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1

Policyclic molecules containing at least two rings joined together by a single atom, 
mostly a carbon atom, previously named spiranes, are called spiro compounds or 
spirocycles, and the single central atom is referred to as the spiro atom [1]. We 
should mention that apart from carbon, other elements such as nitrogen, phos-
phorus, and arsenic may represent the spiro atom.

The term was coined by the German chemist Nobel laureate Adolf von Baeyer 
who created the first spirane in 1900 [2].

This peculiar structural feature is present in natural products and has long been 
the subject of methodological studies and synthetic efforts [3].

Several synthetic procedures for spiro compounds have been developed and will 
be extensively discussed in the next chapters. However, the asymmetric synthesis 
of spirocycles that allow the creation of stereogenic quaternary centers represent 
a demanding task for organic chemists. Even the concepts of spiro aromaticity 
and spiro antiaromaticity can be applied when spiroconjugation is possible [4].

The search for the key term “spiro” in SciFindern database, at the end of October 
2019, resulted in more than 40 700 references with an exponential growth starting 
from the middle of the last century and an increasing attention to this subject is 
expected in the future (Figure 1.1).

These massive research efforts cover a wide range of fields from organic and 
medicinal chemistry to material sciences and engineering, to name a few.

The enormous interest in spiro compounds rely on their distinctive properties 
often associated with the three-dimensional stereochemical features, reflecting on 
their pharmacological properties that include, among others, bactericidal, fungi-
cidal, anticancer, cytotoxic, antidepressant, antihypertensive, insecticidal, herbicidal, 
and plant growth regulatory effects [5]. These properties are due to the tetrahedral 
nature of the spiro carbon and consequent asymmetric features associated with it.

1

Spiro Compounds: A Brief History
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School of Chemistry, University of Southampton, Southampton, UK



2 1  Spiro Compounds: A Brief History

In addition, many other practical utilizations include optoelectronic devices, 
ophthalmic lenses, and solar cells  [6]. Compounds like 9,9-spirobifluorene 1 
(Figure 1.2) have application in dye-sensitized solar cells (DSCs) and represent 
the most efficient alternative to the current solar cell technologies [7].

Spirocyclic compounds find technological application as efficient charge-
transfer molecules due to their intramolecular donor–acceptor structural feature 
amplified by spiroconjugation. The desired optical properties can be achieved by 
careful design of the spiro donor–acceptor characteristic as illustrated in 
Figure 1.3 [8]. When structural characteristics make it possible, spiro compounds 
can equilibrate with their non-spiro analogues exhibiting photochemical phe-
nomena like photochemical memory.

We report here some examples of carbocyclic and heterocyclic naturally occur-
ring compounds containing the spiro moiety (Figure  1.4). One of the simplest 
compounds is the pheromone of the olive fly Dacus oleae 5. Phelligridin G 6 from 
the fungus Phellinus igniarius has been long used in Traditional Chinese Medicine 
for the treatment of gonorrhea [9]. The antimycotic drug griseofulvin 7, isolated 
from a penicillium mold in 1939, found application in the treatment of fungal skin 

1882 2020

Figure 1.1  Growing interest in spiro compounds in chemical literature.
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Figure 1.2  Dye sensitizer 9,9-spirobifluorene.  
Source: Lupo et al. [7].



31  Spiro Compounds: A Brief History

infections since 1957. Hecogenin 8, the aglycone part of a steroid saponin found 
in the plant Agave sisalana, is responsible for many therapeutic effects and is also 
used as a starting material in the synthesis of corticosteroids [10]. Horsfiline 9 is 
an oxindole alkaloid having analgesic effect, isolated from the plant Horsfieldia 
superba [11].

A classic example of the importance of the presence of a spiro functionality is 
the retention of the biological activity of perhydrohistrionicotoxin 10, the com-
pletely reduced analogue of the potent nicotinic receptor antagonist alkaloid 
(−)-histrionicotoxin 11, isolated from “dart-poison” frogs, that clearly suggests the 
fundamental role of the spiropiperidine moiety in determining a strong receptor 
binding. The massive synthetic efforts on this topic are collected in a book chap-
ter [12] (Figure 1.5).
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N O
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Figure 1.3  Donor–acceptor spiro compounds and colors displayed by them.  
Source: Wössner et al. [8].
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Figure 1.4  Examples of naturally occurring compounds containing the spiro moiety.



1  Spiro Compounds: A Brief History4

As stated before, spirocycles are present in successfully developed medications 
and represent attractive synthetic targets included in chemical libraries for 
diversity-oriented synthesis within drug discovery projects. In this context, the 
spiro moiety has been and can be employed both as core structure and as an activ-
ity modulator, appended to decorate the peripheral part of the molecule [13].

The major advantage of spirocycles in biological applications as core structure 
or pharmacophores originates from their 3-D nature and the associated conforma-
tional features that allow for a better ability to interact with the target protein 
enzyme. The tetrahedral feature of the spiro atom renders the two ring planes 
nearly perpendicular to each other with a limited number of potential conforma-
tions. When added in the periphery of the molecule, the spirocycle acts as a modu-
lator of physicochemical properties such as log P and water solubility, as well as 
affecting the metabolic stability of the molecule. Not least, from an intellectual 
property perspective, the introduction of spirocycles offers the possibility of 
obtaining a free patent space in a me-too research approach.

Prominent examples of marketed spirocompounds, illustrating these concepts, 
include fluspirilene 12, spiraprilat 13, and cevimeline 14, while experimental 
compounds in different stages of clinical development are ETX0914 15, a DNA 
gyrase inhibitor; tofoglifozin CSG452 16, an inhibitor of hSGLT2 for the treatment 
of Type 2 diabetes; AZD1979 17, an antagonist of melanin-concentrating hor-
mone receptor; and rolapitant 18, a neurokinine 1 receptor antagonist  [13, 14] 
(Figure 1.6).

We wish once more to draw the attention of the readers on the potential useful-
ness and uniqueness of the spiro motif in the interaction with a specific biological 
target spanning from drugs to agrochemicals.

The enzyme Acetyl-coenzyme A carboxylases (ACCs) have crucial roles in fatty 
acid metabolism in most living organisms, among which include humans, insects, 
and plants. The experimental ACC inhibitor compounds for the treatment of 
human metabolic disease contain a spirocyclic moiety as in Takeda compound 
19 [15] and in Pfizer PF-05221304 20. The last one is currently in phase II clinical 
trials for the treatment of Non-Alcoholic Steatohepatitis (NASH) [16] (Figure 1.7).

NH

OH

NH

OH

10 11

Figure 1.5  Spiro functionality in nicotinic 
receptor antagonists. Source: Hart [12].
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The commercial insecticide/acaricide products spirotetramat 21, spiromesifen 
22, and spirodiclofen 23 from Bayer CS and spiropidion 24 from Syngenta, acting 
as insect ACC inhibitors, all have spirocyclic structures [17] (Figure 1.8).

New spirocyclic herbicide compounds with the representative formula 25 have 
been recently patented [18]. It is noteworthy that compounds 21 and 24, sharing 
similar molecular features with 25, do not show any phytotoxic effect (Figure 1.9).
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O
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Figure 1.6  Examples of marketed spiro compound drugs. Sources: Based on Zheng and 
Tice [13]; Zheng et al. [14].
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Figure 1.7  ACC inhibitors of pharmaceutical interest. Sources: Based on Bourbeau and 
Bartberger [16a]; Esler and Bence [16b].
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Figure 1.9  Recently patented spiro compound of agrochemical interest.
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8
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26

Figure 1.10  Example of numbering of spirocyclic compounds.

As presented in this chapter, spirocyclic scaffolds find application in a large 
number of sectors for their own peculiar architecture characteristics, displaying 
valuable application properties, or simply because of the introduction of struc-
tural novelty that guarantee patentability and intellectual property rights.

1.1  Notes on IUPAC Rules for Spiro Compounds

Naming spirocycles could be quite complex. The accepted rules are collected in 
the IUPAC blue book [1, 19].

Simplifying with two examples, the structure 26 is numbered starting from the 
smallest cycle (Figure 1.10). The name comes from the prefix spiro followed by 
square brackets containing the number of atoms of the two cycles starting from 
the smallest and excluding the spirocenter. In this case, the functional group is an 
alkane so that the name became spiro[4,5]decane.

HN

O

O

O

O

O

21

O

O

OO

22

O
ClO

O O
Cl

23

Figure 1.8  Commercial spirocyclic insecticide/acaricide products. Source: Jeschke 
et al. [17].
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When the compound is chiral because it contains a chiral center, the CIP rules 
are followed. In the case in which the substituents on the spirocenter are the same, 
but the structures display an axial chirality as in Figure 1.11, we assign arbitrarily 
the priority to one of the cycles and then, within each cycle the order follows the 
CIP rules: a>a′>b>b′.
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2.1  Introduction

Spiro compounds contain two rings, connected by a single sp3 hybridized quaternary 
center, the “spiroatom” [1]. The latter is often a carbon, although a number of quater-
nary N-spiro ammoniums have also been reported. Trospium chloride (1) (Table 2.1) 
is a good example, and its spiro ammonium motif can be readily prepared by double 
N-alkylation of endo-nortropine [3]. Spirocyclic systems are found in a wide range of 
natural products [4], including spiro-ketals [5, 6], lactones [7], lactams [8, 9], and 
oxindoles [10–12]. An early and illustrative example of spirocyclic natural product 
which has attracted the attention of medicinal chemists is the antibiotic platensimy-
cin (2). It is a metabolite from Streptomyces platensis which represents a structurally 
unusual example of bioactive molecule containing a carbaspirocyclic scaffold. Its 
antibiotic activity was reported by Merck in 2006, as part of a screening campaign to 
identify inhibitors of beta-ketoacyl synthases I/II (FabF/B) enzymes [13]. Inhibition 
of FAB enzymes by platensimycin leads to impaired biosynthesis of key fatty acids 
required bacterial cell membrane integrity  [14]. Platensimycin displays activity 
against a range of Gram-positive bacteria, including strains showing resistance to 
other potent antibiotics such as methicillin, vancomycin, linezolid, or macrolide. 
Structural studies on an Escherichia coli FabF(C163Q) in complex with platensimy-
cin highlighted important interactions underlying complex formation. The shape 
complementarity and conformational restriction provided by the spiro motif are 
important contributors to the potency of platensimycin, allowing polar interactions 
and hydrophobic contacts at the binding site entrance (Figure 2.1) [13]. The first total 
synthesis of racemic platensimycin was reported by Nicolaou on the same year 
(Scheme  2.1)  [15], involving a key ruthenium-catalyzed enyne cycloisomeriza-
tion  [16]. Since then, stereoselective syntheses of platensimycin spirocyclic core 
based on rhodium-catalyzed asymmetric cycloisomerization and hypervalent 
iodine-mediated de-aromatizing cyclization [17], decarboxylative allylation [18], and 
intramolecular Diels–Alder [19] have been reported.

2

Selected Applications of Spirocycles in Medicinal 
Chemistry
Matthias Baud
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Table 2.1 Selected examples of FDA-  approved drugs containing spirocyclic motifs.

Structure ID
Name
(Trade name) Indication

N+O
O

HO

Cl–

1 Trospium chloride
(Flotros)

Overactive bladder

O
H

H

H O

O

SAc

3 Spironolactone (Aldactone) Heart failure, edema, hypertension

O

SN

4 Cevimeline (Evoxac) Dry mouth (Sjögren’s Syndrome)

O

O

O
Cl

O

O

O 5 Griseofulvin (Crivicin) Antifungal antibiotic for ringworm 
infections

O

ONH2N

NH2

6 Guanadrel
(Hylorel)

Hypertension
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Structure ID
Name
(Trade name) Indication

O

OO

H

F
H

HO O
OAc

H

7 Amcinonide
(Cyclocort)

Inflammatory and pruritic 
manifestations

O
O

H

OO

O

OH

HO

H

O

O

O

O

O

HO

O

R

B1a, R = Me
B1b, R = H

8 Ivermectin
(Ascapil)

Anti- parasitic

N
NH

O O
9 Fenspiride

(Eurespal)
Antitussive

O

N

H
N

N

NH

O

O

O

O

AcO

OH

HO

O

HO

10 Rifabutin (Ansatipin) Antibiotic, tuberculosis

(Continued)
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Structure ID
Name
(Trade name) Indication

N
O

O

O

H

O

O

O

O

HO
OH

11 Homo- harringtonine 
(Ceflatonin)

Chronic myeloid leukemia

N

N

ON
N NH

N

12 Irbesartan
(Avapro)

Hypertension

N

H
NO

N

F

F 13 Fluspirilene
(Imap)

Schizophrenia

Table 2.1 (Continued)
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Structure ID
Name
(Trade name) Indication

NH
EtOOC

N

O

S S

COOH

14 Spirapril
(Renormax)

Hypertension

N

O

O

N
N

N

N

15 Buspirone
(Buspar)

Anxiety disorders

Source: Adapted from Knox et al. [2].
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In contrast, a comparatively small number of spirocycle containing drugs have 
been investigated in the last decades, and spirocyclic molecules are still under-
represented in marketed drugs [2]. Selected examples of spirocycle containing drugs 
are shown in Table 2.1, including spironolactone 3 which has been known for over 
50 years [20]. It seems fair to state that historically drug design strategies in medici-
nal chemistry have been heavily inspired (or biased?) by the advances in synthetic 
chemical methods toward new molecular scaffolds. This raises the question of 
chemical diversity and unconscious bias toward traditional/ubiquitous building 

OH

O

OH

OH

N
H

O O

O

O

TBSO

O

TBSO

[CpRu(MeCN)3]PF6

acetone, rt, 1.5 h, 92%

12 steps

Platensimycin (2)
Merck Sharp & Dohme
FabF inhibitor
Antibiotic activity
Preclinical

Scheme 2.1  Key enyne 
cycloisomerization step in 
Nicolaou’s total synthesis of 
platensimycin. Source: Adapted 
from Nicolaou et al. [15].

Figure 2.1  X-ray crystal 
structure (pdb 2gfx12) of 
Platensimycin (2, sticks 
representation) bound to 
the active site of FabF 
(surface representation) 
highlights hydrophobic 
contacts and hydrogen 
bonds in the complex.


