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Introduction

This book is all about how to use Python for cybersecurity. Before we dive into 
that, let’s take a moment to talk about the “why” of Python for cybersecurity.

A good starting point is answering the question “Why use automation?” If 
you’re already in the cybersecurity field, you probably know that automation 
is your friend.

If you’re just entering the field, consider how hard it is to keep one of your 
less tech- savvy relatives or friends from installing malware on their phone 
or falling for a phishing email. Now, scale that up to hundreds or thousands 
of people. Add in the fact that attackers are actually motivated to target your 
organization, and a single successful attack could cost the company millions of 
dollars. Managing cyber risk includes preventing malware infections, detecting 
and remediating ongoing attacks, ensuring compliance with corporate security 
policies, and more. By helping to handle some of this for you, automation is 
your friend.

So, given that automation is necessary in cybersecurity, why use Python? 
Python has a few features that make it a good choice, including the following:

 ■ It’s popular: There’s a decent chance that you already know some Python. 
It’s a lot easier to learn new ways to use a language that you know than 
to learn a new language from scratch. In 2021, Python was the second 
most popular language on the TIOBE index (https://www.tiobe.com/
tiobe- index/) and was quickly overtaking C.

 ■ It’s easy: For those of you who don’t know Python, it’s pretty quick and 
easy to pick up. This is helpful for both learning and dashing out a 
program quickly.

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
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 ■ It’s powerful: Python has many powerful libraries that can be easily 
imported into your code. If you want to do anything with network traffic, 
it’s a lot easier to use scapy than to try to do it from scratch.

How This Book Is Organized

This book is organized based on the MITRE ATT&CK framework. The MITRE 
ATT&CK framework is a tool produced by the MITRE Corporation to build 
understanding of how a cyberattack works. It takes the lifecycle of a cyberat-
tack and breaks it into objectives that the attacker may need to achieve on the 
way to their final goal. For each of these objectives, MITRE ATT&CK describes 
various ways in which they can be accomplished.

Tactics and Techniques
The MITRE ATT&CK framework is organized as a hierarchy. At the top level of 
this hierarchy are the MITRE tactics, which describe the goals that an attacker 
may want to achieve during a cyberattack. These tactics include the following:

 ■ Reconnaissance

 ■ Resource Development

 ■ Initial Access

 ■ Execution

 ■ Persistence

 ■ Privilege Escalation

 ■ Defense Evasion

 ■ Credential Access

 ■ Discovery

 ■ Lateral Movement

 ■ Collection

 ■ Command and Control

 ■ Exfiltration

 ■ Impact

For each of these tactics, MITRE ATT&CK outlines several techniques and  
subtechniques that describe specific methods of achieving these goals. For 
example, an attacker could use Brute Force (https://attack.mitre.org/ 
tactics/TA0006/) or Network Sniffing (https://attack.mitre.org/ 
techniques/T1110/) to achieve Credential Access (https://attack.mitre.org/

https://attack.mitre.org/tactics/TA0006/
https://attack.mitre.org/tactics/TA0006/
https://attack.mitre.org/techniques/T1110/
https://attack.mitre.org/techniques/T1110/
https://attack.mitre.org/techniques/T1040/
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techniques/T1040/). Each of these techniques and subtechniques has its own 
page describing how the attack is performed, how it can be detected, and more.

This book is structured around the MITRE ATT&CK framework. Each tactic 
will have its own chapter (except for the first two, which are combined into 
MITRE Pre- ATT&CK).

Each of these chapters explores two of the techniques from its tactic and how 
they can be implemented in Python. Each of these offensive sections will be 
paired with a defensive section demonstrating how Python can also be used to 
defeat these attack vectors.

Why MITRE ATT&CK?
The goal of this book is to demonstrate how Python can be used to address 
cybersecurity use cases. To that end, it is helpful to have a clear framework that 
outlines different offensive and defensive cybersecurity tasks.

MITRE ATT&CK provides that framework with its hierarchy of tactics and 
techniques that describe the various objectives of a cyberattack and how to 
achieve them. This book draws offensive techniques from each of the MITRE 
ATT&CK tactics and demonstrates how they and defensive countermeasures 
can be implemented using Python.

Beyond this structure, MITRE ATT&CK is also useful because it provides 
a wealth of additional resources and room to grow. Each technique includes 
in- depth information about how the attack works and how to defend against 
it. MITRE ATT&CK also describes hundreds of techniques not covered in this 
book, providing numerous opportunities to apply Python to new use cases.

Tools You Will Need

This book is designed to demonstrate how to use Python to solve various use 
cases. If you don’t have Python open and aren’t running the code, then you’re 
doing it wrong.

Setting Up Python
The code samples included with this book were written for version 3.9 of Python. 
If you are using an earlier version of Python or, if by the time you are reading 
this, Python has advanced so far as to break backwards compatibility, then the 
code samples may not work for you.

To download the latest version of Python, we recommend visiting https://
www.python.org/downloads/. From there, you can download and install the 
appropriate version for your system. Also, install pip and ensure that Python 3 is 
the default Python on the system by removing Python 2.X, installing a package 
like python- is- python3, or creating an alias for the python and pip commands.

https://attack.mitre.org/techniques/T1040/
https://www.python.org/downloads/
https://www.python.org/downloads/
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Most of the sample code included in this book will run on either Windows or 
*nix systems. However, some examples do include platform- specific function-
ality, such as access to Windows log files. In these cases, we recommend using 
a virtual machine, such as VirtualBox (https://www.virtualbox.org/wiki/
Downloads) or VMware Workstation (https://www.vmware.com/products/
workstation- player.html), if you don’t own a computer with the necessary OS.

Accessing Code Samples
Each chapter of this book will include at least four Python code files. Depending 
on the exercise, additional code or files may be included as well.

These code samples are available at https://www.wiley.com/go/ 
pythonforcybersecurity on the Download Code tab. The code samples are 
available in ZIP files labeled with the chapter number. Before beginning a chapter, 
download the appropriate file and extract its contents.

These code samples may be updated over time to maintain compatibility with 
current Python versions and libraries and operating system internals (such as 
how Windows organizes its Registry and Event logs). If this occurs, the down-
loadable code samples may not exactly match the sample code in the text.

Installing Packages
One of the main benefits of Python for cybersecurity is the wide range of libraries 
that it provides. Many of the code samples included with this book require 
packages that are not shipped as part of the core Python distribution.

From the Download Code tab at https://www.wiley.com/go/ 
pythonfor cybersecurity, download the ZIP file for this chapter. This includes 
a file named requirements.txt, which lists the Python libraries that are used 
within this book.

To install these packages, run the command python - m pip install - r 
requirements.txt in the directory where you have saved this file. If the command 
completes successfully, then all required packages will be downloaded and 
installed on your computer.

From Here

Python is a popular, easy- to- use, and powerful programming language, making 
it an ideal choice for cybersecurity automation. This book demonstrates how 
Python can be applied to various offensive and defensive cybersecurity use 
cases from the MITRE ATT&CK framework.

This book is designed to be interactive with code samples included for each 
chapter. Before moving on to the next chapter, be sure to install Python and the 
required Python libraries on your computer.

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.vmware.com/products/workstation-player.html
https://www.vmware.com/products/workstation-player.html
https://www.wiley.com/go/pythonforcybersecurity
https://www.wiley.com/go/pythonforcybersecurity
https://www.wiley.com/go/pythonforcybersecurity
https://www.wiley.com/go/pythonforcybersecurity
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Originally, MITRE Pre- ATT&CK was a stand- alone matrix within the MITRE 
ATT&CK framework. It detailed the various steps that an attacker could take 
to prepare before attempting to gain initial access to a target environment.

In October 2020, MITRE restructured the ATT&CK framework and condensed 
MITRE Pre- ATT&CK into two tactics of the ATT&CK matrix. The new version 
breaks Pre- ATT&CK into Reconnaissance and Resource Development, as shown 
in Figure 1.1.

Fulfilling Pre- ATT&CK Objectives

Figure 1.1:  MITRE Pre- ATT&CK
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In this chapter, we will focus on the Reconnaissance tactic of MITRE Pre- 
ATT&CK. The reason is that while Resource Development can be automated, 
the details can vary greatly, and this stage of the attack is not visible to the 
defender. For example, Python could be used for implementing a domain gen-
eration algorithm (DGA) for phishing or automating the deployment of web- 
based services, but these apply only in certain types of attacks and can easily 
be implemented in other ways.

Reconnaissance, on the other hand, can benefit significantly from automation. 
Also, Python includes several packages that help with automating reconnais-
sance, such as scapy and various DNS libraries.

The MITRE Pre- ATT&CK framework includes 10 techniques for Reconnais-
sance. Here, we will explore the use of Python for the Active Scanning and 
Search Open Technical Databases techniques.

The code sample archive for this chapter can be found on the Download Code 
tab at https://www.wiley.com/go/pythonforcybersecurity and contains the 
following sample code files:

 ■ PortScan.py

 ■ HoneyScan.py

 ■ DNSExploration.py

 ■ HoneyResolver.py

Active Scanning

Network reconnaissance can be performed by either active or passive means. 
Active reconnaissance involves interacting with the target environment, while 
passive reconnaissance can involve eavesdropping on traffic or taking advantage 
of publicly available sources of information.

As its name suggests, the Active Scanning technique in MITRE ATT&CK is an 
example of Active Reconnaissance. It involves performing port or vulnerability 
scans against a target to determine which IP addresses are active, what services 
they are running, any vulnerabilities that may exist, and similar intelligence.

Scanning Networks with scapy
Nmap is the most used tool for port scanning. It implements several different 
types of scans and can be used to detect the versions of operating systems and 
services and to perform custom vulnerability scans.

https://www.wiley.com/go/pythonforcybersecurity
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In this section, we’ll implement a couple of simple scans:

 ■ SYN scan: A SYN scan sends a TCP SYN packet to a port and looks for a 
SYN/ACK packet in response.

 ■ DNS scan: A DNS scan tests to see whether a DNS server is running on 
the target system.

To implement these scans, we’ll be using the scapy library in Python. scapy 
makes it easy to create and send custom packets over the network and to sniff 
network traffic for responses.

PortScan.py

from scapy.all import *
import ipaddress
 
ports = [25,80,53,443,445,8080,8443]
 
def SynScan(host):
    ans,unans = sr(
        IP(dst=host)/
        TCP(sport=33333,dport=ports,flags="S")
        ,timeout=2,verbose=0)
    print("Open ports at %s:" % host)
    for (s,r,) in ans:
        if s[TCP].dport == r[TCP].sport and r[TCP].flags=="SA":
            print(s[TCP].dport)
 
def DNSScan(host):
    ans,unans = sr(
        IP(dst=host)/
        UDP(dport=53)/
        DNS(rd=1,qd=DNSQR(qname="google.com"))
        ,timeout=2,verbose=0)
    if ans and ans[UDP]:
        print("DNS Server at %s"%host)
    
host = input("Enter IP Address: ")
try:
    ipaddress.ip_address(host)
except:
    print("Invalid address")
    exit(- 1)
 
SynScan(host)
DNSScan(host)


