

Rodrigo Tapia-McClung
Oscar Sánchez-Siordia
Karime González-Zuccolotto
Hugo Carlos-Martínez *Editors*

Advances in Geospatial Data Science

Selected Papers from the International
Conference on Geospatial Information
Sciences 2021

Springer

Lecture Notes in Geoinformation and Cartography

Series Editors

William Cartwright, Department of Land Information, RMIT University,
Melbourne, VIC, Australia

Georg Gartner, Department of Geodesy and Geoinformation, Vienna
University of Technology, Vienna, Austria

Liqiu Meng, Lehrstuhl für Kartographie, TU München, München, Bayern,
Germany

Michael P. Peterson, Department of Geography and Geology,
University of Nebraska at Omaha, Omaha, NE, USA

The Lecture Notes in Geoinformation and Cartography series provides a contemporary view of current research and development in Geoinformation and Cartography, including GIS and Geographic Information Science. Publications with associated electronic media examine areas of development and current technology. Editors from multiple continents, in association with national and international organizations and societies bring together the most comprehensive forum for Geoinformation and Cartography.

The scope of Lecture Notes in Geoinformation and Cartography spans the range of interdisciplinary topics in a variety of research and application fields. The type of material published traditionally includes:

- proceedings that are peer-reviewed and published in association with a conference;
- post-proceedings consisting of thoroughly revised final papers; and
- research monographs that may be based on individual research projects.

The Lecture Notes in Geoinformation and Cartography series also includes various other publications, including:

- tutorials or collections of lectures for advanced courses;
- contemporary surveys that offer an objective summary of a current topic of interest; and
- emerging areas of research directed at a broad community of practitioners.

More information about this series at <https://link.springer.com/bookseries/7418>

Rodrigo Tapia-McClung · Oscar Sánchez-Siordia ·
Karime González-Zuccolotto ·
Hugo Carlos-Martínez
Editors

Advances in Geospatial Data Science

Selected Papers from the International
Conference on Geospatial Information
Sciences 2021

Springer

Editors

Rodrigo Tapia-McClung

Centro de Investigación en Ciencias de
Información Geoespacial - CDMX
Tlalpan, Mexico City, Mexico

Karime González-Zuccolotto

Centro de Investigación en Ciencias de
Información Geoespacial - CDMX
Tlalpan, Mexico City, Mexico

Oscar Sánchez-Siordia

Centro de Investigación en Ciencias de
Información Geoespacial - Yucatán
Parque Científico Tecnológico Yucatán
(PCTY)

Mérida, Yucatán, Mexico

Hugo Carlos-Martínez

Centro de Investigación en Ciencias de
Información Geoespacial - Yucatán
Parque Científico Tecnológico Yucatán
(PCTY)

Mérida, Yucatán, Mexico

ISSN 1863-2246

ISSN 1863-2351 (electronic)

Lecture Notes in Geoinformation and Cartography

ISBN 978-3-030-98095-5

ISBN 978-3-030-98096-2 (eBook)

<https://doi.org/10.1007/978-3-030-98096-2>

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Organization

iGISc 2021 was organized by the Center of Research in Geospatial Information Sciences, Mexico, and the National Geointelligence Laboratory (GeoInt).

Program Committee Members

Olga Lidia Acosta-López, Pontificia Universidad Católica de Chile

Pedro Camilo Alcántara-Concepción, Universidad de Guanajuato, Mexico

Giner Alor-Hernández, Instituto Tecnológico de Orizaba, Mexico

Hugo Carlos-Martínez, Centro de Investigación en Ciencias de Información Geospatial, Mexico

Mario Chirinos-Colunga, Centro de Investigación en Ciencias de Información Geospatial, Mexico

Gustavo Cruz-Bello, Universidad Autónoma Metropolitana, Mexico

Michelle Farfán-Gutiérrez, Universidad de Guanajuato, Mexico

Yan Gao, Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Mexico

Graciela González-Farías, Centro de Investigación en Matemáticas, Mexico

Karime González-Zuccolotto, Centro de Investigación en Ciencias de Información Geospatial, Mexico

Gandhi Hernández-Chan, Centro de Investigación en Ciencias de Información Geospatial, Mexico

Mikel Irukieta, University of the Basque Country

Lilián Juárez-Téllez, Centro de Investigación en Ciencias de Información Geospatial, Mexico

Ivan López-Arevalo, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Tamaulipas, Mexico Marco Antonio López-Vega, Instituto de Geografía, Universidad Nacional Autónoma de México, Mexico

Jean Francois Mas, Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Mexico

María Elena Méndez-López, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
Alejandro Molina-Villegas, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
Luis Alberto Muñoz-Ubando, Universidad Autónoma de Yucatán, Mexico
Rosa Martha Peralta-Blanco, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
Alejandro Rodríguez-González, Universidad Politécnica de Madrid, Spain
José Luis Sánchez-Cervantes, Instituto Tecnológico de Orizaba, Mexico
Oscar S. Siordia, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
José Luis Silván-Cárdenas, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
Rodrigo Tapia-McClung, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
Carlos Vilalta, Centro de Investigación en Ciencias de Información Geoespacial, Mexico

Workshop and Session Organizing Chairs

Karime González-Zuccolotto, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
Lilián Juárez-Téllez, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
María Elena Méndez-López, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
Rodrigo Tapia-McClung, Centro de Investigación en Ciencias de Información Geoespacial, Mexico

Publicity Committee Chairs

Karime González-Zuccolotto, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
Lilián Juárez-Téllez, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
María Elena Méndez-López, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
Rosa Martha Peralta-Blanco, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
Marisol Sosa-Padilla, Centro de Investigación en Ciencias de Información Geoespacial, Mexico

Reviewers

Olga Lidia Acosta-López, Pontificia Universidad Católica de Chile
Pedro Camilo Alcántara-Concepción, Universidad de Guanajuato, Mexico
Giner Alor-Hernández, Instituto Tecnológico de Orizaba, Mexico
Carlos Brito-Loeza, Centro de Investigación Científica de Yucatán, Mexico
Hugo Carlos-Martínez, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
Camilo Alberto Caudillo-Cós, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
Mario Chirinos-Colunga, Centro de Investigación en Ciencias de Información Geoespacial, Mexico Robert Constantinescou, University of South Florida, United States of America
Gustavo Cruz-Bello, Universidad Autónoma Metropolitana, Mexico
Arturo Espinosa-Romero, Universidad Autónoma de Yucatán, Mexico
Michelle Farfán-Gutiérrez, Universidad de Guanajuato, Mexico
Dolors Ferrés, Escuela Nacional de Ciencias de la Tierra, Universidad Nacional Autónoma de México, Mexico
Yan Gao, Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Mexico
Graciela González-Farías, Centro de Investigación en Matemáticas, Mexico
Karime González-Zuccolotto, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
Gandhi Hernández-Chan, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
Mikel Irukieta, University of the Basque Country
Mariana Patricia Jácome-Paz, Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico
Lilián Juárez-Téllez, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
Ivan López-Arevalo, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Tamaulipas, Mexico Marco Antonio López-Vega, Instituto de Geografía, Universidad Nacional Autónoma de México, Mexico
Pablo López-Ramírez, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
Jean Francois Mas, Centro de Investigaciones en Geografía Ambiental, Universidad Nacional Autónoma de México, Mexico
María Elena Méndez-López, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
Jorge Alberto Montejano-Escamilla, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
Alejandro Molina-Villegas, Centro de Investigación en Ciencias de Información Geoespacial, Mexico
Luis Alberto Muñoz-Ubando, Universidad Autónoma de Yucatán, Mexico

Claudia Ortiz-Chao, Facultad de Arquitectura, Universidad Nacional Autónoma de México, Mexico

Rosa Martha Peralta-Blanco, Centro de Investigación en Ciencias de Información Geoespacial, Mexico

Maria Perevochtchikova, El Colegio de México, Mexico

Angel Polanco-Rodríguez, Universidad Autónoma de Yucatán, Mexico

Alejandro Rodríguez-González, Universidad Politécnica de Madrid, Spain

Karla Juliana Rodríguez-Robayo, Centro de Investigación Tibaitatá de Agrodavia, Colombia

Jaime Sáinz-Santamaría, Centro de Investigación y Docencia Económicas, Mexico

José Luis Sánchez-Cervantes, Instituto Tecnológico de Orizaba, Mexico

Oscar S. Siordia, Centro de Investigación en Ciencias de Información Geoespacial, Mexico

José Luis Silván-Cárdenas, Centro de Investigación en Ciencias de Información Geoespacial, Mexico

Rodrigo Tapia-McClung, Centro de Investigación en Ciencias de Información Geoespacial, Mexico

Carlos Vilalta, Centro de Investigación en Ciencias de Información Geoespacial, Mexico

Preface

This volume consists of the selected peer-reviewed papers from the International Conference on Geospatial Information Sciences 2021 that took place on November 3–5, 2021. Initially planned to be held in person in Mérida, Yucatán, Mexico, due to the coronavirus pandemic it was decided to be an online event. These papers were selected by the Scientific Program Committee of the Conference after a peer-review process. They represent the vast scope of the interdisciplinary research areas that characterize the Geospatial Information Sciences. It represents a fabulous opportunity to showcase research carried out by young researchers, especially Mexican ones, show it to the rest of the world, and enhance the growth of the Sciences in the country.

iGISc 2021 is the second iteration of a successful conference that aims at bringing together international experts in the field of Geospatial Information Sciences (GISc) to foster the exchange of ideas, knowledge, and experiences. The conference hosts a broad array of subjects related to the acquisition, processing, modeling, analysis, visualization, and use of Geographic Information.

As an emergent conference in the country, the first edition brought together little less than 100 experts and students in the field. In contrast, the online version of the conference attracted more than 300 participants. Apart from the oral presentations of the selected papers, the conference boasted an interesting offer of workshops covering different topics and aspects of the use of Geospatial Information Sciences. Additionally, several keynote speakers were invited to share their knowledge and insights with the participants.

Please visit the iGISc website at <http://igisc.org> where you can find all about this interesting event.

Mexico City, Mexico
Mérida, Yucatán, Mexico
Mexico City, Mexico
Mérida, Yucatán, Mexico
November 2021

Rodrigo Tapia-McClung
Oscar Sánchez-Siordia
Karime González-Zuccolotto
Hugo Carlos-Martínez

Acknowledgements

iGISc 2021 was a successful conference thanks to the authors, presenters, participants, keynote speakers, workshop organizers, session chairs, organizing committee members, student volunteers, and reviewers. Thank you all for your help, commitment, and support in making this a successful event.

Special thanks go to our keynote speakers, Mateo Valero (Barcelona Supercomputing Center, Universitat Politècnica de Catalunya), Alberto Giordano (Texas State University), Ulises Cortés (Barcelona Supercomputing Center, Universitat Politècnica de Catalunya), Alison Heppenstall (University of Leeds), Andrew Crooks (University at Buffalo), and Daniel Arribas-Bel (University of Liverpool), as well as the workshop presenters.

We would also like to thank all the presenters and participants who put a lot of effort in being part of our *Gather* community. While trying to adjust to time differences all over the globe, we are grateful for those participants who were able to catch the presentations live, as this year's participants came from countries across different time zones.

Additional thanks go to the publisher, Springer, for their help and support throughout the editing process and for accepting publishing these proceedings.

Contents

Analysis of Geospatial Data

Assessment on the Distribution and Accessibility to Green Spaces in Mexico's Most Populated Metropolitan Zones 3
Edali Murillo-Gómez, Marisol Palomar-Ramírez,
and Mariana Ramos-Flores

Geomatics Assessment of Water Resources in a Transboundary Basin 15
Violeta Yoalli Alvarado-Arriaga, Felipe Omar Tapia-Silva,
and Fabiola Sagrario Sosa-Rodríguez

Geospatial Analysis of Clandestine Graves in Baja California: New Approaches for the Search of Missing Persons in Mexico 29
José L. Silván-Cárdenas, Ana J. Alegre-Mondragón,
and Jorge Ruiz-Reyes

The Geopolitical Repercussions of US Anti-immigrant Rhetoric on Mexican Online Speech About Migration: A Transdisciplinary Approach 41
Thomas Cattin, Alejandro Molina-Villegas, Julieta Fuentes-Carrera,
and Oscar S. Siordia

Spatial Analysis of a Forest Socio-Ecological System in Oaxaca, Mexico Based on the DPSIR Framework 53
José García-Hernández and Iskar Jasmani Waluyo-Moreno

Algorithms and Methods for Geospatial Data

Fourier Transform Based Methods for Unwrapping of Sentinel-1 Interferograms 69
Alejandro Téllez-Quiñones, Juan Carlos Valdiviezo-Navarro,
and Alejandra A. López-Caloca

Methodology and Relevant Results About an Area-Based Conservation Indicator of Superficial Water Bodies for the Grijalva Basin	81
Felipe Omar Tapia-Silva, Aymara O. Ramírez-González, and José Luis López-Gonzaga	
Applications of Geospatial Data	
Social Vulnerability Analysis of Three High Mountain Villages at Pico de Orizaba Volcano, Mexico, Using PCA	97
Angel de Jesús López-González, Katrin Sieron, Karime González-Zuccolotto, and Sergio Francisco Juárez-Cerrillo	
Detection of <i>Phoradendron Velutinum</i> Implementing Genetic Programming in Multispectral Aerial Images in Mexico City	109
Paola Andrea Mejía-Zuluaga, Leon Felipe Dozal-García, and Juan Carlos Valdiviezo-Navarro	
Assessment of the Reduction of the Icesnow Coverage at the TransMexican Volcanic Belt Through Empirical Mode Decomposition on Satellite Imagery	131
Alfredo Sánchez-Martínez, Emiliano Yahel Ruíz-Oropeza, Mauricio Gabriel Orozco-del-Castillo, Jorge J. Hernández-Gómez, and Gabriela Aurora Yáñez-Casas	
Forest Degradation Estimation Through Trend Analysis of Annual Time Series NDVI, NDMI and NDFI (2010–2020) Using Landsat Images	149
Daniel Delgado-Moreno and Yan Gao	
Geospatial Data and Pandemic-Related Problems and Solutions	
Estimating Importation Risk of COVID-19 in Hurricane Evacuations: A Prediction Framework Applied to Hurricane Laura in Texas	163
Michelle Audirac, Mauricio Tec, Enrique García-Tejeda, and Spencer Fox	
A Dynamic Social Vulnerability Index to COVID-19 in Mexico	177
Raúl Sierra-Alcocer, Pablo López-Ramírez, and Graciela González-Farías	
Effects of COVID-19 in Mexico City: Street Robbery and Vehicle Theft Spatio-Temporal Patterns	195
Ana J. Alegre-Mondragón and Cristian Silva-Arias	

Analysis of Geospatial Data

Assessment on the Distribution and Accessibility to Green Spaces in Mexico's Most Populated Metropolitan Zones

Edali Murillo-Gómez, Marisol Palomar-Ramírez, and Mariana Ramos-Flores

Abstract This project's goal is to make an assessment of the access to urban green spaces in ten of Mexico's most populated metropolitan zones (MZ) by analyzing the relationship between the degree of poverty, social vulnerability, and consequently the access to the benefits these spaces provide that are directly linked to human well-being, as a source of recreational spaces, and places that promote physical and spiritual activities, also known as cultural ecosystem services (FAO 2021). This study consists of three scales of analysis.

- National scale, in which the degree of inequality in the distribution of green areas was assessed in regard to the population according to the Gini Coefficient.
- Metropolitan Zone Level scale, in which in every MZ the geographic location of the poverty and accessibility variables are compared in order to observe whether there is a relationship between green areas and poverty in every AGEB.
- At the local scale an algebra mapping method was employed to obtain the overall quantity of public infrastructure in six parks located in the three most unequal MZ (according to Gini Coefficient). Three are located in AGEBs where the poverty ratio is lower and three in which the ratio is larger, according to CONEVAL. In this case, the accessibility to each park is estimated from mobility and safety costs based on the inclusive public infrastructure that should favor different historically disadvantaged population groups (children, women, the elderly and people with different capabilities) so that they can move across the public space.

E. Murillo-Gómez (✉) · M. Palomar-Ramírez · M. Ramos-Flores
Centro de Investigación en Ciencias de Información Geoespacial, Contoy 137, Col. Lomas de Padierna, Alcaldía Tlalpan, 14240 Ciudad de México, México
e-mail: edalimurillo@gmail.com

M. Palomar-Ramírez
e-mail: mpalomar@centrogeo.edu.mx

M. Ramos-Flores
e-mail: mramos@centrogeo.edu.mx

1 Justification

The rapid growth of metropolitan zones in Mexico have spawned several social and environmental issues that decisionmakers have to face every year with the utmost seriousness (CIDE, LNPP, Centro Mario Molina, IMCO, Citibanamex 2018). The urban population is increasing and there is a global trend of growing cities that extend beyond the limits of their central municipality (Habitat 2020). In this sense, metropolitan areas are defined as a city and its zone of displacement, which consists of suburban, peri-urban and rural areas linked economically and socially, according to the UN Statistical Commission (*ibid.*).

In order to make cities more inclusive, safe, resilient, and sustainable, Mexico made the commitment to fulfill in 2015 the Sustainable Development Objectives so to attain the goals of the United Nation's Agenda 2030 (United Nations in Mexico 2021). Specifically, Goal 11.7 is a call to action to “provide universal access to green areas, and safe, inclusive and accessible public spaces, particularly for women and children, the elderly and people with different capabilities” (ONU 2015, p. 25).

However, the challenges to ensure everyone access to green areas within the urban space are enormous, because from an environmental justice perspective it is acknowledged that the distribution of natural areas in the built space is quite unequal, and greatly hurts historically disadvantaged peoples (Soja 2016; Bellver Capella 1996).

The concept of environmental justice refers to the equitable distribution of the services provided by urban green areas and their derived benefits (Buckingham & Kulcur 2009). The conceptual framework on environmental justice emphasizes the spatial aspects of the equitable distribution of those services or resources that are valuable to the population and the opportunity for people to use them. In other words, it indicates the access to the inherently urban rights of citizens, including the services that green spaces provide (Soja 2016).

In this sense, the analysis of the access to green areas will be performed from two hypothesis derived from the history of the issue at hand mentioned in the literature and in prior studies about environmental justice.

2 Hypothesis

- I. The relationship between poverty and accessibility → there is a relationship between belonging to a socioeconomic class and access to green areas, since in Mexican cities the poorer zones lack many urban parks.
- II. The relationship between poverty and inclusive infrastructure → Access to urban opportunities is conditioned by the urban milieu and the individual's specific autonomy within the space (Mei-Po 1998). Therefore, access to urban green areas is regarded as differentiated for persons from diverse ethnic, gender

and age groups, and green areas in the cities' poor neighborhoods have less inclusive infrastructure.

From these premises, this project seeks to conduct a thorough assessment of the access to urban green spaces in Mexico's most populated metropolitan zones to obtain useful information for decisionmakers so that they can undertake a sustainable socio-ecological-territorial planning as well as public social inclusion policies. In order to achieve this main goal the following secondary objectives have been set:

1. To estimate the degree of environmental justice in Mexico's ten most populated metropolitan zones, in regard to the relationship between the distribution of the poverty levels and the estimation of the accessibility to urban green areas in order to determine whether belonging to an assorted social class determines access, or lack of it, to green spaces.
2. To assess different degrees of environmental justice in the ten metropolitan zones through the estimation of the Gini Coefficient applied to the concentration of access to green areas.
3. To assess the degree of accessibility of two parks in the three most unequal metropolitan zones, according to the Gini Coefficient, through the presence and state of the infrastructure open to the disadvantaged population.
4. To design a new urban green area simulator in one of the most unequal metropolitan zone, located on the poorest AGEBs; so to show the likely growth in the levels of environmental justice.

3 Methodology

3.1 Obtaining Urban Green Areas

To calculate the green areas by MZ, we followed the next procedure: first, the Geostatistical Framework (INEGI 2021) was downloaded, where the green areas were counted by metropolitan zone. It should be noted that only those green areas that comply with the type of small green area present in neighborhoods for daily use were taken. Subsequently, the OSM database was used to complement the database of green spaces taken from INEGI's Geostatistical Framework. In this case, the same criteria were also followed to select the green areas registered in the OSM database. Finally, the information of the two records was verified through the satellite images, and the union of both databases was made.

3.2 Accessibility Per Metropolitan Zone

To analyze metropolitan zones in scale we will focus on Mexico's ten most populated cities, since, due to their size, they suffer most environmental and socioeconomic

problems. The selection of metropolitan areas was based upon the National Urban System (CONAPO 2021), which are listed according to population (Table 1)

To study each metropolitan zone, we made a bivariate coroplete map consisting in a comparison between to two layers of categorized information. In this case, variables of interest were poverty and accessibility to green areas, both disaggregated by AGEB, since it was the scale of analysis found for the poverty data.

To estimate the poverty variable, we took the CONEVAL data bases (2015) indicating the percentage of the population in poverty by AGEB. On the other hand, access to green areas was estimated from the 2020 INEGI Population and Housing Census data, and the database created that counts the green areas by MZ. In this case, the method used to estimate access takes the green areas' surface and the distance between the parks' centroids and AGEBs in consideration (Zhang et al. 2011), by applying the following formula:

$$H_p^i = \sum_{j=1}^k \frac{A_j}{r_{i,j}^2}$$

where:

H_p^i = accessibility of each AGEB (i)	j = nearest k Parks index
A_j = area of j -nth nearest object	$r_{i,j}$ = distance between AGEB i to object j

Table 1 General data of Mexico's ten most populated metropolitan zones

Metropolitan Zone	Municipalities	Number of inhabitants (2017)	Surface of the urban area km ²	Green areas surface km ²
Valle de México	76	21,650,668	7,866	34.97
Guadalajara	10	4,909,287	3,600	14.153
Monterrey	18	4,603,254	7,657	21.228
Puebla-Tlaxcala	39	3,017,463	2,392	9.328
Toluca	16	2,260,149	2,412	5.157
Tijuana	3	1,996,587	4,423	5.644
León	2	1,743,903	1,760	5.779
Ciudad Juárez	1	1,448,859	3,547	4.240
La Laguna	5	1,342,139	7,889	5.116
Querétaro	5	1,250,429	2,427	4.519

Source Data from (SEDESOL, CONAPO, INEGI, SEDATU, SEGOB 2018) and (CIDE, LNPP, Centro Mario Molina, IMCO, Citibanamex 2018)

3.3 *Gini Coefficient*

The Gini Coefficient is a measure originally created to estimate income inequality within a country. However, it can be used to appraise any sort of unequal distribution (Longfeng & Seung Kyum 2021). In this case, the Gini method was applied to two variables: the accrued population ratio and the accrued access to green areas, so to assess the degree of inequality within MZ, and then compare these measurements among the ten chosen MZ.

The Gini Coefficient is a number between 0 and 1, in which 0 means perfect equality, namely, that green areas are distributed equally among the population, and, on the other hand, 1 means perfect inequality, which means access to all goods and services by a single individual. Estimation is based upon obtaining the area between a curve of perfect equality and the Lorenz curve; the wider the area between both curves the more unequal society will be, and thus the result will be closer to 1 (Nordhaus 2005).

3.4 *Accessibility Per Parks*

In this section we pondered on how complicated is that individuals from certain vulnerable groups can visit a park (urban green area) near to home, and can suitably enjoy the outdoor recreation. The infrastructure regarded as ideal for the mobility of these groups is such that ensures the use of space in an autonomous, safe and equal conditions (Gutiérrez Valdivia et al. 2011). So, mobility and population circulation can be unhindered.

In order to estimate optimal routes to access parks, various infrastructures were added through the algebra mapping procedure (ISO4APP 2021). These routes are those streets having an infrastructure suitable for children, women, the elderly and people with different capabilities. Regarding the urban milieu, we consider four road infrastructures, which are: sidewalks, wooden paths, ramps, and streetlamps, besides the shops near the parks. These databases were obtained from the National Housing Catalogue, (INEGI 2021) and the National Statistic Handbook of Economic Units (DENUE), INEGI, respectively.

We explicitly sought the most suitable streets to walk towards the park, namely, the streets with a minimal weigh reflecting a better infrastructure (López et al. 2019). We used the streets located on a 700 m radius from the studied parks, since people will rather walk if the place is located within 400 to 800 m away. Moreover, we considered the route taken by persons with different capabilities. We also took into consideration that if local urban milieus create a suitable environment to replace public and private transportation, then walking becomes a positive and desirable activity (Suárez Lastra & Delgado Campos 2015).

After the algebra mapping, radar graphics were made to compare the parks' infrastructure in order to see if there is any difference between the parks in less poor AGEBs

and those located in those where poverty is more widespread, and compare both parks so to look for likely inequalities associated to socioeconomic levels.

Infrastructure thus considered to create the register's matrix by park were: trees, benches, wastebaskets, bicycle ports, courts, shops, walkways, fountains, street-lamps, bus stops, wheelchair ramps, jogging tracks, and restrooms. Additionally, we considered the sidewalks that surround the park.

3.5 *Green Areas Simulator*

To make the new green areas simulator in a metropolitan zone, and to be able to observe how accessibility measures change, we employed the following methodology: first, we chose the city on which we would develop the simulator, in this case, the MZ of Querétaro, because its Gini Coefficient, as it would be specified later, is one of the highest in the country; secondly, new parks were digitalized in QGIS, in places within the metropolitan zones identified as unbuilt terrain; finally, the third step was to estimate accessibility by taking into account the actual green areas in the zone as well as the newly added zones.

4 Results

4.1 *Accessibility and Poverty in Metropolitan Zones*

The results concerning poverty and urban green areas state that in most metropolitan zones poverty is located on the environs, while green areas are concentrated in downtown areas. This relationship determined most of the results obtained in the accessibility measurements of urban AGEBS to green areas and in the results of the Gini Coefficient measurements at the metropolitan zone level.

What was found after measuring urban AGEBS accessibility in green areas was that most AGEBS with more access are located downtown. On the other hand, those with less access are located on the vicinities. In regard to poverty in metropolitan zones, accessibility is similar, since poorer AGEBS were found mostly on the environs, thus confirming the hypothesis positing that the lesser the poverty in AGEBS the larger the accessibility of urban parks.

We must state that although this behavior was seen in most AGEBS, qualitatively speaking, there were metropolitan zones wherein this situation was more evident: Monterrey, Guadalajara, Puebla-Tlaxcala and Ciudad Juárez. On the other hand, AGEBS showing less were La Laguna, Tijuana, Querétaro and León.