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I would like to dedicate this book to

Prof. Bernd Ewald, who was my teacher and
doctoral advisor. From him, I acquired most
of the knowledge in the field of wind tunnel
balances. In the beginning of the 1980s, I was
hired by him for a research project with the
aim to develop internal balances for the
emerging cryogenic wind tunnels. He was
aware that the very promising aim of having
the same Reynolds number in a wind tunnel
test as on subsonic cruise flight could not be
achieved without a force measuring
technique that has the same accuracy as the
systems built for conventional tunnels. The
project was successfully brought to
completion, but there was no interest in the
industry to take over this knowledge of
cryogenic balances for industrial production,
and so, he decided to offer such balances
directly from the university. He was an
engineer that showed us how engineering
creativity could solve totally new problems
when it is coupled with solid engineering
knowledge and art. He analyzed lot of
problems by simple models and so delivered



the basis and the direction for the knowledge
transfer to practical applications. His impact
on the development on present status of wind
tunnel balances is documented in numerous
papers, the study of which is highly
recommended if somebody wants to enter this
field. Prof. Ewald passed away in June 2019.



Preface

The motivation to write this book came to me while sorting out material which the
head of our institute, Prof. Bernd Ewald, had produced and collected on the subject
of balances during his career. Following his retirement in 1998, he continued to work
on balance design, and although he had intended on summarizing his life experience
with balances in the form of a book, he became side-tracked—he dedicated his time
to rebuilding a famous flying wing aircraft, the Horton I'V. On every visit to the office,
he therefore brought with him a trunk full of wind tunnel balance documents, rather
than throwing them away. Together with the documentation I had collected at this
time over my own 15 years of working with balances, I was therefore faced with
deciding the fate of all this accumulated knowledge. The documentation comprised
over six hundred articles related to wind tunnel balances and calibration machines
and addressed such issues as operation over a wide temperature range or under
large temperature gradients. Especially while reading through Prof. Ewald’s notes, it
became clear to me that we had overcome innumerable design problems in the past
that represented important solutions and experience that others could benefit from.
It eventually became apparent that the only solution to preserving this knowl-
edge for future reference was to write a book, condensing this combined experience
obtained over a period of 36 years. Although I started this endeavor well in advance
of my own retirement, this 14 year lead time was still not sufficient to finish the
project. It was also never evident to me whether the book would be outdated before
publication. The eventual role of computational fluid dynamics (CFD) was and is still
not clear—to what extent wind tunnel testing would remain an important design tool
for the aviation industry? In comparison with complicated and costly experiments
employing contemporary techniques such as particle image velocimetry (PIV) or
pressure/temperature sensitive paints (PSP/TSP), CFD appeared in many respects to
be advantageous. However, in the end, both CFD and wind tunnel can be viewed
as aerodynamic simulation tools that have their own specific uncertainties in the
prediction of the airflow around an airplane. Since the development of cryogenic
wind tunnels, which are able to close the Reynolds number gap between model
testing and reality, wind tunnel testing now delivers extremely precise data for the
performance of an airplane. So, time has revealed that wind tunnel balances remain

vii



viii Preface

an important tool in the overall design of aircraft, and therefore, it is my hope that this
book will be of use to present and future generations of engineers and technicians
dealing with this measurement technology.

Darmstadt, Germany Klaus Hufnagel
April 2021
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Chapter 1 ®)
Historical Review Check for

1.1 Introduction

Before embarking on a detailed description of wind tunnel balance design, it is
instructive to first review the evolution of force measurements using such balances.
The justification for such a review in an engineering handbook is quite simple and
comes from years of experience.

Despite having access to innumerable articles written on a subject, the chronolog-
ical sequence of these articles can be particularly revealing about why and when cer-
tain inventions were made. Circumstance often lies behind the saying that "necessity
is the mother of invention’. This is very well exemplified by the parallel development
of two sectors eventually merging to yield what we now know as strain gauge based
wind tunnel balances. On the one hand very basic physical laws and effects of elastic-
ity and electricity were being developed, eventually culminating in the fundamentals
of measuring strain with a strain gauge. On the other hand, the need for aerodynamic
force measurements was rising rapidly with the advent of wind tunnel testing. It is
this sequence of events and steps of progress which is summarized in the following
sections.

1.2 From Fundamental Physics to the First Force
Transducers

The basic research to build a force transducer with a metal spring and a wire strain
gauge was conducted by Robert Hooke (1635-1703), Georg Simon Ohm (1789—
1854), Charles Wheatstone (1802—1875) and William Thomson, 1st Baron Kelvin of
Largs (1824-1907).

Robert Hooke was a famous physicist and an architect. Among other things he
formulated in 1678 the basic theory of elasticity [9] and this is also the reason why
the elastic relationship between stress and strain is known as Hooke’s Law.
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Georg Simon Ohm was professor for physics at the universities of Cologne,
Nuremberg and Munich. In 1827 he published his work on the correlation between
voltage, current and electrical resistance. His relation between voltage current and
resistance became the basic principle for an electrical circuit and the measurement
of electrical resistance [16]. Using his name as the unit for the electrical resistance
honored this work.

Charles Wheatstone contributed work on the electrical telegraph and published
work on the “Wheatstone Bridge” circuit in 1843 [22]. Although he never claimed to
have invented the special electric circuit to determine small electrical resistances that
was named after him. The first description of the bridge circuit was given by Samuel
Hunter Christie (1784—1865), from the Royal Military Academy, who published it
in 1833 [4].

William Thomson was knighted in 1866 and became Ist Baron Kelvin of Largs in
1892. His most famous works were his contributions that made the first transatlantic
telegraph cable a success, but he also published numerous articles on physics, among
these in 1856 an article on the relationship between mechanical stress and electrical
resistance of metals [21], which had been already mentioned by Wheatstone.

This small excursion to early developments shows, that the basics for metal strain
gauges resulted from the work of several scientists working sequential to one another
with only minimal temporal overlap. For instance, after Thomson’s contribution,
another 61 years went by until the first use of the effect was reported for a sensor
application. The first person who actually used the effect of the change of electrical
resistance under mechanical stress for measurements was Walther Nernst (1864—
1941), who built a pressure gauge in 1917 to measure the pressure fluctuations inside
a piston engine. This application, and the resulting pressure diagram were published
in 1928 [12, 13].

Edward. E. Simmons (1911-2004) was an assistant at the California Institute of
Technology when he invented a material testing apparatus for measuring the percus-
sive force in 1936. At that time Simmons and others he worked with probably did not
realize the importance of their invention and that is one reason that it was patented
only several years later [19, 20]. The patent for this apparatus [17] was granted in
1942 (Fig.1.1). This is the first application where a wire strain gauge was used to
measure a force.

At nearly the same time on the east coast at Massachusetts Institute of Technology,
Arthur Claude Ruge (1905-2000) used a meandering wire on a piece of paper to
measure the strain on the surface of a containment vessel model to predict the stresses
in the real vessel (Fig.1.2). This was the first use of a resistance strain gauge in
experimental stress analysis.

The aerospace industry was developing an urgent need for simple and inexpen-
sive strain measurement sensors at that time and so the first industrially produced
foil strain gauge, SR4, immediately became a success. The sensor was named SR4
because Simmons and Ruge together with four people (de Forest, Tatnall, Clark and
Hathaway) negotiated the terms of the corporate patent of Simmons and Ruge for the
wire strain gauge.
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Fig. 1.1 Extract from Simmons’ material testing apparatus patent document (HBM Hofmann)

Fig. 1.2 Prof. Ruge with a
model of a containment
vessel (HBM Hofmann)
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Fig. 1.3 Photographs of early wire gauge and the patented strain gauge SR4 (with permission by
Dr. Stockmann)

The success story of the metal strain gauge was described by Tatnall [8]. He was
a salesman of the Baldwin-Southwark Company and promoted the distribution of the
paper strain gauges produced by the Ruge/de Forest Company, so that the planned
production for the first year (1941) of 50,000 gauges (Fig. 1.3) was sold out within
two months. The Second World War and the associated rapidly expanding aircraft
industry created great demand for these strain gauges for material testing and testing
of aircraft structures. The paper strain gauge dominated the area of experimental
stress analysis very rapidly. The strain gauge production company of Ruge and de
Forest was sold to Baldwin Lima Hamilton (BLH) in 1955, a company which today
still produces gauges designated SR4.

In the field of force measurement some developments can be traced back to the
beginning of the 20th century using electro dynamometers as force transducers. In the
USA Burton McCollum and O.S. Peters published an article about a “new electrical
telemeter” in 1924 [15]. They used a stack of carbon plates as a strain sensitive
element and so, were the first to use a semiconductor gauge for strain measurement.
Another example was a piezoelectric dynamometer that was used in a test by Max
Kramer at the Aachen University of Technology in 1932 to determine the dynamic
lift force of a two-dimensional wing generated by a quick change of angle of attack
[14]. In 1932 Fred Scoville Eastman from the University of Washington reported on
a weigh beam for an external balance using an electromagnetic dynamometer [6].

All of these applications were used or proposed for use in a wind tunnel, but
eventually metal strain gauge sensors dominated this application for wind tunnel
strain gauge balances. One main reason for this was the next significant step in
the development of the strain gauges made by P. Jackson in Great Britain with the
invention of the foil strain gauge, where the grid was no longer a wire [10]. The
production of the gauge was performed using a photo-chemical etc.hing process,
similar to that of the printed circuit technology by the Technograph Inc. Company
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under the license of the Saunders-Roe Company (UK) in 1952, where P. Jackson
worked as a test engineer.

This process resulted in the mass production of the gauges, which made high
quality gauges much less expensive and more reliable. In 1954 the Baldwin Company
bought the license for the production of foil strain gauges from Technograph Inc.
(UK) and the SR-4 foil strain gauge was produced.

In the 1950s several companies emerged to produce strain gauges in large numbers
and in increasingly varied shapes. Hottinger Messtechnik started production of foil
strain gauges in Darmstadt in 1955 [11] and in 1963 this company merged with
Baldwin Lima Hamilton Corp. and formed Hottinger Baldwin Messtechnik (HBM).
HBM still exists today, but is now owned by other companies. Since 2001 BLH
is part of the Vishay Company, which was founded at the beginning 1960s and is
now the largest strain gauge manufacturer worldwide. Numerous other strain gauge
manufacturers were established over the years, but none of these play a role in the
market comparable to BLH, HBM and Vishay Micro Measurements.

Up tonow in this historical review the story of the semiconductor strain gauges was
not mentioned. One reason for this is that semiconductor strain gauges do not play a
major role in the production of wind tunnel balances. This is because of their nonlinear
characteristic and their strong temperature sensitivity. However, for some applica-
tions they are applicable, where a quick response to a sudden or dynamic change
in load must be measured. Then their high sensitivity and the likely higher stiffness
of the balance body are decisive. Semiconductor strain gauges use the piezoresis-
tive effect, the change of the electrical resistance caused by the change of density
in the crystal structure of a semiconductor under stress. P.W. Bridgman conducted
comprehensive experiments on the electrical resistance of metals and crystals and in
1932 he published an article on the effect of homogeneous mechanical stress on the
electrical resistance of a crystal [3]. He tested the change of resistance on crystals by
the influence of static pressure. Under his supervision Mildred Allen performed first
experiments on the effect of tension on crystals in 1932 [1]. She tested the change
of electrical resistance on Bismuth crystals under tension, related to different crystal
orientations. However, her measurements did not directly lead to the development
of a strain sensor.

About 20years later Charles S. Smith at the Bell Laboratories discovered the
strain sensitivity of Germanium and Silicon. This research was used to develop the
semiconductor strain gauge [18]. In 1958 Honeywell offered the first commercially
produced semiconductor strain gauge [18]. In the coming years numerous devel-
opments arose using semiconductor strain gauges for pressure transducers (Kulite,
Honeywell). Since 1962 Baldwin Lima Hamilton (BLH) has offered bondable semi-
conductor strain gauges, similar in use to the metal strain gauges they produce.
However productions of these strain gauges was terminated some years ago. The
use of bonded semiconductor strain gauges was described in detail by James Dorsey
from BLH in his Semiconductor Strain Gage Handbook [5] in 1964 and BLH offered
semiconductor strain gauges until 2004. Nowadays, semiconductor strain gauges are
available from Kulite, Kyowa and Micron Instruments.
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1.3 Force Measurement in Wind Tunnels

Apart from the development of strain gauges, there was also the development of
force transducers and wind tunnel balances. With the acceleration of aerodynamic
research and the use of wind tunnels in the early 20th century, the measurement of
aerodynamic forces on test specimens was of paramount importance.

Benjamin Robins (1707-1751) and later on in 1804 Sir George Cayley were the
first to perform experiments with a whirling arm to determine lift on plate segments
[2]. Also Otto Lilienthal, around 1888, used a whirling arm apparatus to obtain lift
and drag for different profiles (Fig. 1.4). Lift was measured by the weights, which
balanced the thrust of the “propeller” and the drag was proportional to the time
which the weights needed to reach the ground. The disadvantages of such a system
are obvious. There are only short or no moments with steady state conditions during
the experiment. This is likely one of the reasons why Frank H. Wenham (1824—1908)
built a wind tunnel in 1871, which used a steam engine to drive a fan upstream of
the model to generate a constant airflow through a wooden box of 3.7 m length and a
cross section of 45 cm x 45 cm. This wind tunnel is the first documented wind tunnel
and it was built for the Royal Aeronautical Society. It is reported that Wenham used
a device to measure the forces on profiles by compensating the forces with weights
outside the tunnel section. This device looked like a balance which was usually used
to measure weight, and so the designation “Wind Tunnel Balance” may be traced
back to this force measuring instrument. Later on the Wright Brothers employed a
small wind tunnel with an external balance for their experiments with airfoils.

One of the first larger wind tunnels in which experiments with models of airplanes
were conducted was built by Gustave Eiffel in 1910 [7]. His principle of a flow-
through wind tunnel, sucking air through a nozzle, test section, collector and a diffuser
with a fan drive at the end of the diffuser, is still in use today and tunnels built
according to this design are called Eiffel type wind tunnels (Fig. 1.5). He also used
an external wind tunnel balance according to the compensation principle (Fig. 1.6).
So the use of external balances, working according to the compensation principle,
prevailed as the wind tunnel force measurement system.

Fig. 1.4 Testrig of
Lilienthal for airfoil testing ‘
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Fig. 1.6 Eiffel’s wind tunnel
balance with model
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As remarked above, some key developments took place in the early 1930s and in
the mid 1940s, when electrical sensor based force transducers were used to measure
dynamic forces in a wind tunnel, or in the first pressure transducer of Nernst. However
the real breakthrough for transducer based force measurements in a wind tunnel was
the invention of the strain gauge. It is understandable that scientists and the engineers
immediately adopted this inexpensive and precise sensor for the development of force
transducers. The high sensitivity of the strain gauge allowed the development of force
transducers with a very high stiffness and precision.

In all countries with an aircraft industry, numerous wind tunnels were being built.
These tunnels required precise, multi-component force measurements. Following the
Second World War a large number of high Mach number tunnels were also built. To
achieve high Reynolds numbers at supersonic speed these tunnels were pressurized
and the model loads increased, caused by the higher density of the gas. This circum-
stance, and the relatively low interaction afforded using a back sting support, made
the development of the compact sting balance necessary and the development of the
internal sting balance was only possible by using strain gauges.

The first report of such an internal sting balance is the report of Wingham [23]
from 1945. Wingham used strain gauges to measure lift and pitch on a model in a
high-speed wind tunnel. This balance was a sting balance with two bending sections
(Fig. 1.7).

In this report a reference to an earlier report from 1944 by members of Vickers-
Armstrong Ltd. was mentioned, but this report was not published. Thus, although it
is not absolutely clear who and when the first sting strain gauge balance was built, it
is clear that shortly after the strain gauge was commercially available, wind tunnel
engineers started to design and build wind tunnel balances using strain gauges as
sensors. In the early 1950s numerous developments in the area of sting balances and
external balances with force transducers are reported. Along with the construction
of new wind tunnels, the development of new balances was necessary to achieve
precise and reliable results for the aerodynamic force measurement.

After a long period of development, the emergence of cryogenic wind tunnels
(around 1980) set new requirements for the temperature stability of internal wind
tunnel balances. The balances for these tunnels were required to measure with the
precision of balances at ambient temperature, but over a much larger temperature
range. Without this precision, the advantage of the high Reynolds number achieved
using the cryogenic temperatures was useless. The challenges generated by the cryo-
genic wind tunnels were responsible for the latest developments of strain gauge based
wind tunnel balances.

Optical strain gauges with higher sensitivity than the metal foil gauges did not have
a major impact on the development of the wind tunnel balances. Their capabilities
can only be fully exploited when new balance materials with a much higher Young’s
modulus than that of steel are available.



