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Preface

In the first half of the twentieth century, the theory of complex analytic functions
and their zerosets was fully developed. The definition of a holomorphic function
has a local nature. Germs of holomorphic functions form a distinguished subring
of the ring of germs of continuous functions. From this emerged the notion of an
analytic space. The definition of a complex analytic set uses local models as in
the case of complex manifolds. But while local models for manifolds are open sets
of Cn, a local model of an analytic space is the zeroset of finitely many analytic
functions on an open set of Cn together with a sheaf of continuous functions, called
a holomorphic sheaf.

Towards the 1950s, Cartan, Whitney, Bruhat, and others tried to formulate the
notion of an analytic space over R. They immediately realized that the real sets
satisfying a definition similar to that of a complex analytic space form a category
whose elements can have unpleasant behavior. In particular, this category does not
share the good properties of complex analytic spaces, such as coherence of their
structural sheaves, and the fundamental Cartan’s Theorems A and B do not hold
in general. In contrast with what happens for instance in the algebraic case, it is
not always possible to view a real analytic space as the fixed point set of a suitable
conjugation on a complex analytic space. Faced with this situation, some doubts
arose on the interest of such investigations. For instance, Grothendieck wrote in
Cartan [Ca6, Exp. 9, p. 12]:

Lorsque k est algébriquement clos, il est probablement vrai que tout espace analytique
réduit à un point est de la forme qu’on vient d’indiquer, ce qui serait une des variantes
du “Nullstellensatz” analytique. Signalons par contre tout de suite que rien de tel n’est vrai
si k n’est pas algébriquement clos, par exemple si k est le corps des réels R. Ainsi, le sous-
espace analytique de R

2 défini par l’idéal engendré par x2 + y2 est réduit au point origine,
mais son anneau local en ce point n’est pas artinien, mais de dimension de Krull égale à
1. L’intérêt des espaces analytiques, lorsque k n’est pas algébriquement clos, est d’ailleurs
douteux.

Ignoring these doubts, Cartan worked to find the obstructions to get a good real
category. He proved that his Theorems A and B pass through direct limits. So, since
Rn has in Cn a fundamental system of open Stein neighborhoods, he proved that

vii



viii Preface

every analytic subset of Rn, defined as the zeroset of global analytic functions, is
the support of a coherent sheaf of ideals. This sheaf of ideals defines a complex
analytic subset of a Stein open neighborhood of Rn in Cn, hence Theorems A and
B hold true. So, he found a good class of real analytic spaces globally defined in Rn

that have a good complexification. He wrote in Cartan [Ca2, p. 49]:

. . . la seule notion de sous-ensemble analytique réel (d’une variété analytique-réelle V ) qui
ne conduise pas à des propriétés pathologiques doit se référer à l’espace complexe ambiant:
il faut considérer les sous-ensembles fermés E de V tels qu’il existe une complexification W

de V et un sous-ensemble analytique-complexe E′ de W , de manière que E = W ∩E′. On
démontre que ce sont aussi les sous-ensembles de V qui peuvent être définis globalement
par un nombre fini d’équations analytiques. La notion de sous-ensemble analytique-réel a
ainsi un caractère essentiellement global, contrairement à ce qui avait lieu pour les sous-
ensembles analytiques-complexes.

Cartan uses complex notions to describe real properties: for instance, he defines
the complexification of a germ of real analytic space Vx at a point x ∈ R

n and
proves that Vx is coherent if and only if the complexification of Vx induces the
complexification of Vy on points y close to x.

All these considerations led Cartan to the following characterization of what a
good category of real analytic sets should be, proving that for a closed real analytic
subset X ⊂ R

n, the following statements are equivalent:

(1) The set X is the zeroset of finitely many real analytic functions.
(2) There is a coherent idealsheaf in ORn whose zeroset is X.
(3) There is an open neighborhood � of Rn in Cn and a closed subspace Y ⊂ �

such that Y ∩ Rn = X.

So, the notion of complexification plays a central role.
Bruhat and Whitney extended the notion of complexification to real analytic

manifolds and introduced the name C-analytic for the analytic subsets of a real
analytic manifold M induced by intersection with M of an analytic subset of the
complexification of M . Finally, Tognoli extended the notion of the complexification
of a real analytic space admitting a coherent structure, in analogy with Cartan’s
condition (2).

Tognoli distinguished three types of real analytic spaces: the coherent spaces,
whose reduced structure is coherent, those carrying at least one coherent structure
(for instance, Whitney and Cartan umbrellas), and those not admitting any coherent
structure (the wild examples of Cartan, Bruhat–Cartan, etc.)

Since a C-analytic space X is globally defined, the ring O(X) of (real) analytic
functions on X becomes interesting. One could follow the development of Real
Algebraic Geometry and try to imitate its theory. This is easy in the local case but
not in the global one. This is because an important step in the algebraic theory is the
fact that a non-negative polynomial is a sum of squares of rational functions (Artin’s
solution of Hilbert’s 17th Problem). In the analytic case, this is true for the ring of
germs, while in the global case, it is proved, as far as we know, only in some special
particular cases, so one cannot expect to get results in analogy with Real Algebraic
Geometry.
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In this book we follow another path, closer to Cartan’s point of view, that is, we
deduce results for C-analytic spaces from the properties of their complexification.

In the first two chapters, we mainly recall classical results. More precisely, in
Chap. 1, after exposing the main facts on complex analytic spaces, we give the
construction of a complexification, showing why it is necessary to pass to C-spaces.
We also give some bad examples of real analytic sets in Rn following Cartan and
Bruhat. Chapter 2 describes the construction of irreducible components of complex
and real analytic sets. We then see how this notion works when dealing with
normalization from a local and a global point of view. Concerning divisors of a
C-space, we try to answer the question of what the conditions are under which a
divisor is the divisor of a global analytic function.

As we said, in the local case, the results are very similar to the algebraic ones.
For instance, the Nullstellensatz for the ring of complex or real analytic germs is
exactly the same as for the ring of complex or real polynomials. This is no longer
the case for the ring of global analytic functions. In Chap. 3, we give the proof of
the Nullstellensatz for closed ideals in O(X) where X is a Stein space, following
Forster. The primary (infinite) decomposition of a closed ideal allows us to consider
irreducible components of a Stein space with multiplicity as in the algebraic case.

We remark that in this case, there is a numerical function (namely the primality
index) which controls whether Hilbert’s Nullstellensatz holds true or not for a closed
ideal. It holds if and only if the numerical function is uniformly bounded. We get
a somewhat similar result for Hilbert’s 17th Problem. If it has a positive solution
for O(Rn), then the Pythagoras number of the field of meromorphic functions is
bounded.1 Note that in the algebraic case, Hilbert’s Problem and the calculation of
the Pythagoras number are completely separate problems, while in the analytic case,
there is an unexpected relation.

Also, in Chap. 3, we give a real Nullstellensatz for the ring O(X) where X is a
C-analytic space. The radical we use is not Risler’s real radical, it is the Łojasiewicz
radical, which is the radical of the convex hull of the given ideal and in general is
larger than the real radical of that ideal. This is because we do not know whether
a positive semidefinite analytic function is a sum of squares of meromorphic
functions. Indeed, if the zeroset Y of the given ideal is such that positive semidefinite
functions, having Y as zeroset, are sums of squares of meromorphic functions, then
the two radicals coincide and we get a result similar to Risler’s Nullstellensatz.

Thus, Hilbert’s 17th Problem is crucial also in Real Analytic Geometry. Hence,
in Chap. 4, we give the state of the art on this problem, whose solution is far from
being complete. We also discuss some weaker questions which involve infinite sums
of squares.

1 The Pythagoras number of a ring R is the smallest positive integer p such that all sums of squares
in R can be written as sums of p squares. If such p does not exist, then the Pythagoras number is
∞.
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When dealing with real objects, inequalities appear immediately, equalities are
not enough. Consider, for instance, the orthogonal projection of a circle from R2

to R.
Łojasiewicz and Hironaka defined a class of subsets of a real analytic manifold,

namely semianalytic sets, which are locally defined by analytic equalities and
inequalities. This class behaves well with respect to topological properties such as
closure, taking connected components and so on, but is not stable under proper
projections. For this reason, the class of subanalytic sets was also introduced.
Nevertheless, one can ask whether semianalytic sets defined by finitely many global
analytic functions (global semianalytic sets) could have better properties. Several
authors have investigated these sets by applying the algebraic theory of orders to get
topological properties, mainly in dimension less than three. An important result in
general dimension is that the closure of a global semianalytic set is locally global.
We give a more geometric proof of this result in Chap. 5.

We define an intermediate class of semianalytic sets, which we call C-
semianalytic sets in analogy with the notion of C-analytic spaces, that is, locally
finite unions of global semianalytic sets. We prove that this class is stable under
topological operations. Moreover, it is stable under proper invariant holomorphic
maps. We do not need to define C-subanalytic sets because we can prove that
subanalytic sets can be defined by replacing semianalytic sets by C-semianalytic
sets.

Several remarkable subsets of a C-analytic set, such as the set of points of a
given dimension, or the set where it is not coherent, or the set of local extrema of an
analytic function, are C-semianalytic sets.

A theory of irreducibility and of irreducible components, analogous to the
one developed for semialgebraic sets, does not hold for C-semianalytic sets.
Nevertheless, there is a smaller class where this theory applies. It is the class of
amenable semianalytic sets, which are locally finite unions of sets of the type U∩X,
where U is an open set and X is a C-analytic set.

The last chapter deals with other structures such as the algebra of smooth
functions E(Rn) and algebras of quasi-analytic functions. In the first section, we
compare analytic descriptions of a semianalytic set with smooth descriptions and
we see how they change using flat functions. For a global semianalytic set X, we
find a minimal closed set S ⊂ X, that is, the set of points where X is not locally
basic, such that there are finitely many smooth functions that describe X as a basic
set and are not flat outside S.

We then prove a Positivstellensatz and a Nullstellensatz in E(Rn) for Łojasiewicz
ideals. In particular, when the ideal is generated by finitely many analytic functions,
we prove a modification of Bochnak’s conjecture. A similar Nullstellensatz holds in
the algebra CM(Rn) of quasi-analytic Denjoy–Carleman functions.

∗ ∗ ∗

References in the text are mainly concentrated in a section at the end of each
chapter together with some historical notes.
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This book is meant for a reader, researcher, or PhD student who feels comfortable
with general notions in complex analysis and commutative algebra, for which we
refer to some classical texts such as Gunning and Rossi [GuRo], Gunning [Gu],
Łojasiewicz [Ło3], and della Sala et al. [SaSarSiTo] for complex analysis and
Matsumura [Ma1] and Atiyah and Macdonald [AtMc] for commutative algebra.

Pisa, Italy Francesca Acquistapace
Pisa, Italy Fabrizio Broglia
Madrid, Spain José F. Fernando
January 24, 2022
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Chapter 1
The Class of C-Analytic Spaces

In this chapter, following the ideas collected in [Ca3, To1, WhBru], we introduce the
class of real analytic spaces. This type of space is also called a C-analytic space in
the literature. To introduce it we first need to recall the concept of a complex analytic
space. In what follows all involved topological spaces are assumed to be Hausdorff,
paracompact and second-countable.

1.1 Complex Analytic Spaces

A ringed space is a pair (X,OX), where X is a topological space and OX is a
subsheaf of the sheaf of germs of continuous functions on X. We recall shortly
the notion of a coherent sheaf.

Definition 1.1.1 A sheaf F on a ringed space (X,OX) is called OX-coherent if it
is a sheaf of OX-modules of finite presentation, that is, it satisfies the following two
conditions.

(i) It is a finite type sheaf, that is, for each x ∈ X there exists an open neighborhood
Ux and finitely many sections {G1, . . . ,Gk} on Ux generating the fiber Fy for
each y ∈ Ux .

(ii) For each open set U ⊂ X and for each finite number of sections H1, . . . , Hp ∈
F(U) the sheaf of relations among them, that is, the kernel of the homomor-
phism of sheaves σ : (Op

X)|U → F|U given on each open set V ⊂ U by

σ : OX(V )p → F(V ), (A1, . . . , Ap) 	→ A1H1 + · · · + ApHp

is a finite type sheaf.

First of all we define what we mean by a local model of complex analytic space.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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2 1 The Class of C-Analytic Spaces

A local model of complex analytic space is a pair (Y,OY ) comprising a closed
subset Y of an open set � ⊂ Cn that is the common zeroset of finitely many
holomorphic functions F1, . . . , Fk on � and a structure provided by a suitable sheaf
OY . There are two main ways to define this structure sheaf. Remember that by Oka’s
Theorem O� is a coherent sheaf of O�-modules, hence a sheaf F of O�-modules is
coherent if and only if F is of finite type. In particular, finitely generated sheaves of
O�-modules are coherent.

Method 1 Let O� be the sheaf of germs of holomorphic functions on � and let IY
be the sheaf of ideals consisting of all holomorphic function germs vanishing on Y .
It is a coherent sheaf of ideals (Oka’s theorem). Consider now the coherent sheaf
OY = O�/IY . Clearly,

Y = supp(O�/IY ) = {y ∈ � : IY,y 
= O�,y}

and (Y,OY ) = (supp(O�/IY ),O�/IY ) is a ringed space. The homomorphism of
sheaves O� → O�/IY is surjective.

Method 2 Consider the subsheaf J of O� generated by the holomorphic functions
F1, . . . , Fk on � and define OY = O�/J. As J = (F1, . . . , Fk)O� is a finitely
generated subsheaf of ideals of the coherent sheaf O�, it is coherent itself, so OY is
also a coherent sheaf. Again we have

Y = supp (O�/J) = {y ∈ � : Jy 
= O�,y}

and (Y,OY ) = (supp (O�/J) ,O�/J) is a ringed space. Again the homomorphism
of sheaves O� → O�/J is surjective.

Definitions 1.1.2 A complex analytic space is a (Hausdorff, paracompact) topolog-
ical space X endowed with a sheaf of rings OX such that the pair (X,OX) is locally
isomorphic as a ringed space to a local model endowed with the structure provided
in Method 2. If the local models are chosen using the structure provided in Method
1, then we say that (X,OX) is a reduced complex analytic space.

Forgetting the structure sheaf we get the notion of a complex analytic set X. This
is a closed subset of an open set � ⊂ Cn that admits a local description as the zero
set of finitely many holomorphic functions, that is, for each point x ∈ � there exists
an open neighborhood Ux and finitely many holomorphic functions F1, . . . , Fk on
Ux such that

X ∩ Ux = {y ∈ Ux : F1(y) = 0, · · · , Fk(y) = 0}.

One can provide X with a structure by considering the sheaf of holomorphic
function germs on it. Namely OX = O�/IX, where IX is the sheaf of germs
vanishing on X. This structure is often called the natural structure on X and it is
obtained following Method 1 above. Instead of IX we can consider any coherent
sheaf of ideals J ⊂ O� having X as zeroset and take OX = O�/J. As J is
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locally finitely generated, the local models for this structure are those provided by
Method 2.

If (X,OX) is a non-reduced complex analytic space, then there exists a reduction
morphism ρ : (X,Or

X)→ (X,OX), where Or
X is the reduced structure on X, which

behaves as follows. For each local model (X ∩U,OX∩U) the sheaf OX∩U = OU/J

is the quotient of O� by a sheaf of ideals J, which is in general properly contained
in the sheaf of ideals IX∩U . Then ρx : OX,x → Or

X,x maps each germ g ∈ OX,x to
its class modulo IX,x for each x ∈ U .

When we do not mention the structure sheaf OX of a complex analytic space we
are implicitly considering its reduced structure.

1.1.1 Local Properties

We recall now the main properties of a reduced complex analytic space. We denote
by On the local ring of holomorphic function germs at the origin 0 ∈ C

n. As a
consequence of the Weierstrass preparation and division theorems one proves that
On is an integrally closed, noetherian, factorial domain. In particular, each ideal 𝔞
of On is a finite intersection 𝔞 = ⋂r

i=1 𝔮i of primary ideals 𝔮i of On and the ideal
of germs I (Z(𝔞)) vanishing identically on its zeroset Z(𝔞) is exactly its radical√
𝔞 = ⋂r

i=1
√
𝔮i (Rückert’s Nullstellensatz). The zeroset X0 = Z(𝔞) = Z(

√
𝔞)

is a finite union of irreducible components , which are precisely the zerosets of the
prime ideals 𝔭i = √

𝔮i , if the decomposition
√
𝔞 = ⋂r

i=1
√
𝔮i is irredundant, that

is, 𝔭i 
⊂ 𝔭j if i 
= j .
Recall that the polydisc �(x, ε) in C

n of center x = (x1, . . . , xn) and polyradius
ε = (ε1, . . . , εn), where each εi > 0, is �(x, ε) = ∏n

i=1 D(xi, εi), where
D(xi, εi) = {z ∈ C : |z − xi | < εi} is the disc in C of center xi and radius
εi .

The local properties of the zeroset X0 of a prime ideal 𝔭 ⊂ On are described by
the following theorem.

Theorem 1.1.3 There exists a linear change of coordinates and a polydisc
�(0, ε) = �1 × �2, where �1 ⊂ Cd and �2 ⊂ Cn−d are polydiscs centered
at the origin, such that:

• Each function germ of a fixed finite subfamily of 𝔭 has a representative on
�(0, ε).

• A = On/𝔭 is an integral extension of Od , hence dimA = dimOd = d .1

• There exists a representative X of X0, which is a complex analytic subset of the
polydisc �(0, ε), such that outside the (thin) zeroset of a non-zero D ∈ Od ,

1 The dimension dim(A) of a ring A is the supremum over the lengths � of each chain of prime
ideals 𝔭0 � · · · � 𝔭� of A.
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the projection π : X \ Z(D) → �1 \ Z(D) is a covering map. In particular
dim(X) = d .

• The difference M = X \ Z(D) is a complex analytic manifold defined as the
zeroset in �(0, ε) of the representatives of n − d elements of 𝔭 whose Jacobian
matrix has rank n− d at each point of M .

• M = X \Z(D) is connected and dense in X.

The projection π : X → �1 is a branched covering, also called an analytic cover.
The description above applies to the irreducible components of the zeroset X0

of any radical ideal 𝔞 of On. In this case the ideal 𝔞 is the intersection of the prime
ideals 𝔭i associated to the minimal prime ideal 𝔓i = 𝔭i/𝔞 of A = On/𝔞. Then
for each minimal prime ideal 𝔭i we apply the argument to a suitable representative
Xi of Xi,0 = Z(𝔭i ), which is a complex analytic subset of a polydisc �(0, ε).
This polydisc is the same for all the germs Xi,0 (after applying a linear change of
coordinates that works simultaneously for all the irreducible components of X0).
For each i we obtain a complex analytic manifold Mi ⊂ X, which is dense in Xi .
Then M = ⋃

i Mi \⋃i 
=j (Mi ∩Mj) is an open and dense subset of X = ⋃
i Xi .

Each connected component of M is dense in an irreducible component Xi of X and
each Xi is the closure of a connected component of M . As 𝔓i = 𝔭i/𝔞 is a minimal
prime ideal of A we get

dim(A) = max
i
{dim(A/𝔓i )} = max

i
{dim(On/𝔭i )} = max

i
{dim(Xi,0)} = dim(X0).

Remark 1.1.4 By an analytic algebra we mean any ring A isomorphic to On/𝔞
for some n and some ideal 𝔞 ⊂ On. The description above shows that any analytic
set germ is equipped with an analytic algebra, but conversely an analytic algebra
determines an analytic set germ, namely the zeroset of the ideal 𝔞 in a neighborhood
of 0 ∈ Cn. Moreover, if f : Xx → Yy is a holomorphic map between analytic set
germs, it induces an algebra homomorphism f ∗ : OY,y → OX,x and vice versa.
It is easy to prove that f injective implies f ∗ surjective and f surjective implies
f ∗ injective and vice versa. Hence f is an isomorphism if and only if f ∗ is an
isomorphism.

1.1.1.1 Regular Points of a Reduced Complex Analytic Space

Let (X,OX) be a reduced complex analytic space. As the notion of regular point
has a local nature, we assume (X,OX) is a reduced local model. Thus, X is a closed
subset of an open set � ⊂ Cn and OX = O�/IX, where IX is the sheaf of ideals of
all holomorphic germs vanishing on X. For each x ∈ X let F1, . . . , F� be generators
of IX,x . We write

rx = rk

(
∂(F1, . . . , F�)

∂(x1, . . . ,xn)
(x)

)

= rk

(
∂Fi

∂xj

(x)

)

1≤i≤�
1≤j≤n

≤ min{n, l}.
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It is straightforward to show that changing the set of generators, the value rx does
not change, that is, it depends only on IX,x . Indeed, if H1, . . . , Hs is another system
of generators, it is enough to prove the rank of the Jacobian of F1, . . . F�,Hi is the
same as the rank of the Jacobian of F1, . . . F�. Put F�+1 = Hi = G1F1+· · ·+G�F�

where Gi ∈ O(�). Thus, if x ∈ X, we have F1(x) = · · · = F�(x) = 0 and we
conclude

rk

(
∂Fi

∂xj

(x)

)

1≤i≤�+1
1≤j≤n

= rk

(
( ∂Fi

∂xj

(x)
)

1≤i≤�
1≤j≤n

( �∑

i=1

Gi

∂Fi

∂xj

(x) +
�∑

i=1

∂Gi

∂xj

(x)Fi(x)
)

1≤j≤n

)

= rk

(
( ∂Fi

∂xj

(x)
)

1≤i≤�
1≤j≤n

,
( �∑

i=1

Gi

∂Fi

∂xj

(x)
)

1≤j≤n

)

= rk

(
∂Fi

∂xj

(x)

)

1≤i≤�
1≤j≤n

= rx .

Definition 1.1.5 The rank of the sheaf of ideals IX at a point x ∈ X is

r(x) = min
Wx

{max
y∈Wx

{ry}} ≤ n,

where Wx runs over all the open neighborhoods of x in X.

As the sheaf of ideals IX is coherent, rx ≤ ry for each y in a small neighborhood
of x. In addition, {x ∈ X : rx = r(x)} is an open subset of X. Indeed, pick a
point x ∈ X such that rx = r(x). Let Wx ⊂ X be an open neighborhood of x

such that r(x) = max
y∈Wx

{ry}. As rx = r(x) and the sheaf of ideals IX is coherent,

we may assume that ry = r(x) for all y ∈ Wx , so ry = r(y) for all y ∈ Wx , so
Wx ⊂ {x ∈ X : rx = r(x)} and this set is open.

Definition 1.1.6 The point x ∈ X is regular if rx = r(x).

We denote by Reg(X) the set of regular points of X and Sing(X) = X \Reg(X) the
set of singular points of X. As Reg(X) is an open subset of X, the set Sing(X) is
closed in X.

Let us prove next that each connected component N of Reg(X) is a complex
analytic manifold. More precisely,

Proposition 1.1.7 Let x0 ∈ Reg(X) be a regular point of X. Then there exists an
open neighborhoodU of x0 in � such that X∩U is a complex manifold of dimension
n− r(x0).

Proof Fix r = r(x0) and sections F1, . . . , Fr of IX in a neighborhood U of x0 such
that their Jacobian matrix has rank r at each point of X ∩ U . The set M = {F1 =
0, . . . , Fr = 0} ⊂ U is by the Implicit Function Theorem a complex manifold
of dimension n − r , which in addition contains X ∩ U . As for the converse we
show that there exists a perhaps smaller neighborhood W ⊂ U of x0 such that
X ∩ W = M ∩ W , or equivalently, Xx0 = Mx0 . To that end, it is enough to show
that each function germ H ∈ IX,x0 vanishes on Mx0 .
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As the holomorphic functions F1, . . . , Fr have Jacobian matrix of rank r , we
can complete this collection with linear functions Lr+1, . . . , Ln depending on the
variables (z1, . . . ,zn) in such a way that

y1 =F1(z1, . . . ,zn)

...

yr =Fr(z1, . . . ,zn)

yr+1 =Lr+1(z1, . . . ,zn)

...

yn =Ln(z1, . . . ,zn)

provide a holomorphic system of coordinates on an open neighborhood V ⊂ U of
x0, that maps M ∩ V onto an open subset of the linear subspace {y1 = 0, . . . ,yr =
0}. We may assume that M ∩ V is connected. In this way, we can define

ϕ : V → V ′ = ϕ(V ), z = (z1, . . . ,zn) 	→ (F1(z), . . . , Fr (z), Lr+1(z), . . . , Ln(z))

and consider its inverse ψ = (ψ1, . . . , ψn) : V ′ → V . Observe that

ψ({y1 = 0, . . . ,yr = 0} ∩ V ′) = M ∩ V.

In addition, F ′i = Fi ◦ ψ = yi for i = 1, . . . , r . To prove that H|M∩V is identically
zero, we show that the restriction of H ′ = H ◦ ψ to {y1 = 0, . . . ,yr = 0} ∩ V ′,
which is a holomorphic function of the last n − r coordinates, is identically zero.
Write y0 = ϕ(x0). As {y1 = 0, . . . ,yr = 0} ∩ V ′ is connected, we have to show

∂αH ′

∂yα1
r+1 . . . ∂yαn

n

(y0) = 0 for each multi-index α = (α1, . . . αn−r ) ∈ (N)n−r .

For i = r + 1, . . . , n one has

det

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂F ′1
∂y1

· · · ∂F ′1
∂yr

∂F ′1
∂yi

...
. . .

...
∂F ′r
∂y1

· · · ∂F ′r
∂yr

∂F ′r
∂yi

∂H ′
∂y1

· · · ∂H ′
∂yr

∂H ′
∂yi

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= det

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

...

0 0 · · · 1 0
∂H ′
∂y1

∂H ′
∂y2

· · · ∂H ′
∂yr

∂H ′
∂yi

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= ∂H ′

∂yi

. (1.1.1)
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Next, define

Ds(H) = det
∣
∣
∣
∂(F1, . . . , Fr ,H)

∂(zs1, . . . ,zsr+1)

∣
∣
∣

for each s = (s1, . . . , sr+1) ∈ {1, . . . , n}r+1 such that 1 ≤ s1 < · · · < sr+1 ≤ n. As
the rank of IX is r , we deduce that Ds(H) vanishes on Reg(X)∩U . Consequently, as
Reg(X) is dense in Xx0 , we have Ds(H) ∈ IX,x0 . Thus, Ds(H) ◦ ψ ∈ IX′,y0 where
X′ = ϕ(X ∩ V ) and I′X is the sheaf of ideals on V consisting of all holomorphic
function germs vanishing on X′ ∩ V .

We have

∂F ′j
∂y�

=
n∑

k=1

(∂Fj

∂zk

◦ ψ
)
· ∂ψk

∂y�

and
∂H ′

∂y�

=
n∑

k=1

( ∂H

∂zk

◦ ψ
)
· ∂ψk

∂y�

for j = 1, . . . , r and � = 1, . . . , n. Thus, for i = r + 1, . . . , n we have

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂F ′1
∂y1

· · · ∂F ′1
∂yr

∂F ′1
∂yi

...
. . .

...
∂F ′r
∂y1

· · · ∂F ′r
∂yr

∂F ′r
∂yi

∂H ′
∂y1

· · · ∂H ′
∂yr

∂H ′
∂yi

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

∂F1
∂z1

· · · ∂F1
∂zn

...
. . .

...
∂Fr

∂z1
· · · ∂Fr

∂zn
∂H
∂z1

· · · ∂H
∂zn

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

∂ψ1
∂y1

· · · ∂ψ1
∂yr

∂ψ1
∂yi

...
. . .

...
...

∂ψn

∂y1
· · · ∂ψn

∂yr

∂ψn

∂yi

⎞

⎟
⎟
⎠ . (1.1.2)

Hence, using (1.1.1), (1.1.2) and the Binet–Cauchy formula for the determinant of
the product of two rectangular matrices of transposed shapes, we deduce

∂H ′

∂yi

=
∑

s=(s1,...,sr+1)
s1<s2<...<sr+1

(Ds(H) ◦ ψ) det
∣
∣
∣
∂(ψs1, . . . , ψsr+1)

∂(y1, . . . ,yr ,yi )

∣
∣
∣ ∈ IX′,y0 .

This implies that if H ∈ IX,x0 , then
∂H ′

∂yi

∈ IX′,y0 for i = r + 1, . . . , n.

Consequently,
∂H ′

∂yi

◦ ϕ ∈ IX,x0 . Then we can apply recursively the same trick

to
∂H ′

∂yi

◦ ϕ for i = r + 1, . . . , n, to deduce

∂2H ′

∂yi∂ys

∈ IX′,y0

for r+1 ≤ i, s ≤ n, and so on. Thus, all derivatives of H ′ of all orders vanish at y0,
so H ′ is the zero function on M ∩ V and we conclude Xx0 = Mx0 , as required. ��
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Remarks 1.1.8 Let N be a connected component of Reg(X).

(i) If x, y ∈ N , then r(x) = r(y). Indeed, by Proposition 1.1.7 the number r(x) is
locally constant in Reg(X). Hence it is constant on the connected components
of Reg(X).

(ii) N is a connected complex analytic manifold of dimension n− r(x0), where x0
is any of the points of N .

(iii) The closure in X of a connected component of Reg(X) is an irreducible
subset of X. This can be proved by the same argument used in Rückert’s
Nullstellensatz.

1.1.1.2 Zariski’s Tangent Space

We now approach regular points from another point of view. This requires the
introduction of Zariski’s tangent space. Let (X,OX) denote a reduced complex
analytic space.

Definition 1.1.9 Let x ∈ X be a point and F1, . . . , Fk be generators of the ideal
IX,x . Zariski’s tangent space TxX of X at x is defined by

TxX = ker(J (F1, . . . , Fk)(x)),

where J (F1, . . . , Fk)(x) is the Jacobian matrix of F1, . . . , Fk at the point x.

By definition dim(TxX) = n − rx and it has minimal dimension when x ∈
Reg(X), that is, when J (F1, . . . , Fk)(x) has rank r(x).

Lemma 1.1.10 Let 𝔪x be the maximal ideal of OX,x and recall that OX,x/𝔪x
∼= C.

Then the OX,x/𝔪x-linear space 𝔪x/𝔪2
x is isomorphic to TxX as C-linear space.

Proof Denote by 𝔐x the maximal ideal of OCn,x . Observe that

𝔪x/𝔪2
x = (𝔐x/IX,x)

/
((𝔐2

x + IX,x)/IX,x) ∼=𝔐x/(𝔐2
x + IX,x).

Let Cn∗ be the dual linear space of Cn and consider the linear map

L :𝔐x → C
n∗, f 	→ L(f ) =

n∑

i=1

∂f

∂zi

(x)ui.

Observe that L is surjective and ker(L) = 𝔐2
x . Consequently, L induces an

isomorphism [L] :𝔐x/𝔐2
x → Cn∗, F +𝔐2

x 	→ L(F).
Let F1, . . . , Fk be a system of generators of IX,x . Then we get

TxX = ker(L(F1)) ∩ · · · ∩ ker(L(Fk))
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and we can identify the dual space TxX
∗ with the quotientCn∗/〈L(F1), . . . , L(Fk)〉,

where 〈L(F1), . . . , L(Fk)〉 denotes the subspace spanned by L(F1), . . . , L(Fk).
Indeed, consider the linear map


 : Cn∗ → TxX
∗, H 	→ H|TxX.

As each linear form G : TxX → C is the restriction of a linear form
H : Cn → C, the previous linear map is surjective. Consequently, TxX

∗ ∼=
Cn∗/ ker(
). As TxX = ker(L(F1)) ∩ · · · ∩ ker(L(Fk)), we conclude that
ker(
) = 〈L(F1), . . . , L(Fk)〉.

We have the following commutative diagram

Thus,

L−1(〈L(F1), . . . , L(Fk)〉) = 〈F1, . . . , Fk〉 + ker(L) = IX,x +𝔐2
x,

and we conclude

𝔪x/𝔪2
x
∼=𝔐x/(𝔐2

x + IX,x) ∼=𝔐x/ ker(L) ∼= C
n∗/〈L(F1), . . . , L(Fk)〉 ∼= TxX

∗,

as required. ��
As a consequence we get a characterization of a regular point x ∈ X in terms of

the algebraic properties of the ring OX,x . Recall that a local noetherian ring (A,𝔪)

is called regular if dim(A) = dimκ(𝔪/𝔪2), where κ = A/𝔪 is the residue field of
A.

Consider the local noetherian ring A = OCn,x/IX,x and assume that IX,x is a
prime ideal. We know that, up to a linear change of coordinates, A is an integral
extension of the local ring Od of holomorphic germs in d variables. Thus, dim(A) =
d .

Lemma 1.1.11 Under the hypothesis above one has d = n− r(x) and there exists
an open neighborhood X′ ⊂ X of x such that r(y) = r(x) for each y ∈ X′. In
particular, d = n− r(x) ≤ n− rx = dim(𝔪x/𝔪2

x).

Proof The germ Xx has, after a linear change of coordinates, a representative X′ =
X ∩�(x, ε) in a polydisc �(x, ε) centered at x and an open subset M ⊂ X′, which
is connected and dense in X such that the projection π : Cn → Cd onto the first d
coordinates induces a covering from M to an open subset of Cd . Thus, dim(M) = d

and M is defined by representatives of n−d elements in IX,x whose Jacobian matrix
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has rank n− d at each point of M . Observe that M ⊂ Reg(X) because at each point
z ∈ M one has rz = n − d . Pick a point y ∈ X′ \M . As M is dense in X′, there
exists a z ∈ M close to y, so ry ≤ rz = n− d . Thus, r(x) = n− d because for each
point y ∈ X close to x, we have ry ≤ n − d and as M is dense in X′, there exists
points z ∈ M close to x and at these points rz = n− d . We have already proved in
addition that if y ∈ X′, then r(y) = r(x), as required. ��
Theorem 1.1.12 Let (X,OX) be a reduced complex analytic space. Then a point
x ∈ X is regular if and only if the ring OX,x is a local regular ring.

Proof We may assume that (X,OX) is a reduced local model. If x is regular, then
rx = r(x), so dim(TxX) = n − rx = n − r(x) = dim(OX,x), that is, the ring
OX,x is regular. Conversely, if OX,x is regular, then n − r(x) = dim(OX,x) =
dimC(𝔪x/𝔪2

x) = dim(TxX) = n− rx , so rx = r(x) and the point x is regular. ��
Corollary 1.1.13 The subset Sing(X) of a reduced complex analytic space (X,OX)

is a complex analytic subset of X.

Proof Pick a point x ∈ X. We distinguish two cases.

(1) Suppose first that the germ Xx is irreducible and define r = r(x). There exist
an open neighborhoodU and sections F1, . . . , Fr of the sheaf IX defined on the
open set U such that they generate IX,y for each y ∈ U . After shrinking U , we
may assume that r(y) = r(x) for each point y ∈ U . Then, y ∈ U is a singular
point if and only if ry < r(x) = r . Thus, Sing(X) ∩ U is the set of the points
y ∈ X at which all minors of order r of the Jacobian matrix

( ∂Fi

∂xj

(x)
)

1≤i≤r
1≤j≤n

are zero. Thus, Sing(X) ∩U is a complex analytic subset of U .
(2) Suppose next that the germ Xx is reducible. Then, there are an open neighbor-

hood U and complex analytic subsets X1, . . . , Xs of U such that X ∩ U =
X1 ∪ · · · ∪ Xs , each germ Xi,x is irreducible and Xi contains a connected and
dense complex analytic manifold of the same dimension as Xi . Using the fact
the ring OX,y is not an integral domain if the germ Xy is reducible, we conclude
that

Sing(X ∩ U) =⋃s
i=1 Sing(Xi) ∪⋃

i 
=j (Xi ∩Xj).

Using (1) and the fact that each Xi has a finite system of holomorphic equations
in U (shrinking U if necessary), we conclude that Sing(X ∩ U) is a complex
analytic subset of U , as required.

��
For an arbitrary complex analytic space (X,OX), not necessarily reduced, we say
that a point x ∈ X is regular if the ring OX,x is a local regular ring. Otherwise, we
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say that the point x is a singular point of X. We again denote by Reg(X) the set of
regular points of X and Sing(X) the set of singular points of X.

1.1.2 Stein Spaces

Let (X,OX) be a complex analytic space. Denote by O(X) the algebra of its
holomorphic functions. This algebra can be very small. For instance, if X is
compact, like the projective space P

n(C), the maximum principle shows that O(X)

reduces to the set C of constant functions. Conversely, if X is a closed analytic
subset of Cn, it has a lot of holomorphic functions. We now give a list of desirable
properties that analytic subsets of C

n possess. The first one is to provide local
coordinates.

Definition 1.1.14 Let (X,OX) be a reduced complex analytic space and let x ∈
X. We say that finitely many holomorphic functions F1, . . . , Fn on an open
neighborhood U ⊂ X of x provide local coordinates if they define a closed
embedding F = (F1, . . . , Fn) : U → � ⊂ Cn, where � is an open subset.
Observe that F induces an isomorphism between (U,O|U) and a local model
(Y = F(U),O�/IY ) in �.

Here is the announced list of properties of a closed analytic subset X ⊂ Cn.

(i) For any unbounded sequence of points {xm}m in X there exists a holomorphic
function f on X such that lim

m→∞ |f (xm)| = ∞.2

(ii) Holomorphic functions on X separate points and provide local coordinates at
each point x ∈ X.

(iii) X is not compact unless X is finite.

These three properties characterize a larger class of analytic spaces.

Definition 1.1.15 A complex analytic space (X,OX) is a Stein space if it satisfies
conditions (i), (ii), (iii) above.

Among the most important results concerning Stein spaces we point out Cartan’s
Theorems A and B.

Theorem 1.1.16 Let (X,OX) be a Stein space. Then each coherent sheaf F of OX-
modules on X satisfies the following properties.

(A) Each fiber Fx is generated by global sections of F.
(B) Hq(X,F) = 0 for each q > 0.

2 By an unbounded sequence we mean an infinite sequence which intersects all compact sets in a
finite number of points.



12 1 The Class of C-Analytic Spaces

In particular, when (X,OX) is a complex analytic subspace of Cn, one gets the
exact sequence

0 → IX → OCn → OX → 0,

where each involved sheaf is by Oka’s theorem a coherentOCn-module. This implies
using Cartan’s theorem B that each holomorphic function on X is the restriction to
X of a holomorphic function on Cn.

Next we give a characterization of open Stein subsets of Cn.

Theorem 1.1.17 (Characterization of Open Stein Sets) Let � be a connected
open subset of Cn. The following are equivalent.

(i) � is a Stein manifold.
(ii) � is holomorphically convex.

(iii) � is a holomorphy domain.3

A very relevant example of a Stein open subset of Cn is a polydisc. Note that one
can choose local models as subspaces of a polydisc. As a consequence of Theorem
B, a closed subspace of a Stein space is also Stein, so we get that any complex
analytic space is locally Stein. In particular, closed subspaces of Cn are Stein spaces.
The converse is almost true: any Stein space can be embedded in Cn as a closed
analytic subspace for some n large enough under the additional hypothesis that
supx∈X dim(TxX) <∞. More precisely

Theorem 1.1.18 (Narasimhan) Any Stein space (X,OX) of dimension n admits a
one-to-one proper holomorphic map into C2n+1, that is, a holomorphic embedding
at each regular point of X. Assume in addition that for each point x ∈ X there exists
an open neighborhood in X that can be holomorphically embedded as a closed
analytic subset of an open subset of CN (with the analytic structure induced by CN ),
where N > n is fixed. Then, there exists a one-to-one proper map ϕ : X → CN+n

whose image (with the induced analytic structure provided by CN+n) is isomorphic
to X by means of ϕ.

In both cases above, the set of embeddings is dense in the space of holomorphic
maps into Cm (where m = 2n + 1 in the first case and m = N + n in the second
case) if we endow such space with the compact-open topology.

As an application of Cartan’s Theorem B we recall an argument due to Grauert.

3 A connected open set U ⊂ C
n is holomorphically convex if the holomorphic envelope of a

compact subset of U is compact. It is a holomorphy domain if there do not exist non-empty open
sets � ⊂ U and V ⊂ C

n connected and not included in U such that � ⊂ U ∩ V and there are
holomorphic functions f ∈ O(U), g ∈ O(V ), such that the restriction of g to � coincides with the
restriction of f to �. Roughly speaking, a holomorphy domain is a set which is maximal in the
sense that there exists a holomorphic function on this set which cannot be extended to a bigger set.
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Proposition 1.1.19 A Stein subspace of a Stein space has finitely many global
holomorphic equations. More precisely, if n is the dimension of the ambient Stein
space, it is the zeroset of at most n+ 1 global holomorphic equations.

Proof If Y ⊂ X is a closed subspace of a Stein space X, we take first a non-
identically zero holomorphic function F1 on X vanishing identically on Y , so
dim({F1 = 0}) = dim(X) − 1. It exists by Theorem B, indeed as Y is a Stein
subspace of the Stein space (X,OX), pick a point p ∈ X \ Y , and as Y ∪ {p}
is a Stein subspace of the Stein space (X,OX), we can consider a holomorphic
function F1 on X that takes values 0 on Y and 1 on p. If the zeroset of F1 is Y ,
we are done. Otherwise, we decompose the zeroset {F1 = 0} as the union of its
irreducible components. We pick a point pZ in each irreducible component Z of
{F1 = 0} that does not lie inside Y . Then, there exists a holomorphic function F2
on X that vanishes identically on Y and takes the value 1 at each point pZ . Now,
the common zeroset of F1, F2 outside Y has strictly smaller dimension than the
dimension of {F1 = 0} \ Y . We repeat the same trick until we find holomorphic
functions F3, . . . , Fk such that Y ⊂ {F1 = 0, . . . , Fk = 0} and

dim({F1 = 0, . . . , Fk = 0} \ Y ) ≤ 0.

Observe that {F1 = 0, . . . , Fk = 0} = Y∪D, where D is a (possibly empty) discrete
set. If Fk+1 is a holomorphic function on X vanishing identically on Y and taking
value 1 at each isolated point of the discrete set D, we describe Y as the common
zeroset of F1, . . . , Fk+1. By construction k + 1 ≤ n+ 1. ��

1.1.2.1 Cartan’s Theorems A and B and Direct Limits

The next result plays a fundamental role in this framework, because it implies
Theorems A and B for a large class of real analytic spaces, that will be introduced
later.

Theorem 1.1.20 Let Z be a closed subset of a complex analytic space (X,OX)

and define OZ = O|Z . Suppose that Z has a fundamental system of open Stein
neighborhoods in X. Then Theorems A and B hold for Z, that is, for each OZ-
coherent sheaf of modules F on Z we have:

(A) Fx is generated (as OZ,x-module) by the image of natural map H 0(Z,F) →
Fx for each x ∈ Z, that is, Fx is generated by global sections of F.

(B) Hq(Z,F) = 0 for each q > 0.

In what follows, given a complex analytic space (X,OX) and a closed subset
C ⊂ X, the sheaves of O|C -modules will be called analytic sheaves on C. First of
all we need the following proposition.

Proposition 1.1.21 Let C be a closed subset of a complex analytic space (X,OX).
Let G be a coherent analytic sheaf on C. Then there exists a triple (U,F, ϕ), where


