Monitoring of Pollution	
TES Temperature Emissivity Separation	
TFY Thick First-Year ice	
THF Tremendously High Frequency	
ThFY Thin First-Year ice	
TIRS Thermal Infrared Sensor	
TLE Two-Line Elements	
TM Thematic Mapper	
TMI TRMM Microwave Imager	
TRMM Tropical Rainfall Measuring Mission	
TROPICS Time-Resolved Observations of Precipitation structure and storm Intensit	y
with a Constellation of Smallsats	
TSIS-1 Total and Spectral Solar Irradiance Sensor	
TV Television	
UHF Ultra High Frequency	
ULF Ultra Low Frequency	
USGS U.S. Geological Survey	
UTC Coordinated Universal Time	
UV Ultraviolet	
VCI Vegetation Condition Index	
VH Vertical Transmit – Horizontal Receive	
VHF Very High Frequency	
VIIRS Visible Infrared Imaging Radiometer Suite	
VLF Very Low Frequency	
VNIR Visible and Near-Infrared	
VSWIR Visible to Short Wavelength Infrared	
VV Vertical Transmit – Vertical Receive	

xxii Acronyms

WFF	Wallops Flight Facility
WGS	World Geodetic System
WiFS	Wide Field Sensor
WMO	World Meteorological Organization
WS	Wind Speed
WSR	Weather Surveillance Radar
WV	Water Vapor

About the Companion Website

This book is accompanied by a companion website.

www.wiley.com/go/chapman/physicsofearthremotesensing

The website includes:

- Example homework problems
- PDF and Powerpoint files of all figures from the book for downloading
- Latex and Powerpoint files containing all equations used in the text
- Multiple animations for use in the classroom

Introduction to Remote Sensing

Remote sensing is commonly defined as the process by which electromagnetic energy is exploited to interrogate some property of the Earth's environment – either its surface or its surrounding atmosphere – by using a sensor system located at some distance from the region of interest.

Yet remote sensing is a bit more general than this. For example, the interior structures of the Earth have been remotely sensed using neutrino detectors. And spacecraft have been deployed to remotely sense the characteristics of other planets, asteroids and comets. Still this definition characterizes most of the remote sensing described in this book, which concentrates on Earth remote sensing using electromagnetic energy.

This image of the Gulf Stream shown in Figure 1.1 is a classic example. The image was created from data obtained by a multiplewavelength imaging system flown on the NOAA-12 satellite. The data from this camera were transmitted to a ground station located at The Johns Hopkins University Applied Physics Laboratory (JHU/APL), where they were processed using sophisticated algorithms to estimate sea surface temperature. The image you see is a computer-generated false-color map of sea surface temperature.

This book describes the physical basis for such measurements and examines the algorithms used to derive geophysical information from such data.

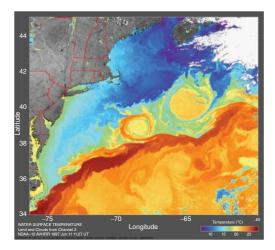


Figure 1.1 Sea surface temperature in Western Atlantic. Source: Courtesy of R. E. Sterner, JHU/APL.

Such calibrated satellite imagery provides a unique source of information on scales that would be otherwise inaccessible to terrestrial sensors. But it is hard today to recall how revolutionary such data really are. For example, in Figure 1.1, the blobs of warm water located just north of the Gulf Stream wall are massive warm core eddies. These eddies are rotating lenses of fluid that are occasionally spun off of the Gulf Stream. The amazing thing is that oceanographers were unaware of the existence of such warm core eddies until the first large-scale black and white images of the ocean were returned from early satellites.

Remote Sensing Physics: An Introduction to Observing Earth from Space, Advanced Textbook 3, First Edition. Rick Chapman and Richard Gasparovic.

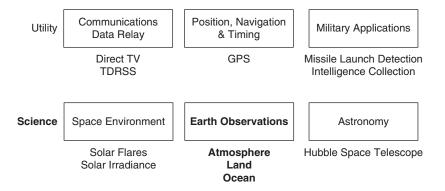
© 2022 American Geophysical Union. Published 2022 by John Wiley & Sons, Inc.

Companion website: www.wiley.com/go/chapman/physicsofearthremotesensing

Figure 1.2 Flows near Grand Geyser, Yellowstone National Park.

Remote sensing does not have to occur from so far away. The photographs shown in Figure 1.2 were taken in Yellowstone National Park while awaiting the eruption of Grand Geyser. Water leaking from the geyser flowed down the slight incline towards the raised walkway (top). The middle photograph shows the ripples in the water created by flow past obstacles. The bottom photograph shows a blowup of one set of these ripples.

Surface waves can be created by flow past obstacles, just like a moving boat in still water creates waves. The ripples shown here are capillary waves that propagate slightly upstream of the disturbance. Those waves whose speed is arrested by the flow are stationary and hence can grow. The dispersion relation for surface waves is well known. So wavelength measurements from this single photograph could be used to determine the flow speed!


Without the measurement and a physical model, this is no more than a pretty picture. When combined with quantitative measurements and a physical model this photograph becomes remote sensing data.

This text discusses all aspects of the acquisition, measurement, and physical interpretation of the most common types of remote sensing. While the text primarily concentrates on satellite-based remote sensing of the environment, remote sensors deployed from aircraft and other platforms are also described.

As shown in Figure 1.3, satellites are used for a wide range of applications. They are used for communications, navigation and timing (GPS), as well as military applications such as intelligence collection. Satellites are also used to perform scientific measurements involving space environment, Earth environment, and astronomy (Davis, 2007).

This text concentrates on the Earth environment applications, such as measurements of the atmosphere, land, and oceans. Despite this concentration, the physics of remote sensing are also relevant for other applications.

There are a wide variety of applications for remote sensing data, as shown by the partial list in Box 1.1. These applications span the range from oceans to land to the atmosphere. Many of these applications are discussed in some detail throughout this book.

Box 1.1 Applications for remote sensing data.		
 Ocean Observations Sea surface temperature Ocean color Biological productivity Coral bleaching Sea ice concentration and extent Sea level rise and tides Currents, eddies, bathymetry Surface winds Atmospheric Observations Weather systems - clouds, storms 	Land Observations - Surface temperature - Vegetation coverage - Snow cover - Soil moisture - Continental ice sheets - Elevation changes - Floods - Floods - Forest fires - Urbanization changes - Maps Earth Radiation Budget - Solar insolation - Reflected sunlight - Emitted thermal radiation	

Maybe more important than the specific applications is the ability to regularly make measurements over most or all of the globe and to make those measurements over years or even decades. This makes satellite data particularly useful for radiation budget and climate studies.

Satellites are not ideal – they have a variety of limitations as remote sensing platforms. Most satellites can provide only intermittent observations at any location on the globe. Time intervals between revisits are determined by orbital parameters, sensor swath width and environmental limitations, such as the need for daylight or cloud-free line of sight to the surface. High-resolution sensors typically provide only limited area coverage per orbit. Dwell time per sensed area is typically short, so short duration transient events are seen only by chance. While individual satellites can provide continuous data records of a decade or more, these records are short relative to climate time scales. Time series exceeding the lifetime of an individual sensor require difficult multisensor intercomparisons and intercalibrations.

In addition, interpretation of remote sensing data is not easy. Remote sensors detect properties of electromagnetic radiation emitted,

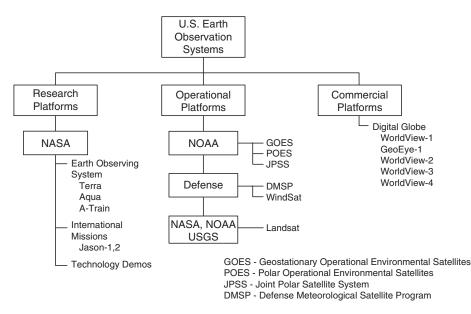


Figure 1.4 Overview of U.S. Earth observation systems.

scattered, or reflected from scenes of interest, but these properties are often affected by multiple geophysical parameters. Models are developed to describe the sensor output as a function of the geophysical parameters. "Inversion" is the process of inferring the geophysical parameters from the sensor output. Inversions are not always unique and validation of geophysical retrieval algorithms is frequently difficult. These are challenges that are discussed throughout this text.

Because this text concentrates on satellitebased environmental remote sensing, it is worth mentioning the organizations responsible for current U.S. Earth observation systems (Figure 1.4). NASA is responsible for research platforms, such as the Terra (Kaufman et al., 1998; Ungar et al., 2003) and Aqua (Parkinson, 2003) Earth observing satellites. They also coordinate with international partners and develop technology demonstrators.

U.S. government satellites that are needed for operational requirements, such as weather prediction, are either run by NOAA or by the military and intelligence communities.

Historically, the earliest Earth observation satellites were developed and launched by

U.S. government agencies in the late 1950s and early 1960s to acquire meteorological data (Davis, 2007). The Soviet Union followed in the late 1960s with a similar focus on meteorology. Interest in ocean and land observations came into prominence in the 1970s following major technology developments in optical and microwave sensors. Today, Earth remote sensing has become a truly international endeavor involving tens of countries building and operating scores of both government and commercially funded satellites. In addition, the ready availability of large volumes of digital data from these systems has been the impetus for innovations in processing, display, and dissemination of products for an ever expanding range of applications.

1.1 How Remote Sensing Works

The general process of how remote sensing works is illustrated in Figure 1.5.

A sensor attached to a platform such as a satellite looks down to make measurements. The sensor can typically make measurements of one or more resolution cells within its field