

Python® for Cybersecurity

Using Python for Cyber Offense
and Defense

Howard E. Poston III

Copyright © 2022 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

978- 1- 119- 85064- 9
978- 1- 119- 85070- 0 (ebk.)
978- 1- 119- 85065- 6 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per- copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, (978) 750- 8400, fax (978) 750- 4470, or on the web at www.copyright.com. Requests to the Publisher for
permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748- 6011, fax (201) 748- 6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Nei-
ther the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Website
is referred to in this work as a citation and/or a potential source of further information does not mean that the author
or the publisher endorses the information the organization or Website may provide or recommendations it may make.
Further, readers should be aware the Internet Websites listed in this work may have changed or disappeared between
when this work was written and when it is read.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762- 2974, outside the United States at (317) 572- 3993 or fax (317) 572- 4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2021951037

Trademarks: WILEY and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates, in the United States and other countries, and may not be used without written permission. Python is a
registered trademark of Python Software Foundation. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Cover image: © Alexander/Adobe Stock

Cover design: Wiley/Michael E. Trent

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

To Rachel

About the Author

Howard E. Poston III is a freelance consultant and content creator with a focus
on blockchain and cybersecurity. He has developed and taught more than a
dozen courses exploring and explaining various aspects of cybersecurity and
has written hundreds of articles on the subject on different outlets. Howard
Poston is also the author of several academic articles on security topics, and has
spoken on blockchain and cybersecurity at international security conferences.

iv

Thanks to my technical editor, Ben Heruska, and the amazing team at Wiley
without whom this book would not have been possible.

Acknowledgments

v

Benjamin Heruska is a military officer and computer engineer in the United
States Air Force, which he joined in 2008. He has diverse military engineering
experience across a broad range of computing disciplines, including embedded
RF systems development, IT and cybersecurity tool development, software
development, vulnerability analysis, cybersecurity incident response, big data
engineering and analytics, ICAM development, and technical leadership.

About the Technical Editor

vii

Contents at a Glance

Introduction xvii

Chapter 1 Fulfilling Pre- ATT&CK Objectives 1

Chapter 2 Gaining Initial Access 19

Chapter 3 Achieving Code Execution 39

Chapter 4 Maintaining Persistence 55

Chapter 5 Performing Privilege Escalation 77

Chapter 6 Evading Defenses 89

Chapter 7 Accessing Credentials 105

Chapter 8 Performing Discovery 125

Chapter 9 Moving Laterally 141

Chapter 10 Collecting Intelligence 157

Chapter 11 Implementing Command and Control 169

Chapter 12 Exfiltrating Data 183

Chapter 13 Achieving Impact 199

Index 213

ix

Contents

Introduction xvii

Chapter 1 Fulfilling Pre- ATT&CK Objectives 1
Active Scanning 2

Scanning Networks with scapy 2
Implementing a SYN Scan in scapy 4
Performing a DNS Scan in scapy 5
Running the Code 5

Network Scanning for Defenders 6
Monitoring Traffic with scapy 7
Building Deceptive Responses 8
Running the Code 9

Search Open Technical Databases 9
Offensive DNS Exploration 10

Searching DNS Records 11
Performing a DNS Lookup 12
Reverse DNS Lookup 12
Running the Code 13

DNS Exploration for Defenders 13
Handling DNS Requests 15
Building a DNS Response 15
Running the Code 16

Summary 17
Suggested Exercises 17

Chapter 2 Gaining Initial Access 19
Valid Accounts 20

Discovering Default Accounts 20
Accessing a List of Default Credentials 21
Starting SSH Connections in Python 22

x Contents

Performing Telnet Queries in Python 23
Running the Code 24

Account Monitoring for Defenders 24
Introduction to Windows Event Logs 25
Accessing Event Logs in Python 28
Detecting Failed Logon Attempts 28
Identifying Unauthorized Access to Default Accounts 30
Running the Code 30

Replication Through Removable Media 31
Exploiting Autorun 31

Converting Python Scripts to Windows Executables 32
Generating an Autorun File 33
Setting Up the Removable Media 34
Running the Code 34

Detecting Autorun Scripts 34
Identifying Removable Drives 35
Finding Autorun Scripts 36
Detecting Autorun Processes 36
Running the Code 36

Summary 37
Suggested Exercises 37

Chapter 3 Achieving Code Execution 39
Windows Management Instrumentation 40

Executing Code with WMI 40
Creating Processes with WMI 41
Launching Processes with PowerShell 41
Running the Code 42

WMI Event Monitoring for Defenders 42
WMI in Windows Event Logs 43
Accessing WMI Event Logs in Python 45
Processing Event Log XML Data 45
Running the Code 46

Scheduled Task/Job 47
Scheduling Malicious Tasks 47

Checking for Scheduled Tasks 48
Scheduling a Malicious Task 48
Running the Code 49

Task Scheduling for Defenders 50
Querying Scheduled Tasks 51
Identifying Suspicious Tasks 52
Running the Code 52

Summary 53
Suggested Exercises 53

 Contents xi

Chapter 4 Maintaining Persistence 55
Boot or Logon Autostart Execution 56

Exploiting Registry Autorun 56
The Windows Registry and Autorun Keys 57
Modifying Autorun Keys with Python 60
Running the Code 61

Registry Monitoring for Defenders 62
Querying Windows Registry Keys 63
Searching the HKU Hive 64
Running the Code 64

Hijack Execution Flow 65
Modifying the Windows Path 65

Accessing the Windows Path 66
Modifying the Path 67
Running the Code 68

Path Management for Defenders 69
Detecting Path Modification via Timestamps 69
Enabling Audit Events 71
Monitoring Audit Logs 73
Running the Code 75

Summary 76
Suggested Exercises 76

Chapter 5 Performing Privilege Escalation 77
Boot or Logon Initialization Scripts 78

Creating Malicious Logon Scripts 78
Achieving Privilege Escalation with Logon Scripts 79
Creating a Logon Script 79
Running the Code 79

Searching for Logon Scripts 80
Identifying Autorun Keys 81
Running the Code 81

Hijack Execution Flow 81
Injecting Malicious Python Libraries 82

How Python Finds Libraries 82
Creating a Python Library 83
Running the Code 83

Detecting Suspicious Python Libraries 83
Identifying Imports 85
Detecting Duplicates 85
Running the Code 86

Summary 86
Suggested Exercises 87

xii Contents

Chapter 6 Evading Defenses 89
Impair Defenses 90

Disabling Antivirus 90
Disabling Antivirus Autorun 90
Terminating Processes 93

Creating Decoy Antivirus Processes 94
Catching Signals 95
Running the Code 95

Hide Artifacts 95
Concealing Files in Alternate Data Streams 96

Exploring Alternate Data Streams 96
Alternate Data Streams in Python 97
Running the Code 98

Detecting Alternate Data Streams 98
Walking a Directory with Python 99
Using PowerShell to Detect ADS 100
Parsing PowerShell Output 101
Running the Code 102

Summary 102
Suggested Exercises 103

Chapter 7 Accessing Credentials 105
Credentials from Password Stores 106

Dumping Credentials from Web Browsers 106
Accessing the Chrome Master Key 108
Querying the Chrome Login Data Database 108
Parsing Output and Decrypting Passwords 109
Running the Code 109

Monitoring Chrome Passwords 110
Enabling File Auditing 110
Detecting Local State Access Attempts 111
Running the Code 113

Network Sniffing 114
Sniffing Passwords with scapy 114

Port- Based Protocol Identification 116
Sniffing FTP Passwords 116
Extracting SMTP Passwords 117
Tracking Telnet Authentication State 119
Running the Code 121

Creating Deceptive Network Connections 121
Creating Decoy Connections 122
Running the Code 122

Summary 123
Suggested Exercises 123

 Contents xiii

Chapter 8 Performing Discovery 125
Account Discovery 126

Collecting User Account Data 126
Identifying Administrator Accounts 127
Collecting User Account Information 128
Accessing Windows Password Policies 128
Running the Code 129

Monitoring User Accounts 130
Monitoring Last Login Times 130
Monitoring Administrator Login Attempts 131
Running the Code 132

File and Directory Discovery 133
Identifying Valuable Files and Folders 133

Regular Expressions for Data Discovery 135
Parsing Different File Formats 135
Running the Code 136

Creating Honeypot Files and Folders 136
Monitoring Decoy Content 136
Creating the Decoy Content 137
Running the Code 138

Summary 138
Suggested Exercises 139

Chapter 9 Moving Laterally 141
Remote Services 142

Exploiting Windows Admin Shares 142
Enabling Full Access to Administrative Shares 143
Transferring Files via Administrative Shares 144
Executing Commands on Administrative Shares 144
Running the Code 144

Admin Share Management for Defenders 145
Monitoring File Operations 146
Detecting Authentication Attempts 147
Running the Code 148

Use Alternative Authentication Material 148
Collecting Web Session Cookies 149

Accessing Web Session Cookies 150
Running the Code 150

Creating Deceptive Web Session Cookies 151
Creating Decoy Cookies 151
Monitoring Decoy Cookie Usage 153
Running the Code 153

Summary 154
Suggested Exercises 155

xiv Contents

Chapter 10 Collecting Intelligence 157
Clipboard Data 158

Collecting Data from the Clipboard 158
Accessing the Windows Clipboard 159
Replacing Clipboard Data 159
Running the Code 160

Clipboard Management for Defenders 160
Monitoring the Clipboard 161
Processing Clipboard Messages 161
Identifying the Clipboard Owner 161
Running the Code 162

Email Collection 162
Collecting Local Email Data 162

Accessing Local Email Caches 163
Running the Code 163

Protecting Against Email Collection 164
Identifying Email Caches 165
Searching Archive Files 165
Running the Code 166

Summary 166
Suggested Exercises 166

Chapter 11 Implementing Command and Control 169
Encrypted Channel 170

Command and Control Over Encrypted Channels 170
Encrypted Channel Client 171
Encrypted Channel Server 172
Running the Code 173

Detecting Encrypted C2 Channels 174
Performing Entropy Calculations 175
Detecting Encrypted Traffic 175
Running the Code 176

Protocol Tunneling 176
Command and Control via Protocol Tunneling 176

Protocol Tunneling Client 177
Protocol Tunneling Server 177
Running the Code 179

Detecting Protocol Tunneling 179
Extracting Field Data 181
Identifying Encoded Data 181
Running the Code 181

Summary 182
Suggested Exercises 182

Chapter 12 Exfiltrating Data 183
Alternative Protocols 184

Data Exfiltration Over Alternative Protocols 184
Alternative Protocol Client 185

 Contents xv

Alternative Protocol Server 186
Running the Code 188

Detecting Alternative Protocols 189
Detecting Embedded Data 190
Running the Code 191

Non- Application Layer Protocols 191
Data Exfiltration via Non- Application Layer Protocols 192

Non- Application Layer Client 193
Non- Application Layer Server 193
Running the Code 194

Detecting Non- Application Layer Exfiltration 195
Identifying Anomalous Type and Code Values 196
Running the Code 196

Summary 197
Suggested Exercises 197

Chapter 13 Achieving Impact 199
Data Encrypted for Impact 200

Encrypting Data for Impact 200
Identifying Files to Encrypt 201
Encrypting and Decrypting Files 202
Running the Code 202

Detecting File Encryption 203
Finding Files of Interest 204
Calculating File Entropies 204
Running the Code 205

Account Access Removal 205
Removing Access to User Accounts 205

Changing Windows Passwords 207
Changing Linux Passwords 207
Running the Code 207

Detecting Account Access Removal 208
Detecting Password Changes in Windows 209
Detecting Password Changes in Linux 210
Running the Code 211

Summary 211
Suggested Exercises 212

Index 213

xvii

Introduction

This book is all about how to use Python for cybersecurity. Before we dive into
that, let’s take a moment to talk about the “why” of Python for cybersecurity.

A good starting point is answering the question “Why use automation?” If
you’re already in the cybersecurity field, you probably know that automation
is your friend.

If you’re just entering the field, consider how hard it is to keep one of your
less tech- savvy relatives or friends from installing malware on their phone
or falling for a phishing email. Now, scale that up to hundreds or thousands
of people. Add in the fact that attackers are actually motivated to target your
organization, and a single successful attack could cost the company millions of
dollars. Managing cyber risk includes preventing malware infections, detecting
and remediating ongoing attacks, ensuring compliance with corporate security
policies, and more. By helping to handle some of this for you, automation is
your friend.

So, given that automation is necessary in cybersecurity, why use Python?
Python has a few features that make it a good choice, including the following:

 ■ It’s popular: There’s a decent chance that you already know some Python.
It’s a lot easier to learn new ways to use a language that you know than
to learn a new language from scratch. In 2021, Python was the second
most popular language on the TIOBE index (https://www.tiobe.com/
tiobe- index/) and was quickly overtaking C.

 ■ It’s easy: For those of you who don’t know Python, it’s pretty quick and
easy to pick up. This is helpful for both learning and dashing out a
program quickly.

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

xviii Introduction

 ■ It’s powerful: Python has many powerful libraries that can be easily
imported into your code. If you want to do anything with network traffic,
it’s a lot easier to use scapy than to try to do it from scratch.

How This Book Is Organized

This book is organized based on the MITRE ATT&CK framework. The MITRE
ATT&CK framework is a tool produced by the MITRE Corporation to build
understanding of how a cyberattack works. It takes the lifecycle of a cyberat-
tack and breaks it into objectives that the attacker may need to achieve on the
way to their final goal. For each of these objectives, MITRE ATT&CK describes
various ways in which they can be accomplished.

Tactics and Techniques
The MITRE ATT&CK framework is organized as a hierarchy. At the top level of
this hierarchy are the MITRE tactics, which describe the goals that an attacker
may want to achieve during a cyberattack. These tactics include the following:

 ■ Reconnaissance

 ■ Resource Development

 ■ Initial Access

 ■ Execution

 ■ Persistence

 ■ Privilege Escalation

 ■ Defense Evasion

 ■ Credential Access

 ■ Discovery

 ■ Lateral Movement

 ■ Collection

 ■ Command and Control

 ■ Exfiltration

 ■ Impact

For each of these tactics, MITRE ATT&CK outlines several techniques and
subtechniques that describe specific methods of achieving these goals. For
example, an attacker could use Brute Force (https://attack.mitre.org/
tactics/TA0006/) or Network Sniffing (https://attack.mitre.org/
techniques/T1110/) to achieve Credential Access (https://attack.mitre.org/

https://attack.mitre.org/tactics/TA0006/
https://attack.mitre.org/tactics/TA0006/
https://attack.mitre.org/techniques/T1110/
https://attack.mitre.org/techniques/T1110/
https://attack.mitre.org/techniques/T1040/

 Introduction xix

techniques/T1040/). Each of these techniques and subtechniques has its own
page describing how the attack is performed, how it can be detected, and more.

This book is structured around the MITRE ATT&CK framework. Each tactic
will have its own chapter (except for the first two, which are combined into
MITRE Pre- ATT&CK).

Each of these chapters explores two of the techniques from its tactic and how
they can be implemented in Python. Each of these offensive sections will be
paired with a defensive section demonstrating how Python can also be used to
defeat these attack vectors.

Why MITRE ATT&CK?
The goal of this book is to demonstrate how Python can be used to address
cybersecurity use cases. To that end, it is helpful to have a clear framework that
outlines different offensive and defensive cybersecurity tasks.

MITRE ATT&CK provides that framework with its hierarchy of tactics and
techniques that describe the various objectives of a cyberattack and how to
achieve them. This book draws offensive techniques from each of the MITRE
ATT&CK tactics and demonstrates how they and defensive countermeasures
can be implemented using Python.

Beyond this structure, MITRE ATT&CK is also useful because it provides
a wealth of additional resources and room to grow. Each technique includes
in- depth information about how the attack works and how to defend against
it. MITRE ATT&CK also describes hundreds of techniques not covered in this
book, providing numerous opportunities to apply Python to new use cases.

Tools You Will Need

This book is designed to demonstrate how to use Python to solve various use
cases. If you don’t have Python open and aren’t running the code, then you’re
doing it wrong.

Setting Up Python
The code samples included with this book were written for version 3.9 of Python.
If you are using an earlier version of Python or, if by the time you are reading
this, Python has advanced so far as to break backwards compatibility, then the
code samples may not work for you.

To download the latest version of Python, we recommend visiting https://
www.python.org/downloads/. From there, you can download and install the
appropriate version for your system. Also, install pip and ensure that Python 3 is
the default Python on the system by removing Python 2.X, installing a package
like python- is- python3, or creating an alias for the python and pip commands.

https://attack.mitre.org/techniques/T1040/
https://www.python.org/downloads/
https://www.python.org/downloads/

xx Introduction

Most of the sample code included in this book will run on either Windows or
*nix systems. However, some examples do include platform- specific function-
ality, such as access to Windows log files. In these cases, we recommend using
a virtual machine, such as VirtualBox (https://www.virtualbox.org/wiki/
Downloads) or VMware Workstation (https://www.vmware.com/products/
workstation- player.html), if you don’t own a computer with the necessary OS.

Accessing Code Samples
Each chapter of this book will include at least four Python code files. Depending
on the exercise, additional code or files may be included as well.

These code samples are available at https://www.wiley.com/go/
pythonforcybersecurity on the Download Code tab. The code samples are
available in ZIP files labeled with the chapter number. Before beginning a chapter,
download the appropriate file and extract its contents.

These code samples may be updated over time to maintain compatibility with
current Python versions and libraries and operating system internals (such as
how Windows organizes its Registry and Event logs). If this occurs, the down-
loadable code samples may not exactly match the sample code in the text.

Installing Packages
One of the main benefits of Python for cybersecurity is the wide range of libraries
that it provides. Many of the code samples included with this book require
packages that are not shipped as part of the core Python distribution.

From the Download Code tab at https://www.wiley.com/go/
pythonfor cybersecurity, download the ZIP file for this chapter. This includes
a file named requirements.txt, which lists the Python libraries that are used
within this book.

To install these packages, run the command python - m pip install - r
requirements.txt in the directory where you have saved this file. If the command
completes successfully, then all required packages will be downloaded and
installed on your computer.

From Here

Python is a popular, easy- to- use, and powerful programming language, making
it an ideal choice for cybersecurity automation. This book demonstrates how
Python can be applied to various offensive and defensive cybersecurity use
cases from the MITRE ATT&CK framework.

This book is designed to be interactive with code samples included for each
chapter. Before moving on to the next chapter, be sure to install Python and the
required Python libraries on your computer.

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.vmware.com/products/workstation-player.html
https://www.vmware.com/products/workstation-player.html
https://www.wiley.com/go/pythonforcybersecurity
https://www.wiley.com/go/pythonforcybersecurity
https://www.wiley.com/go/pythonforcybersecurity
https://www.wiley.com/go/pythonforcybersecurity

C H A P T E R

1

1

Originally, MITRE Pre- ATT&CK was a stand- alone matrix within the MITRE
ATT&CK framework. It detailed the various steps that an attacker could take
to prepare before attempting to gain initial access to a target environment.

In October 2020, MITRE restructured the ATT&CK framework and condensed
MITRE Pre- ATT&CK into two tactics of the ATT&CK matrix. The new version
breaks Pre- ATT&CK into Reconnaissance and Resource Development, as shown
in Figure 1.1.

Fulfilling Pre- ATT&CK Objectives

Figure 1.1: MITRE Pre- ATT&CK

2 Chapter 1 ■ Fulfilling Pre- ATT&CK Objectives

In this chapter, we will focus on the Reconnaissance tactic of MITRE Pre-
ATT&CK. The reason is that while Resource Development can be automated,
the details can vary greatly, and this stage of the attack is not visible to the
defender. For example, Python could be used for implementing a domain gen-
eration algorithm (DGA) for phishing or automating the deployment of web-
based services, but these apply only in certain types of attacks and can easily
be implemented in other ways.

Reconnaissance, on the other hand, can benefit significantly from automation.
Also, Python includes several packages that help with automating reconnais-
sance, such as scapy and various DNS libraries.

The MITRE Pre- ATT&CK framework includes 10 techniques for Reconnais-
sance. Here, we will explore the use of Python for the Active Scanning and
Search Open Technical Databases techniques.

The code sample archive for this chapter can be found on the Download Code
tab at https://www.wiley.com/go/pythonforcybersecurity and contains the
following sample code files:

 ■ PortScan.py

 ■ HoneyScan.py

 ■ DNSExploration.py

 ■ HoneyResolver.py

Active Scanning

Network reconnaissance can be performed by either active or passive means.
Active reconnaissance involves interacting with the target environment, while
passive reconnaissance can involve eavesdropping on traffic or taking advantage
of publicly available sources of information.

As its name suggests, the Active Scanning technique in MITRE ATT&CK is an
example of Active Reconnaissance. It involves performing port or vulnerability
scans against a target to determine which IP addresses are active, what services
they are running, any vulnerabilities that may exist, and similar intelligence.

Scanning Networks with scapy
Nmap is the most used tool for port scanning. It implements several different
types of scans and can be used to detect the versions of operating systems and
services and to perform custom vulnerability scans.

https://www.wiley.com/go/pythonforcybersecurity

 Chapter 1 ■ Fulfilling Pre- ATT&CK Objectives 3

In this section, we’ll implement a couple of simple scans:

 ■ SYN scan: A SYN scan sends a TCP SYN packet to a port and looks for a
SYN/ACK packet in response.

 ■ DNS scan: A DNS scan tests to see whether a DNS server is running on
the target system.

To implement these scans, we’ll be using the scapy library in Python. scapy
makes it easy to create and send custom packets over the network and to sniff
network traffic for responses.

PortScan.py

from scapy.all import *
import ipaddress

ports = [25,80,53,443,445,8080,8443]

def SynScan(host):
 ans,unans = sr(
 IP(dst=host)/
 TCP(sport=33333,dport=ports,flags="S")
 ,timeout=2,verbose=0)
 print("Open ports at %s:" % host)
 for (s,r,) in ans:
 if s[TCP].dport == r[TCP].sport and r[TCP].flags=="SA":
 print(s[TCP].dport)

def DNSScan(host):
 ans,unans = sr(
 IP(dst=host)/
 UDP(dport=53)/
 DNS(rd=1,qd=DNSQR(qname="google.com"))
 ,timeout=2,verbose=0)
 if ans and ans[UDP]:
 print("DNS Server at %s"%host)

host = input("Enter IP Address: ")
try:
 ipaddress.ip_address(host)
except:
 print("Invalid address")
 exit(- 1)

SynScan(host)
DNSScan(host)

