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Preface

Nanotechnology, initially expected to revolutionize processes in industries, 
has affected fields in engineering in different ways. For example, the appli-
cation of nanotechnology in mining processes such as minerals processing 
and hydrometallurgy has received limited attention so far.

Mining plays a vital role in the economic development of many coun-
tries around the world; it is, therefore, understandable that the technolo-
gies applied in mining must ensure cost-effective recovery of values from 
the ore and minimize the impact of processes on the environment. After 
extraction of ore minerals, they must be separated from the gangue to 
be processed for metal extraction via a process such as hydrometallurgy 
which is less energy demanding and has a limited impact on the envi-
ronment. Although hydrometallurgy has less impact on the environment 
than pyrometallurgy, the former still contributes to the discharge of solid 
wastes containing residual sulphide minerals that can be oxidized to form 
acid mine drainage in the environment. However, little research has been 
reported on the application of nanotechnology in three mining processes, 
vis mineral processing (concentration through flotation), hydrometallurgy 
(concentration or purification of metals loaded solution) and management 
of mining liquid wastes to minimize environmental impact.

Ore minerals are generally dispersed in a large volume of gangue min-
erals, requiring therefore that the rock is crushed to small particles for the 
beneficiation of valuable minerals through froth flotation, which consists 
of the floatation of crushed particles in an aqueous solution containing 
“collector chemical” that can attach to the valuable particles allowing them 
to remain at the top of bubbling solution and making easier to skim them 
off. In conventional froth flotation, air bubbles are relatively large and less 
stable; recent findings have shown that the application of nanoflotation 
can considerably improve the separation of valuable minerals from gangue 
minerals through the use of hydrophobic nanoparticles or the formation of 
nanobubbles using special dispersing pumps.
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The concentration and purification processes in hydrometallurgy often 
require selective extraction from solution. However, conventional tech-
niques such as ion exchange and solvent extraction still have low efficien-
cies. For example, solvent extraction often results in an unpure solution 
due to poor coalescence of the organic solvent, which contaminates the 
aqueous solution, also resulting in the loss of expensive reagents. In 
contrast, conventional semipermeable membranes made of aggregates 
of polymers and ion exchangers tend to be non-selective because the 
absence of atomistic control limits sufficient exposure of sidechains to the 
solution. Recently, nanoscale supramolecular hosts exhibiting selective, 
high-capacity and recyclable adsorption potential have been developed 
and applied to extract metals from leachates or pregnant solutions with 
great success.

One major impact of mining activities on the environment is the for-
mation of acid mine drainage, a very acidic solution rich in metals that 
can negatively affect aquatic life. One of the approaches to remediate 
AMD pollution often consists of removing metals using nano-adsorbents 
with a very large surface area and, therefore, high adsorption capacity. 
These nano-adsorbents are also used to extract and separate rare earth 
elements (REE) from mine effluents. In addition, a new approach focus-
ing on the circular economy promotes the valorization of mine wastes 
such as AMD, resulting in the production of nano-based materials with 
economic values.

This book presents nine specialized chapters that focus on applying 
nanoflotation to improve mineral processing, effective extraction of met-
als from leachates or pregnant solutions using nanoscale supramolecular 
hosts, and development of nano-adsorbents or nano-based strategies for 
the remediation or valorization of AMD.

The editors and the publisher are grateful to the reviewers who have 
contributed to improving the quality of the book through their construc-
tive comments. The editors also thank the publisher for including this 
book in their portfolio.

This book will be of interest to researchers from the fields of Environ
ment, Chemistry, Engineering, Mineral processing, Hydrometallurgy and 
Geochemistry, engineers and environmentalists from the mining industry, 
as well as the environmental policies makers mostly in the public sector, to 
name a few. Furthermore, it is our wish that this book assists the readers in 
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improving their experimental and operational processes by implementing 
the ideas disseminated in the various chapters of this book.

Elvis Fosso-Kankeu
Martin Mkandawire

Bhekie B. Mamba
January 2022
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Abstract
Mining supplies key resources necessary for technological advancement to ame-
liorate challenges imposed by the increase in the human population worldwide. 
One of the legacies of mining resources is the formation and discharge of acid 
mine drainage (AMD) during and even after active mining. It is a major environ-
mental concern because it enhances the dissolution and increases the dispersion 
of contaminants, mostly toxic metals, in the environment. Many countries have 
now adopted or promulgated legislation that requires mining operators to treat 
and manage the formation of AMD, costing them a fortune from their profits. 
AMD can be an alternative source of valuable rare earth elements (REE), but 

*Corresponding author: ajohnleo33@gmail.com
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the currently available extraction methods of REE from AMD are inefficient and 
costly, exceeding by many folds their conventional extraction from ores. Thus, 
there has been a growing effort to develop a novel and cost-effective method 
to recover REEs from AMD, in which extraction using polymeric nanomateri-
als, like Poly(amidoamine) (PAMAM) dendrimers, are growing in prominence. 
PAMAM dendrimers nanoparticles have high adsorption capacity, contributing 
highly to metal recovery from most wastewater. However, their application in 
the recovery of REEs from AMD is hampered by the low pH of the AMD, which 
protonates the amine functional groups forming cationic charges on the surfaces 
of the dendrimer nanoparticles. Therefore, designing these materials to adsorb 
metal ions in an acidic solution is paramount for treating AMD. This chapter 
discusses designing a cost-effective method for the recovery of REEs from AMD 
after alkaline treatment, using surface-functionalized magnetic PAMAM den-
drimer nanoparticles. The environmental effect and shortcomings of AMD reme-
diation methods will be highlighted as a background motivation in developing 
this procedure. 

Keywords:  Acid rock drainage, dendrimers, magnetic iron oxides nanoparticle, 
potentially toxic elements, rare earth element 

1.1	 Introduction

The global human population has risen considerably since the industrial 
revolution and currently stands at above 7.7 billion worldwide, beyond the 
carrying capacity of the earth [1]. The rapid population growth is impos-
ing tremendous challenges such as the easy spread of disease outbreaks, 
food scarcity, shortage of infrastructures, and insufficient communica-
tion networks, which require resources and technological advancement 
to ameliorate these predicaments. All resources required for this tech-
nological advancement come from mother earth and can be obtained 
only through two means; if they cannot be harvested (from farming), 
they should be mined. The mining industry plays a vital role in supply-
ing these key resources but lacks the potential to obtain mineral resources 
without compromising environmental integrity [2]. Nevertheless, min-
ing cannot be easily halted due to the growing need for mineral resources 
to support technological advancement required to artificially sustain the 
ever-increasing human population, which is beyond the earth’s carrying 
capacity. The mineral resources, including metals, are essential compo-
nents in the advancement of several technologies, like the production of 
medications and vaccines, fertilizers for agricultural application to ensure 
food security, and the manufacture of building materials for construction 
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of mega-infrastructures to improve road networks. They are also used as 
vital components to manufacture computers and cell phones for better 
communication networks. In addition, mining is a vital economic activ-
ity for many nations, bringing in much-needed foreign exchange earnings 
and employment [3]. Despite the benefits mentioned above, the legacy of 
mining activities includes major environmental pollution and heaps or 
piles of municipal solid waste (MSW) from mining [4]. For example, most 
valuable minerals like gold (Au), copper (Cu), sulfur (S), zinc (Zn), sil-
ver (Ag) or lead (Pb) occurs in sulfidic ore bodies (Table 1.1) with more 
than one type of mineralization [5]. Once these valuable metals have been 
extracted from their sulfidic ores, vast volumes of mine water and leftover 
mining solid wastes and tailings are generated, which contain most of the 
sulfide mineral, like pyrite. The exposure of the pyrite-containing waste 
to oxygen and water leads to an acid-generating material, producing acid 
mine drainage (AMD). The discharge of AMD is attributed to most of the 
contamination being transported from mining sites to the receiving envi-
ronments, affecting environmental water quality [6–8] (Figure 1.1). Due 
to its well-known and publicized ecological impacts, many countries have 
adopted stringent regulations, such as Section 402 of the Clean Water Act 
of the Republic of South Africa, enabling mining operators to treat mine 
water discharging AMD [9–11]. 

On the one hand, treatment of AMD as required by environmental leg-
islation has serious financial implications for the mining operators, but on 
the other hand, generation of AMD in former mining sites occurs long after 
active mining when the responsible mining companies no longer exist. 
Thus, treatment and remediation of AMD are an economic and financial 
burden to the mining company if the operation is still active, and to the 
community and their governments in closed or abandoned mines. Mine 
water discharging AMD is known to contain a consortium of dissolved 
elements, including precious metals and rare-earth elements (REE) [12]. 
Thus, AMD can be a valuable resource, especially of REE and precious 
metals that can generate more income and compensate for the treatment 
and remediation expenses of mine water and contaminated mining sites 
[13]. Furthermore, AMD can be regarded as an initial and natural pro-
cess of hydrometallurgy of REE. However, extraction of REE from AMD 
is a big challenge due to the need for highly selective extraction meth-
ods, targeting only REE and leaving other metal ions dissolved in AMD 
to produce the required purity. Thus, recovery of REE from AMD is usu-
ally more expensive, resulting in AMD not being attractive as a source of 
REE. Nevertheless, using polymeric nanomaterials as hydrometallurgical 
extraction agents is promising to be a cost-effective and efficient method 
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of extracting REE from AMD. One of the agent groups with high potential 
is Poly(amidoamine) (PAMAM) dendrimers. Consequently, this chapter 
discusses the application of PAMAM dendrimers as an extraction agent 
of REE, evaluating their performance potential and the development of 
methods in which they are applied.

Mining operations
pyrite bearing mine

site
Mine

tailings

Exposure of tailings to
water and oxygen

Contaminated aquatic
organism with toxic
metals, a potential
source for human

poisoning

Potential source of sulfuric acid,
di�erent iron precipitates and
deleterious metal(loid)s, which are
released into waters, sediments, soils
and biota due to oxidation of pyrite

Acid mine
drainage
products

The need of raw materials
for industrialization is the

drive behind many
anthropogenic activities

Health

Contaminated
food products

ingested by
human

Bioaccumulation of
heavy metals in the food

chain

Contaminated water
used on agricultural

products

Acidic effluent
low pH, increase
dissolution of
metals. leach out
metals from
environment and
increase toxicity
level

Exposure of aquatic life to high
level of metals concentration

Food
chain

Remediation/
Recovery to

ensure
Environmental

compliance

FeS2(S)+7/2O2(aq)+H2O Fe2++2SO4
2-+2H+

Figure 1.1  Schematic showing the pathway of AMD formation, its dispersion into the 
environment and entrance into the food chain: The destruction of natural vegetation in 
search of mineral resources exposes large surface areas to weathering effects. Due to the 
presence of sulfide materials in these mine tailings, AMD products are formed which 
can be washed away into nearby streams. Aquatic life suffers the consequences due to an 
increase in mortality rate; meanwhile, these polluted waters can be used for irrigation 
and thus will bioaccumulate in plants. Once in the food chain, human lives are affected in 
the process.
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1.2	 Rare-Earth Element Occurrence in Acid Mine 
Drainage

1.2.1	 Acid Mine Drainage Generation and Effects

Although the formation of AMD has been historically attributed to mine 
tailing dams containing sulfide-bearing materials, it can occur naturally in 
an environment that exposes hefty volumes of sulfide-bearing materials to 
air and water [16]. However, of the different sulfide ore deposits shown in 
Table 1.1, pyrite is the most common and by far the most abundant sulfide 
mineral [17]. Using pyrite as an example for the generation of AMD, the 
oxidation process is represented by different reactions (1–3) [18]. Pyrite 
is oxidized to sulphate ions ( −SO4

2 ), ferrous iron (Fe2+) and protons (H+) at 
the initial stage when the tailing dam is exposed to atmospheric oxygen in 
the presence of excess water at neutral pH (1.1).

	
+ + → + ++ − +FeS (S) 7

2
O (aq) H O Fe 2SO 2H2 2 2

2
4
2 	 (1.1)

The formation of Fe2+ is solubilized by the oxidation process and subse-
quently oxidized to ferric iron (Fe3+) and is the rate-determining step of the 
overall reaction (1.2).

	
+ + → ++ + +Fe 1

4
O H Fe 1

2
H O2

2
3

2 	 (1.2)

Ferric cations produced can also oxidize additional pyrite into ferrous 
ions, and the net effect of these reactions is to produce H+, which increases 
the acidity of the influent and maintains the solubility of the ferric iron 
(1.3).

	 + + → + ++ + − +FeS (S) 14Fe 8H O 15Fe SO 16H2
3

2
2

4
2 	 (1.3)

The pH value of AMD is as low as 2–4 and will naturally enhance the 
rate of dissolution of potentially toxic elements (PTEs), resulting in the tail-
ing dam containing a high content of metal(loids), including sulfate ions 
in solution. Once leached into the lotic system (river), it will destroy their 
bicarbonate buffering system and enhance the rate of dissolution of metal 
ions, which could persist for hundreds of years once initiated, forming an 
age-long pollution stream with low pH [5, 19]. Consequently, the design 
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