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Foreword by Manfred Curbach

Intensifying Creativity in
Construction
There is hardly a topic among building professionals that is
discussed more intensively than sustainable construction.
In view of the emphasis on this topic, it appears that
intensive work is being done on the implementation of this
challenge, both in research and in realization. After all, it is
about nothing less than building in a way that enables all
people of the generations to come to live a decent life on
this earth. Because we have only this one. In 1994, the
astronomer and astrophysicist Carl Sagan had the idea of
taking a photo of the Earth with the help of the Voyager 1
space probe after it left the solar system. In a lecture on 13
October 1994 at the Cornell University, he said the
following about this:

Our planet is a lonely speck in the great enveloping
cosmic dark. In our obscurity, in all this vastness, there is
no hint that help will come from elsewhere to save us
from ourselves. There is perhaps no better
demonstration of the folly human conceits than this
distant image of our tiny world. To me, it underscores
our responsibility to deal more kindly with one another,
and to preserve and cherish the pale blue dot, the only
home we've ever known.1

In fact, we are overexploiting and consuming the resources
of our earth and changing them massively. The
consequences are climate change, scarcity of resources,
natural disasters, hunger, flight, and misery. And the



construction industry is massively involved in these
developments.
The building industry in Germany accounted for 5.3% of
nominal gross value added in 2018 (€179.6  billion GDP of
€3388.2  billion GDP)2 but causes around 25% of CO2
emissions and uses around 40% of the energy generated.3

This discrepancy alone should lead to enormous productive
activities. But what is the reality in terms of efficiency and
research?
In sectors such as manufacturing (excluding construction),
productivity increased by around 70% from 1995 to 2016,
whereas in construction it only increased by around 5%.4

In terms of industry investment in research and
development, out of a total of 436  571 people (in full‐time
equivalents) in 2017, only 1147 people came from the
construction industry, i.e. 0.26%.5

The Federal Government of the Federal Republic of
Germany spent a total of €17  250  million on research and
development in 2018. Of this, €118.1  million was allocated
to the area of “Regional planning and urban development;
construction research,” i.e. 0.69%.6

Considering only the Federal Ministry of Education and
Research, a total of €10  486.7  million was invested in 2018.
The area of “Regional planning and urban development;
construction research” accounted for a share of only €27.5 
million, i.e. 0.26%.
In 2019, the annual grant total from the German Research
Foundation amounted to around €3285.3  million. The field
of Civil Engineering and Architecture received grants
totaling €51.5  million, i.e. 1.57%.7

The result of this small survey illustrates that in one of the
most important industries in Germany, which contributes



disproportionately to climate change, efficiency is
stagnating and, at the same time, research is receiving
severely below‐average funding.
Every 12  years, the population of the earth grows by 1 
billion people8 who need a decent home, infrastructure,
and energy supply. In view of the continuing increase in the
world's population, we will not build less, but more.
Contrary to this, we need to radically limit resource
consumption and CO2 emissions. It is obvious that in the
future, building will have to be completely different, not
just marginally, but fundamentally.
It is thus clear that we must significantly intensify research
in the construction industry. Because of its enormous
leverage effect, this is therefore one of the most important
tasks for the future, both nationally and internationally,
with extremely great significance for society as a whole. At
all levels, from basic research to realization, for all
available and newly to be developed building materials and
combinations of building materials, in all areas of our social
life up to politics, we have to become much more creative.
Only through our inventiveness, our power of imagination
for realization, our abilities to mentally penetrate complex
processes will we change the entire building process from
design, planning, calculation, structure, material
extraction, production, transport, on‐site construction,
operation, maintenance, data storage, strengthening up to
further use, reuse, and recycling in such a way that we
achieve climate‐ and resource‐neutral building.
The methods, procedures, and calculations described in
this book represent an important step toward a kind of
building that has little to do with the way we know it today.
And this is a good thing.
At the same time, may this book also promote the idea that
it is worthwhile for everyone to think about change in the



building industry to contribute ideas, to conduct research,
and to work on realization. May the amount of research
increase to a degree that is both appropriate and necessary
to the challenge we all face.3

Dresden, June 2021

Manfred Curbach
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Foreword by Werner Sobek

Building Emission‐Free for More
People with Less Material
Concrete is the only building material that can be cast into
almost any shape on the construction site. It is available
worldwide, is cheap, is easy to use, has a comparatively
high strength, and is resistant to most environmental
conditions. Concrete is the building material for everyone
and for everything; it is the most widely used building
material in the world. On the other hand, concrete is more
unpopular for most people than almost any other material.
In the past decades, this dislike was mainly based on its
color, the quality of its surface, and its “coldness” (i.e. its
low heat radiation). Today, it is the massive criticism of the
CO2 emissions caused by the production of cement, which,
at around 8% of global CO2 emissions, make a significant
contribution to global warming and which, in terms of
volume, even exceed the emissions of the entire global air
traffic that labels concrete as an unloved, even demonized
building material.
The currently widespread message that it will be possible
to replace concrete as a building material with timber in
the short to medium term is mostly based on an ignorance
of the interrelationships. Mankind currently needs
approximately 60–100  Gt of building materials per year in
order to create a home for the new inhabitants on earth
and to expand the existing built environment. This number
does not include the so‐called pent‐up demand of the Third
World, which with 6.3  billion people represents approx.
80% of the world's population and which, with a volume of



approx. 60  t per capita, has a significantly lower building
standard than the citizens of the industrialized nations,
who account for approx. 335  t of building materials per
capita.
If all the forests in the world were managed according to
the principles of sustainable forestry, as is the case in many
countries in Central Europe, for example, then a maximum
of 10  Gt of construction timber could be obtained per year.
An increased supply of construction timber through a
higher logging rate in the forests would mean a reduction
of the urgently needed CO2 sink potential of these forests
and must therefore be rejected. A redistribution of the
available timber toward the construction industry would
mean a reduction in the availability of wood to produce
cellulose, paper or, for example, the abandonment of the
cooking of daily food, as is still the case for many hundreds
of millions of people every day.
To the scenario described above, the already mentioned
pent‐up demand for the inhabitants of the Third World. If
the frequently voiced demand for an increase in prosperity
and thus also a reduction in the birth rate in these
countries were actually to be met through easier access to
health care and education, especially for the female part of
the population, the corresponding construction activities
would have to be carried out, for example the building of
schools and universities, medical practices and hospitals,
including the associated infrastructure. Raising the level of
construction in the Third World countries to that of today's
industrialized countries can be estimated with a demand
for building materials of 1700  Gt. This amount of building
material represents twice the world built today. The
climate‐damaging emissions associated with the production
of these building materials would make the earth
uninhabitable for mankind. It is therefore evident that we
will not be able to raise the total population of this earth to



the building level of today's industrialized countries nor
will timber as a building material be able to play a
significant role in this context in the short to medium term.
Timber will be an important building component in some
parts of the world, especially in the Northern Hemisphere,
in the short to medium term. Not more. Other building
materials, such as clay or natural stone, will also
increasingly find their way into construction. However,
none of these materials will be able to replace concrete as
a building material.
But what should the builders, the architects, the engineers,
and the executing companies do, on the one hand, to fulfill
their responsibility to provide a built home, including all
the necessary infrastructural construction measures, for
more and more people and, on the other hand, to make
their enormously important contribution to limiting, even
reducing, global warming? Since an ideal way has not yet
been identified and the marvel material that solves all
problems has not yet been found, the solution to the overall
problem will consist of a sum of components. One of these
components is the restriction of construction activities to
what is actually necessary, the appropriate amount. This is
often referred to as the principle of sufficiency. The
principle of sufficiency includes the requirement not to
demolish buildings or parts of them and replace them with
new buildings until this is really unavoidable.
Another component of sustainable construction is the
revolutionization of construction technology to the effect
that in the future only recycling‐oriented planning and
construction will be permitted. In this way, the extraction of
new building materials from the upper layers of the earth
can be increasingly reduced in the medium to long term.
This will also diminish, if not solve, the availability
problems of individual building materials. It is common
knowledge that enormous quantities of sand and gravel are



required, especially for the production of concrete, and that
sand has already become an extremely rare resource in
some regions of our planet. The same applies to gravel and
crushed stone. Immense availability problems are also
expected for tin, zinc, and copper. For the construction
industry, being the largest consumer of resources of all, it
is therefore a matter of dramatically reducing the
“consumption” of primary materials in the future and of
using secondary materials where they are actually
unavoidably needed. If we consider the availability of
resources in addition to the emissions, it can be seen that
the local and regional production of secondary material is
associated with significantly lower climate‐damaging
emissions compared to primary material that is often
delivered over long transport routes.
While the implementation of the closed‐loop principle
reduces the amount of “consumed” primary building
materials, the complementary implementation of
lightweight construction technologies can reduce the
amount of consumed material and the amount of climate‐
damaging emissions during its production and distribution.
This is where this book comes in. The introduction of state‐
of‐the‐art optimization methods and the resulting minimum‐
material component shapes, which also have a minimized
need for reinforcing steel due to optimized reinforcement
design, promote construction with concrete that is
characterized by considerable material savings and thus
considerable emission savings for the same utility value
and durability. Supported by clearly understandable
descriptions and a large number of examples, readers will
find their way around quickly and easily. This makes it
much easier to understand the subject matter, which is not
always simple.
This book provides a significant contribution to establishing
a new foundation for building with concrete, this wonderful



building material for everyone and for almost everything.
This foundation is characterized by the application of
highly developed calculation methods and technologies that
lead to material‐minimized components and thus also to
emission‐minimized components. Both will be an essential
part of tomorrow's construction, a construction that, like
other sectors such as transportation or energy, must reduce
its emissions by more than 50% by 2030. No one knows
today how this will ultimately be achieved. However, the
paths outlined in this book represent a valuable and
indispensable tool on the way to achieving these goals.

Stuttgart, June 2021

Werner Sobek

`
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Preface
This book is based on over 15  years of research work at the
Institute of Concrete Structures (Ruhr University Bochum,
Germany) on topics related to structural optimization and
lightweight concrete structures. The motivation, then and
now, derives from two fundamental reasons. First, the
climate challenge and the related necessity for lower
material consumption. Second, modernizing the
construction industry through new technologies aiming at
more sustainable design and construction methods. The
concepts evolved from the research work are combined in
this book into an enhanced design approach, which we call
Optimization Aided Design (OAD).
From students to researchers and practitioners, this book
addresses everyone involved in structural engineering.
Although the concepts primarily focus on concrete
structures, they are generally adaptable to a wide range of
further applications regardless of the material used.
Numerous computational examples serve for a better
comprehension of the methods and invite to discover the
potential of OAD. Applications that have been successfully
implemented further demonstrate transferability in
practice and intend to provide inspiration for future
projects.
Apart from the introduction, the book consists of two parts.
The first part serves as introduction to the fundamentals of
reinforced concrete design, on the one hand, and structural
optimization on the other. Chapters 2 and 3 provide a
general basis for understanding the methods presented
subsequently. In no case do they claim to be exhaustive. For
a more in‐depth study of both topics, many excellent books
from other colleagues already exist. In this regard,



reference is made to the bibliography. The second part of
the book introduces OAD for concrete structures. The
methods are presented structurally from the outside in. In
doing so, first, approaches for identifying the external
structural shape are presented, followed by methods for
designing the inner one (reinforcement layout), and finally
techniques for the optimization of cross‐sections.
Each of the OAD chapters is divided into three parts. They
begin with a brief topical description supported by a
representative overview figure, allowing the reader to
decide whether the subsequent content has relevance for
her or him. This is followed by the main section, in which
the methods are discussed exhaustively and are
supplemented with recommendations for their practical
application. Numerous computation examples, to which
reference is made in the respective main sections, provide
the conclusion. They are further enhanced by application
examples which have already been realized, for example
ultra‐light beams, extremely thin shells of solar thermal
power plants or optimized reinforcement layouts for
segmental tunnel linings.
OAD offers the possibility to enhance the daily engineering
work and increase its efficiency. Our ambition is to
highlight the great potential of the approach and thereby
contribute to a modern, sustainable, and transparent way
of designing and dimensioning reinforced concrete
structures in the future. However, this can only succeed if
we open the door for modern approaches and thus prove to
the new generation, that the construction industry is able
to adapt to the modern age. Considering the global
challenges, let us be part of the solution, not part of the
problem.



Bochum, Germany
April 2021

Georgios Gaganelis
Peter Mark

Patrick Forman



List of Examples
Example 4.1 Variation of volume fraction
Example 4.2 Variation of the filter radius
Example 4.3 Variation of material parameters
Example 4.4 Form finding of bridge pylons 1
Example 4.5 Form finding of bridge pylons 2
Example 4.6 Conceptual bridge design 1
Example 4.7 Conceptual bridge design 2
Example 4.8 Multi‐span girder
Example 4.9 Multiple load cases
Example 4.10 Two load cases
Example 4.11 Material steering
Example 4.12 Material variation in bi‐material design
Example 4.13 Filter radius with bi‐material design
Example 4.14 Bi‐material multi‐span girder
Example 4.15 Bi‐material girder with stepped support
Example 4.16 Bi‐material arch bridge
Example 5.1 Deep beam 1
Example 5.2 Wall with block‐outs
Example 5.3 Corbel
Example 5.4 Cantilever beam
Example 5.5 Shear transfer at joints
Example 5.6 Deep beam 2
Example 5.7 Frame corner
Example 5.8 Wall with eccentric block‐out
Example 5.9 Corbel with horizontal force


