

Naturschutz und Biologische Vielfalt

Evaluierung von Maßnahmen zur Wiederherstellung der Durchgängigkeit gemäß § 35 WHG

Rita Keuneke, Pia Anderer, Gereon Hermens, Bastian Pietzsch, Edith Massmann, Ulrich Schwevers, Beate Adam, Sven Mögeltönder-Löwenberg und Boris Lehmann

173

Naturschutz und Biologische Vielfalt Heft 173

Evaluierung von Maßnahmen zur Wiederherstellung der Durchgängigkeit gemäß § 35 WHG

Ergebnisse des gleichnamigen F+E-Vorhabens des Bundesamtes für Naturschutz

> Rita Keuneke Pia Anderer Gereon Hermens Bastian Pietzsch Edith Massmann Ulrich Schwevers Beate Adam Sven Mögeltönder-Löwenberg Boris Lehmann

Bundesamt für Naturschutz Bonn - Bad Godesberg 2021

Titelfotos:	Hintergrund: Oberwasserseitige Ansicht der Wasserkraftanlage Eddersheim (G. Hermens); unten links: Horizontalrechenanlage an der WKA Mulde (S. Birenbaum); unten Mitte: Detail Rechen Stababstand 10 mm, WKA ECI Centrale Roermond/NL (G. Hermens); unten rechts: Plötze an der WKA Geesthacht (Institut für angewandte Ökologie GmbH)
Adressen der Autorinnen und Rita Keuneke Pia Anderer Gereon Hermens Bastian Pietzsch Edith Massmann	der Autoren: Ingenieurbüro Floecksmühle GmbH Bachstraße 62-64, 52066 Aachen E-Mail: info@floecksmuehle-fwt.de
Dr. Ulrich Schwevers Beate Adam Sven Mögeltönder-Löwenberg	Institut für angewandte Ökologie Neustädter Weg 25, 36320 Kirtorf-Wahlen E-Mail: info@ifoe.eu
Prof. DrIng. Boris Lehmann	TU Darmstadt, Fachgebiet Wasserbau und Hydraulik Franziska-Braun-Straße 7, 64287 Darmstadt E-Mail: lehmann@wb.tu-darmstadt.de
Fachbetreuung im BfN: Bernd Neukirchen Jonas Kötting	Fachgebiet II 2.4 "Gewässerökosysteme, Wasserhaushalt, Blaues Band"

Die vorliegende Veröffentlichung fasst die Ergebnisse des Forschungs- und Entwicklungsvorhabens "Evaluierung von Maßnahmen zur Wiederherstellung der Durchgängigkeit gemäß § 35 WHG" (FKZ 3515 83 0100) zusammen.

Gefördert durch das Bundesamt für Naturschutz mit Mitteln des Bundesministeriums für Umwelt, Naturschutz und nukleare Sicherheit (BMU).

Diese Veröffentlichung wird aufgenommen in die Literaturdatenbank DNL-online (www.dnl-online.de).

Institutioneller Herausgeber: Bundesamt für Naturschutz (BfN) Konstantinstr. 110, 53179 Bonn URL: www.bfn.de

Der institutionelle Herausgeber übernimmt keine Gewähr für die Richtigkeit, die Genauigkeit und Vollständigkeit der Angaben sowie für die Beachtung privater Rechte Dritter. Die in den Beiträgen geäußerten Ansichten und Meinungen müssen nicht mit denen des institutionellen Herausgebers übereinstimmen.

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des institutionellen Herausgebers unzulässig und strafbar.

Nachdruck, auch in Auszügen, nur mit Genehmigung des BfN.

Druck: Westermann Druck Zwickau GmbH

Bezug über: BfN-Schriftenvertrieb – Leserservice – im Landwirtschaftsverlag GmbH 48084 Münster Tel.: 02501/801-300, Fax: 02501/801-351

ISBN 978-3-7843-4073-9 // eISBN 978-3-7843-9239-4

DOI 10.19213/973173

Gedruckt auf "Cirkle Silk Premium White", hergestellt aus 100 % Recyclingmaterial, FSC[®] zertifiziert und mit dem EU Ecolabel ausgezeichnet.

Bonn - Bad Godesberg 2021

oder im Internet: www.buchweltshop.de/bfn

Inhaltsverzeichnis

Abbilo	lungsverzeichnis	9
Tabellenverzeichnis25		
Abkür	zungsverzeichnis	27
Vorwo	ort	31
1	Einleitung	33
2	Übersicht über die ausgewerteten Quellen	34
3	Grundlegende Anforderungen an den Fischschutz und Fischabstieg	40
3.1	Biologische Aspekte und Mechanismen	40
3.1.1	Abwandernde Entwicklungsstadien	40
3.1.2	Schwimmleistung	48
3.1.3	Schwimmverhalten	54
3.1.4	Abwanderverhalten	57
3.1.5	Tages- und Jahresrhythmik	64
3.2	Auswirkungen einer eingeschränkten stromab gerichteten Durchgängigkeit	70
3.2.1	Einfluss von Staubauwerken auf die Abwanderung	71
3.2.2	Mortalität bei der Passage von Turbinen	80
3.2.3	Mortalität durch Prädation	114
3.2.4	Andere Risiken bei der Abwanderung	116
3.2.5	Auswirkungen der eingeschränkten Durchgängigkeit auf Fischpopulationen	116
4	Fischökologisch-technische Wirkungsweise von Fischschutz- und Abstiegsanlagen	130
4.1	Verhaltensbarrieren	130
4.1.1	Elektrische Scheuchanlagen	131
4.1.2	Akustische Scheuchanlagen	137
4.1.3	Optische Scheuchanlagen	141
4.1.4	Kettenvorhänge	142
4.1.5	Luftblasenvorhänge	143
4.1.6	Wasserstrahlvorhänge	144

4.1.7	Scheuchen durch chemische Substanzen	145
4.1.8	Hybrid-Verhaltensbarrieren	145
4.2	Mechanische Barrieren	145
4.2.1	Bauweisen	146
4.2.2	Reinigung mechanischer Barrieren	179
4.2.3	Lichte Weite mechanischer Barrieren	192
4.2.4	Anströmung mechanischer Barrieren	206
4.2.5	Anordnung mechanischer Barrieren	218
4.3	Leiteinrichtungen	246
4.3.1	Tauchwand	246
4.3.2	Sohlleitwand	249
4.4	Bypässe	252
4.4.1	Auffindbarkeit von Bypässen	255
4.4.2	Akzeptanz von Bypässen	277
4.4.3	Passierbarkeit der Bypassleitung	287
4.4.4	Bauformen von Bypässen	289
4.4.5	Unterhaltung von Bypässen	297
4.5	Fischschonende Turbinen	298
4.5.1	Mechanismen	298
4.5.2	Bauformen fischschonender Turbinen	300
4.5.3	Minimum Gap Runner	301
4.6	Fischschonendes Betriebsmanagement	308
4.6.1	Fischschonendes Betriebsmanagement für potamodrome Arten	308
4.6.2	Fischschonendes Betriebsmanagement für anadrome Arten	310
4.6.3	Fischschonendes Betriebsmanagement für den katadromen Aal	312
4.7	Fang und Transport	324
4.7.1	Fang und Transport von Lachssmolts	325
4.7.2	Fang und Transport von Blankaalen	325
4.8	Habitatmaßnahmen	329
5	Art- und entwicklungsspezifische Anforderungen an Fischschutz und Fischabstieg	333
5.1	Zielarten	333

5.2	Bemessungsarten	
6	Offene Fragen und Wissensdefizite	
6.1	Populationsschutz	
6.2	Mortalitätsursachen	
6.3	Verhaltensbarrieren	
6.4	Leiteinrichtungen	
6.5	Mechanische Barrieren	
6.6	Bypässe	
6.7	Fischschonende Turbinen	
6.8	Fischschonendes Betriebsmanagement	
6.9	Fang und Transport	
6.10	Habitatmaßnahmen	
6.11	Technische und hydraulische Fragestellungen	
6.12	Zusammenstellung der Forschungsfragen	
7	Grundlagen für den Bau von Fischschutz- und -abstiegsanlagen	357
7.1	Standörtlich relevante Faktoren	
7.1.1	Allgemeine Angaben	
7.1.2	Angaben zur Wasserkraftanlage und zur Betriebsweise	
7.1.3	Relevante Angaben für die Planung von Fischschutz- und Fischabstiegsanlagen	
7.2	Auswirkungen auf die Wasserkraftnutzung	
7.2.1	Strömungsmechanische Auswirkungen	
7.2.2	Energetische Auswirkungen	
7.2.3	Batriablicha Auswirkungan	
7.3	Detriebliche Auswirkungen	
	Kostenfaktoren	
7.3.1	Kostenfaktoren Fischschutz	
7.3.1 7.3.2	Kostenfaktoren Fischschutz Fischabstieg	
7.3.1 7.3.2 7.4	Kostenfaktoren Fischschutz Fischabstieg Synergien mit Fischaufstiegsanlagen	
7.3.1 7.3.2 7.4 7.4.1	Kostenfaktoren Fischschutz Fischabstieg Synergien mit Fischaufstiegsanlagen Hydraulische Synergien	

8	Charakterisierung der Pilotstandorte Eddersheim und Griesheim	386
8.1	Standort Eddersheim	386
8.1.1	Beschreibung des Standortes	386
8.1.2	Hydrologie	391
8.1.3	Turbinenbetrieb Eddersheim	391
8.1.4	Vorhandene Abstiegskorridore	393
8.1.5	Schutzziele und planungsrelevante Arten	397
8.2	Standort Griesheim	400
8.2.1	Beschreibung des Standortes	400
8.2.2	Hydrologie	403
8.2.3	Turbinenbetrieb Griesheim	403
8.3	Daten zu chemisch-physikalischen Parametern und deren Einfluss auf Fische und Wasserkraftanlagen	404
8.3.1	Wassertemperatur	405
8.3.2	Sauerstoffgehalt	407
8.3.3	pH-Wert	408
8.3.4	Leitfähigkeit	409
9	Identifikation konkreter Maßnahmen für den Fischschutz und den Fischabstieg an den Wasserkraftanlagen Eddersheim und Griesheim	411
9.1	Grundsätzlich geeignete Maßnahmen für die Standorte	411
9.1.1	Verhaltensbarrieren	411
9.1.2	Mechanische Barrieren	411
9.1.3	Leiteinrichtungen	414
9.1.4	Bypässe	414
9.1.5	Fischschonende Turbinen	415
9.1.6	Fischschonendes Betriebsmanagement	416
9.1.7	Fang und Transport	416
9.1.8	Habitatmaßnahmen	416
9.2	Empfohlene Bauweisen	417
9.2.1	Alternative 1: Schrägrechen mit horizontalen Stäben, Bypass am Wehr	417

9.2.2	Alternative 2: Schrägrechen mit horizontalen Stäben, Bypass am Ufer	423
9.2.3	Alternative 3: Flachrechen mit vertikalen Stäben	426
9.2.4	Prüfung der technischen Umsetzungsmöglichkeit	431
9.2.5	Auswahl der Vorzugsalternativen und Standortzuordnung	432
9.2.6	Interimsmaßnahmen	439
10	Studydesign-Vorschläge für die Pilotstandorte Eddersheim und Griesheim	443
10.1	Administrative Voraussetzungen	443
10.1.1	Fischerei	443
10.1.2	Tierschutz	444
10.1.3	Wasserrecht	445
10.1.4	Arbeitsschutz	446
10.1.5	Schiffahrt	446
10.2	Bauliche Voraussetzungen	447
10.3	Fragestellungen	450
10.3.1	Verteilung der abwandernden Fische im Gewässer	452
10.3.2	Schutzfunktion des Rechens	454
10.3.3	Leitfunktion des Rechens	456
10.3.4	Wirksamkeit von Leitstrukturen	458
10.3.5	Auffindbarkeit und Akzeptanz von Bypässen	459
10.3.6	Auffindbarkeit und Akzeptanz anderer Abstiegskorridore	461
10.3.7	Effizienz des Fischabstiegs	463
10.3.8	Mortalität bei der Turbinenpassage	464
10.3.9	Mortalität bei der Passage anderer Wanderkorridore	466
10.3.10	Zuverlässigkeit von Frühwarnsystemen	468
10.3.11	Effizienz eines fischschonenden Anlagenmanagements	469
10.3.12	Gesamtmortalität bei der Passage des Standortes	470
10.3.13	Technische Fragestellungen	471
10.4	Methoden	472
10.4.1	Hydraulische Modellierung	473
10.4.2	Erfassung abiotischer Parameter	474

Artenliste		
Literatu	Literaturverzeichnis	
11	Zusammenfassung	520
10.4.7	Erfassung von Verletzungen und Schädigungen	510
10.4.6	Fang abwandernder Fische	498
10.4.5	Imaging Sonare	494
10.4.4	HDX-Transponder	485
10.4.3	Telemetrie	475

Abbildungsverzeichnis

Abb. 2.1:	Alter der ausgewerteten Quellen	34
Abb. 2.2:	Art der ausgewerteten Literatur	35
Abb. 2.3:	Themen der ausgewerteten Quellen	36
Abb. 2.4:	In den Quellen behandelte Anlagen und Verfahren zum Fischschutz und Fischabstieg	37
Abb. 2.5:	In den Quellen behandelte Gilden bzw. Arten	38
Abb. 2.6:	Herkunft der ausgewerteten Quellen aus verschiedenen Ländern	39
Abb. 3.1:	Längenfrequenz der in der Saison 2009 in der Weser bei Drakenburg bei der Abwanderung mittels Schokkerfängen registrierten Lachssmolts	42
Abb. 3.2:	Längenfrequenz der in der Saison 2009 in der Weser bei Drakenburg bei der Abwanderung mittels Schokkerfängen registrierten Meerforellensmolts	43
Abb. 3.3:	Historische Aufnahme vom Lachsfang an der Ahr (Rheinland-Pfalz)	44
Abb. 3.4:	Kadaver abgelaichter Maifische am Rechen eines Kraftwerks an der französischen Dordogne	45
Abb. 3.5:	Längenfrequenz der in der Saison 2008/09 in der Weser bei Landesbergen mit Schokkern gefangenen Aale	46
Abb. 3.6:	Größenspektrum Fische Saale	47
Abb. 3.7:	Größenspektrum Fische Ivan'kovskoe-Stausee	47
Abb. 3.8:	Schwimmleistung von Fischen	49
Abb. 3.9:	Kritische Schwimmgeschwindigkeit verschiedener Arten in Abhängigkeit von der Körperlänge	50
Abb. 3.10:	Fortbewegungstypen	51
Abb. 3.11:	Schwanzflossentypen	52
Abb. 3.12:	Amerikanisches Laborexperiment zur Ermittlung der Schwimmleistung eines Meerneunauges	54
Abb. 3.13:	Vektoren bei der aktiven Abwanderung	56
Abb. 3.14:	Vektoren bei der aktiv/passiven Abwanderung	56
Abb. 3.15:	Vektoren bei der passiven Abwanderung	57

Abb. 3.16:	Suchverhalten eines telemetrisch besenderten Amerikanischen Aals vor dem Einlaufbauwerk des Wasserkraftwerks Cabot am Connecticut River	. 62
Abb. 3.17:	Vergleich der circadianen Rhythmik der Blankaalabwanderung	. 67
Abb. 3.18:	Vektoren bei ungestörter Abwanderung, Unterbrechung und Flucht	. 71
Abb. 3.19:	Schematischer Querschnitt einer Walze des Wehres Offenbach am hessischen Main	.75
Abb. 3.20:	Unterströmte Walze des Wehres Offenbach bei hohem Abfluss	.75
Abb. 3.21:	Das Wehr Kostheim am hessischen Main bei Hochwasser	76
Abb. 3.22:	Schematischer Querschnitt durch eine Klappe	77
Abb. 3.23:	Klappe des Wehres Mühlheim am hessischen Main mit Strömungsaufreißern an der Oberkante	. 77
Abb. 3.24:	Trockengelegtes mittleres Wehrfeld des Wehres Offenbach am hessischen Main	78
Abb. 3.25:	Multiple Fraktur der Wirbelsäule bei einem äußerlich ungeschädigten Aal nach der Turbinenpassage	. 84
Abb. 3.26:	Wirbelbrüche und Hämatome entlang der Wirbelsäule eines turbinierten Aals	. 85
Abb. 3.27:	Schematische Darstellung des Wasserstroms im Bereich der Laufradschaufelkanten im Zeitraum einer Umdrehung eines 4-flügeligen Laufrades	. 87
Abb. 3.28:	Geschwindigkeitsvektoren beim Eintritt des Wassers in eine Turbine	89
Abb. 3.29:	Position und Ausrichtung von Schnittwunden	91
Abb. 3.30:	Überlebensrate von Regenbogenforellen nach einem Aufprall	95
Abb. 3.31:	Überlebensrate von Regenbogenforellen und Weißen Stören bei einer Aufprallgeschwindigkeit von 10 bis 12 m/s	. 96
Abb. 3.32:	Spalten zwischen dem Laufrad einer Kaplanturbine und der Nabe (links) sowie dem Turbinengehäuse (rechts)	97
Abb. 3.33:	Durchtrennter Aal im Unterwasser eines Wasserkraftwerkes	. 98
Abb. 3.34:	Decapitierte Plötze aus dem Unterwasser eines Wasserkraftwerks	. 98

Abb. 3.35:	Teildurchtrennung eines Fischkörpers infolge des Abtauchens des Schaufelblattes eines Wasserrades in sein Kropfgerinne
Abb. 3.36:	Schwimmblasenruptur (links) und prall gedehnte Schwimmblase bei Zandern (rechts)101
Abb. 3.37:	Röntgenaufnahmen von Kaulbarschen mit geplatzter (links) und mit intakter Schwimmblase (rechts)101
Abb. 3.38:	Hilflos an der Wasseroberfläche treibender Zander mit Barotrauma101
Abb. 3.39:	Mortalitätsrate von Fischen in Abhängigkeit von einer Druckentlastung102
Abb. 3.40:	Mortalitätsrate von Fischen in Abhängigkeit von der Dekompressionsrate103
Abb. 3.41:	Modell der Stauanlage Kesselstadt am hessischen Main (BAW 1981)105
Abb. 3.42:	Von einem Drucksensor während der Passage der Turbine des Wasserkraftwerks Kesselstadt am Main augezeichneter Druckverlauf106
Abb. 3.43:	Darstellung von Pavlov (2002) zur Mortalität juveniler Plötzen, Moderlieschen und Salmoniden in Abhängigkeit vom Druckgradienten107
Abb. 3.44:	Gasblasenkrankheit bei einer Groppe (links) in Form gasgefüllter Blasen unter der Haut und einer Bachforelle (rechts) im Bereich des Auges109
Abb. 3.45:	Bachforelle im Unterwasser einer Mühle am Dörsbach in Rheinland-Pfalz, die einen turbinierten Aal erbeutet hat115
Abb. 3.46:	Fiktives Szenario für die kumulativen Verluste abwandernder Lachssmolts im Verlauf der Sieg119
Abb. 3.47:	Modellhafte Darstellung der kumulativen Verluste bei der Abwanderung in Abhängigkeit von der Anzahl der Wasserkraftanlagen121
Abb. 3.48:	Im "Mosellum" am Moselwehr Koblenz ausgestelltes Präparat einer Meerforelle123
Abb. 3.49:	Fiktives Szenario für die kumulativen Verluste abwandernder Blankaale im Verlauf der Sieg126
Abb. 4.1:	Aufbau einer elektrischen Fischscheuchanlage133
Abb. 4.2:	Typische Anordnung der Elektroden einer elektrischen Fischscheuchanlage vor einem Einlaufbauwerk134

Abb. 4.3:	Elektroden der Elektroscheuchanlage am Entnahmebauwerk eines thermischen Kraftwerks während
Abb 11.	Uer Bauphase
ADD. 4.4.	Polschweiten einnemischer Fische
ADD. 4.5:	Schema des Bio-Acoustic Fish Fence (BAFF) 139
Abb. 4.6:	Infrasound-Anlage im Oberwasserkanal des Wasserkraftwerks Biron am Gave de Pau, Frankreich
Abb. 4.7:	Bypass für die Lachsabwanderung am Wasserkraftwerk Pointis an der Garonne (Frankreich)142
Abb. 4.8:	Kettenvorhang an der Wasserkraftanlage Prossen im Lachsbach, Sachsen
Abb. 4.9:	Luftblasenvorhang an der Baustelle eines Windkraftwerks im Windpark Borkum als Schallschutzmaßnahme gegenüber Schweinswalen
Abb. 4.10:	Aufbau eines konventionellen Rechens 147
Abb. 4.11:	Konventioneller Rechen mit Rechenreiniger am Wasserkraftwerk Ahl an der Lahn (Rheinland-Pfalz)
Abb. 4.12:	Detail eines konventionellen 40 mm-Rechen (WKA ECI Centrale, Roermond/NL, vor dem Umbau)148
Abb. 4.13:	Aufbau und Anströmung eines Modified Bar Racks, im Vergleich zu einem herkömmlichen Schrägrechen (Bar Rack) und einem Louver (Draufsicht)149
Abb. 4.14:	Die Wasserkraftanlage "Auer Kotten" an der Wupper (Nordrhein-Westfalen)
Abb. 4.15:	Rechenanlage mit horizontaler Stabausrichtung (Bauphase)
Abb. 4.16:	Wasserkraftanlage Unkelmühle; Einlaufbereich zur WKA mit Rechenanlage152
Abb. 4.17:	Wasserkraftanlage Unkelmühle; Rechenfelder mit Reinigungsanlagen
Abb. 4.18:	Rechen bzw. Rechenstab mit Tropfenprofil an der Wasserkraftanlage Mihla (Werra, Thüringen)
Abb. 4.19:	Der sogenannte "FischSchonRechen" in Seiten- und Frontalansicht
Abb. 4.20:	Dreiecksprofil eines Wedge-Wire-Screens mit 1 mm lichter Weite

Abb. 4.21:	Flach geneigter Wedge-Wire-Screen vor dem Einlauf des Wasserkraftwerk Floecksmühle an der Nette (Rheinland- Pfalz)156
Abb. 4.22:	Flach geneigter 10 mm-Lochblechrechen mit Bürstenreiniger am überströmten Wasserkraftwerk in Wetzlar an der Lahn, Hessen157
Abb. 4.23:	Funktionsprinzip des Chan Bar-Rechens159
Abb. 4.24:	Einbau eines aus vier Feldern bestehenden Chan Bar im Winkel von 40° im ethohydraulischen Modellgerinne, im Bild links der Bypass
Abb. 4.25:	Aufbau und Anströmung eines Louver (Draufsicht) in Kombination mit einem Bypass am abstromigen Ende161
Abb. 4.26:	Aufbau und Anströmung eines Louvers im Vergleich zu einem konventionellen Schrägrechen (Draufsicht)161
Abb. 4.27:	Louver für ethohydraulische Tests in der wasserbaulichen Versuchshalle der Technischen Universität Darmstadt162
Abb. 4.28:	Louver im Oberwasserkanal eines Wasserkraftwerks am Holyoke Dam am Connecticut River (USA)162
Abb. 4.29:	Prinzipskizze einer umlaufenden Abschirmung164
Abb. 4.30:	Oberer Scheitelpunkt einer Multi-Diskanlage167
Abb. 4.31:	Funktionsweise Multi-Diskanlage167
Abb. 4.32:	Ehemaliger Rollrechen mit aufgeschraubten Trögen an der Wasserkraftanlage Hadamar am Elbbach (Hessen)169
Abb. 4.33:	"Intelligenter Rechen" am Wasserkraftwerk Griesheim
Abb. 4.34:	Prinzipskizze der Fischableitung am dynamischen Rechen171
Abb. 4.35:	Rollrechen in Haslach an der Kinzig (Baden-Württemberg)172
Abb. 4.36:	Detail des 10 mm-Lochblech-Rollrechens der WKA Steinach
Abb. 4.37:	Lageplan des Einlaufbauwerks für Bewässerungszwecke und Wasserkraftnutzung am Roza Dam, Yakima River (USA, Washington)174
Abb. 4.38:	Schematischer Längsschnitt durch eine Trommelsiebanlage175
Abb. 4.39:	Aus einem Wedge-Wire-Screen gefertigtes Trommelsieb mit einem Durchmesser von ca. 1 m175
Abb. 4.40:	Kühlwasserentnahme des Rheinhafendampfkraftwerks Kalrsruhe (Baden-Württemberg)177

Abb. 4.41:	Teilabschirmung im Turbineneinlauf des Wasserkraftwerks Bonneville Dam am Columbia River (USA, Washington State)17	78
Abb. 4.42:	Schematische Darstellung einer Wasserkraftanlage mit Flachrechen, Spülrinne und Knickarm- bzw. Teleskoparm- Rechenreiniger	32
Abb. 4.43:	Reinigungsarm und Spülrinne an der Wasserkraftanlage Unkelmühle an der Sieg (Nordrhein-Westfalen)	32
Abb. 4.44:	Knickarm-Rechenreiniger mit Grobrechen im oberen Bereich des Flachrechenfeldes an der Wasserkraftanlage Willstätt an der Kinzig (Baden-Württemberg)	33
Abb. 4.45:	Reinigungsbürste des Flachrechens der Wasserkraftanlage Willstätt an der Kinzig (Baden- Württemberg)	33
Abb. 4.46:	Reinigungsbürste nach Reinigungseinsatz an der Wasserkraftanlage Willstätt an der Kinzig (Baden- Württemberg)	34
Abb. 4.47:	Teleskoparmreiniger 18	35
Abb. 4.48:	Seilzugreiniger an einem Rechen mit vertikaler Stabausrichtung mit Mehrschalengreifer zur Entnahme von grobem Treibgut	36
Abb. 4.49:	Seilzugreiniger am Rechen mit vertikaler Stabausrichtung der Wasserkraftanlage Lahnstein an der Lahn (Rheinland- Pfalz);	36
Abb. 4.50:	Reinigungsanlage Horizontalrechen an der Wasserkraftanlage Auer Kotten an der Wupper (Nordrhein-Westfalen)	38
Abb. 4.51:	Knickarmreiniger und Schienensystem an einem Horizontalrechen	38
Abb. 4.52:	Reinigungsanlage Horizontalrechen an der Wasserkraftanlage Auer Kotten an der Wupper (Nordrhein-Westfalen)18	39
Abb. 4.53:	Hydraulik-Ladekran mit Mehrschalengreifer zur Entnahme von grobem Treibgut an der Wasserkraftanlage Lehmen an der Mosel (Rheinland-Pfalz)19	90
Abb. 4.54:	Bemessungsrelevante Körpermaße von Fischen)3
Abb. 4.55:	Bei Stabrechen entscheidet die Körperdicke des Fisches über die Passierbarkeit	93

Abb. 4.56:	Bei mechanischen Barrieren mit Maschen oder Löchern entscheidet die Körperhöhe des Fisches über die Passierbarkeit	94
Abb. 4.57:	Längenfrequenz der in der Saison 2009 in der Weser bei Drakenburg bei der Abwanderung mittels Schokkerfängen registrierten Lachssmolts20	00
Abb. 4.58:	Längenfrequenz der in der Saison 2009 in der Weser bei Drakenburg bei der Abwanderung mittels Schokkerfängen registrierten Meerforellensmolts20)1
Abb. 4.59:	Längenfrequenz der in der Saison 2008/09 in der Weser bei Landesbergen bei der Abwanderung mittels Schokkerfängen registrierten Aale20)2
Abb. 4.60:	Smolt-Bypass Kraftwerk Auerkotten)6
Abb. 4.61:	Anströmgeschwindigkeit vor einem Rechen20)7
Abb. 4.62:	Vektoren der Anströmgeschwindigkeit an einem senkrecht stehenden und einem zur Sohle im Winkel α geneigt Rechen20)8
Abb. 4.63:	Das Wasserkraftwerk Wahnhausen an der Fulda (Hessen)21	12
Abb. 4.64:	Aale im Rechengutcontainer Wasserkraftwerk Wahnhausen21	13
Abb. 4.65:	Quergestreifte Aale im Rechengutcontainer der Wasserkraftanlage Wahnhausen21	13
Abb. 4.66:	Anpressen eines Aals an einen 20 mm-Rechen im ethohydraulischen Versuch bei $V_A > 0,5$ m/s21	14
Abb. 4.67:	Herkömmlicher Kraftwerksrechen im Schnitt: $\alpha \approx 80^{\circ}\beta \approx$ 90°21	18
Abb. 4.68:	Flachrechen im Schnitt $\alpha < 45^\circ$, $\beta \approx 90^\circ$ 21	19
Abb. 4.69:	Schrägrechen in Draufsicht: $\alpha \approx 90^\circ$, $\beta < 45^\circ$ 21	19
Abb. 4.70:	Verharrende Fische vor mechnischen Barrieren22	20
Abb. 4.71:	Phasen der Umkehrreaktion von Aalen22	22
Abb. 4.72:	Beispiele für flach geneigte Rechen an historischen Kleinwasserkraftanlagen im hessischen Mittelgebirge22	23
Abb. 4.73:	Flachrechen mit vertikaler Stabausrichtung22	24
Abb. 4.74:	Ethohydraulische Tests mit Aalen auf einem flach geneigten Wedge-Wire-Screen	25

Abb. 4.75:	Ein ca. 70 cm langer Aal passiert aktiv Schwanz-voran einen Flachrechen mit einer lichten Weite von 20 mm	. 226
Abb. 4.76:	Prinzipskizze des Modular Inclined Screen in Längsschnitt (oben) und Aufsicht (unten)	. 229
Abb. 4.77:	Versuchsaufbau mit einem Modular Inclined Screen im Wasserbaulabor des Alden Research Laboratory in Holden (USA)	. 230
Abb. 4.78:	Prinzipskizze des Eicher Screens im Längsschnitt	. 230
Abb. 4.79:	Versuchsanlage des Eicher-Screen im Wasserborlabor des Alden Research Laboratory in Holden (USA)	. 231
Abb. 4.80.	Versuchsanlage eines dort entwickelten Schachtkraftwerks an der TU München	. 233
Abb. 4.81:	Schrägrechen mit Spülschütz am stromabwärtigen Ende am Döllbach in Rothemann (Hessen)	. 234
Abb. 4.82:	Schrägrechen Wasserkraftanlage Baigts am Gave de Pau (Frankreich)	. 235
Abb. 4.83:	Wasserkraftanlage Planena, Ansicht von Oberwasser	. 236
Abb. 4.84:	Fischabstiegsrinne mit Drehtor an der Wasserkraftanlage Planena (Saale)	. 237
Abb. 4.85:	Schema der Fischbewegung im Bereich einer schräg zur Anströmung angeordneten Barriere	. 238
Abb. 4.86:	Wellenförmige Schwimmbahn eines Fisches entlang einer schräg angeordneten mechanischen Barriere	. 239
Abb. 4.87:	Schema der Fischbewegung in der Nähe einer Barriere	. 240
Abb. 4.88:	Prinzip des Gierens bei Fischen	. 242
Abb. 4.89:	Ein Scherbretthamen wird vom Ufer aus mittels Steuerdraht durch das Gieren des Schwimmkörpers aufgespannt	. 242
Abb. 4.90:	Die Fäden einer Fadenharfe vor einem Schrägrechen werden tangential nicht ausgelenkt	. 243
Abb. 4.91:	Schrägrechen des Wasserkraftwerks "Auer Kotten" an der Wupper (Nordrhein-Westfalen)	. 245
Abb. 4.92:	Prinzipskizze einer Tauchwand, Schnitt	. 246
Abb. 4.93:	Anordnung der Tauchwand am Wasserkraftwerk Bellows Falls am Connecticut River (USA) mit einem am abstromigen Ende gelegenen Bypass	. 247

Tauchwand vor dem Einlauf des Wasserkraftwerks Bellows Falls am Connecticut River (USA)	.247
Schematische Darstellung eines der Tauchwandelemente, wie sie an den Wasserkraftwerken Sikfors (Piteälven) und Norrfors (Umeälven/Vindelälven) installiert wurden	248
Verhalten von Aalen an Leitelementen	.249
Geschiebeschwelle unterhalb des Schrägrechens an der Wasserkraftanlage Auer Kotten an der Wupper (Nordrhein-Westfalen)	.250
Einlauf des Wasserkraftwerks "Auer Kotten" an der Wupper (Nordrhein-Westfalen)	.254
Simulation massereicher Haupströmung und Teilströmungen durch Bypassöffnungen	.256
Sohlennaher (\rightarrow) und oberflächennaher (\uparrow) Bypass an der ECI Zentrale, Roermond, Niederlande	.258
Aufteilung der abwandernden Exemplare ausgewählter Arten auf den sohlen- und den oberflächennahen Bypass an der ECI Zentrale, Roermond, Niederlande	.259
Stromaufwärts vor dem Rechen gelegene Bypässe können nur zufällig aufgefunden werden	.260
Schema der Bypassanordnung am Wasserkraftwerk Soeix am Gave d'Aspe (Frankreich) sowie bei gelenztem Oberwasserkanal	.262
Flach zur Sohle in Fließrichtung geneigter Rechen mit Bypassrinne (Draufsicht)	.264
Im Winkel von 15° zur Sohle in Fließrichtung geneigter 5 mm-Wedge-Wire-Screen mit Bypassrinne im Labor	.265
Phasen der Verdriftung eines Aals	.266
Im Winkel von 24° flach zur Sohle geneigter 5,3mm Wedge-Wire-Screen vor dem Wasserkraftwerk Floecksmühle an der Nette (Rheinland-Pfalz)	.267
Aal bei der Passage sowie ein weiteres Exemplar vor der nur knapp überstauten Rechenoberkante	.268
Flach geneigter 10 mm-Rechen der Wasserkraftanlage "Unkelmühle" an der Sieg (Nordrhein-Westfalen)	.269
Bypasseinstieg am abstromigen Ende eines schräg zur Anströmung gestellten Rechens	.271
Funktionsprinzip der Bottom Gallery [®]	.272
	Tauchwand vor dem Einlauf des Wasserkraftwerks Bellows Falls am Connecticut River (USA)

Abb. 4.112:	Die nach einer Umkehrreaktion an einem Rechen stromauf fliehenden Aale (links) finden Schutz in der Bottom Gallery [®] (rechts)	273
Abb. 4.113:	Die Bottom Gallery [®] am Wasserkraftwerk Gerlachshausen am Main	274
Abb. 4.114:	Im Modellgerinne quer zum Rechen verlaufendes Zickzackrohr in Kombination mit Borstenbündeln	275
Abb. 4.115:	Von der Firma KLAWA an der Enz (Baden-Württemberg) installiertes Zickzackrohr	276
Abb. 4.116:	Bypassöffnung (links) strömungsparallel neben dem Rechen und (rechts) orthogonal dazu	279
Abb. 4.117:	Draufsicht auf einen Schrägrechen (links unten) mit orthogonaler Bypassöffnung (rechts)	280
Abb. 4.118:	Vergleich der Vena contracta abstrom einer runden und einer flächengleichen quadratischen Bypassöffnung	282
Abb. 4.119:	Numerische Analyse der Strömungssignaturen innerhalb eines Konfusors von einer rechteckigen Bypassöffnung auf eine Röhre DN 300	283
Abb. 4.120:	Trichterförmige Einlaufgestaltung des Lachsbypasses am Staudamm Poutès am Allier (Frankreich)	286
Abb. 4.121:	Einlauf des Lachsbypasses an der ECI-Centrale (Roermond NL) mit temporären Einbauten zur Optimierung der Strömungsverhältnisse	286
Abb. 4.122:	Mündung des Bypasses am Wasserkraftwerk Bellows Falls am Connecticut River (USA)	289
Abb. 4.123:	Konventioneller Rechen des Wasserkraftwerks Herrenhausen an der Leine (Niedersachsen)	293
Abb. 4.124:	Umlaufender Lochblechrechen an der Kinzig (Baden- Württemberg)	293
Abb. 4.125:	Bonneville Dam am Columbia River (USA)	296
Abb. 4.126:	Dauerhafte Verlegung der oberflächennahen Bypassöffnung an der Wasserkraftanlage Auer Kotten an der Wupper (Nordrhein-Westfalen) durch Äste und Laub	297
Abb. 4.127:	Detail einer MGR Turbine	302
Abb. 4.128:	Vergleich eines konventionellen Laufrades links mit einem MG-Runner rechts	303
Abb. 4.129:	Alden-Turbine	305
Abb. 4.130:	Pentair Fairbanks Nijhuis-Turbine	305

Abb. 4.131:	Fischschonende Turbine Dörverden	7
Abb. 4.132:	Das Pumpspeicherkraftwerk Geesthacht an der Elbe (Schleswig-Holstein)	9
Abb. 4.133:	Zusammenhang zwischen dem Abfluss der Lahn am Standort Lahnstein (Rheinland-Pfalz) und dem Abwanderzeitpunkt von Lachssmolts zwischen dem 25. April und dem 27. Mai 199631	1
Abb. 4.134:	Fangzahlen von Salmonidensmolts in der Zeit vom 10. April bis zum 31. Mai 2009 sowie Abfluss der Weser am Pegel Drakenburg (Niedersachsen)	1
Abb. 4.135:	MIGROMAT [®] am Wasserkraftwerk Wahnhausen an der Fulda (Hessen)	4
Abb. 4.136:	Schematischer Aufbau des MIGROMAT [®]	5
Abb. 4.137:	Abflussaufteilung an der Staustufe Mühlheim bei Normalbetrieb des Wasserkraftwerkes, absolute Abflüsse (bei 500 m³/s abgeschnitten)31	7
Abb. 4.138:	Abflussaufteilung an den Staustufen Mühlheim und Offenbach während des aalschützenden Betriebs in der Saison 2014/15 (bei 500 m ³ /s abgeschnitten)31	7
Abb. 4.139:	Mortalitätsrate von Blankaalen im Wasserkraftwerk Linne an der Maas (NL) in Abhängigkeit vom Turbinendurchfluss319	9
Abb. 4.140:	MIGROMAT® in Killaloe am Shannon (Irland)32	2
Abb. 4.141:	An der Brücke von Killaloe für den Fang von Aalen installierte Hamen	2
Abb. 4.142:	Heben einer Reuse mit Aalen vor der Sperrzone (Schild auf der Boje links) des Wasserkraftwerks Lehmen/Mosel32	6
Abb. 4.143:	Skizze Reusenanordnung (Dreiecke) an einem Moselstandort	7
Abb. 4.144:	Verletzungen von Aalen, die durch die Fangtechnik entstehen	9
Abb. 7.1:	Bedeutung der Strömungsstrukturen an einem Wasserkraftstandort für unterschiedliche Aspekte (exemplarisch)	1
Abb. 7.2:	Querschnitt durch eine Rechenanlage parallel zur Gewässerachse, Definition der Verlusthöhe h _{v,re}	4
Abb. 7.3:	Querschnittsformen von parallel angeströmten Rechenstäben und deren experimentell ermittelte Formbeiwerte β,	5

Abb. 7.4:	Simulationsergebnisse für Rechen mit lichter Weite von 10 mm	366
Abb. 7.5:	Ergebnisübersicht mit Auswahl wichtiger Konfigurationen	369
Abb. 7.6:	Auswirkungen der Bypassabgabe auf die Jahresarbeit von Wasserkraftanlagen	372
Abb. 8.1:	Übersicht Standort Eddersheim	386
Abb. 8.2:	Draufsicht Stauanlage Eddersheim	387
Abb. 8.3:	Nordschleuse WKA Eddersheim, Blick Richtung Unterwasser	388
Abb. 8.4:	Unterwasserseitige Ansicht der WKA Eddersheim	389
Abb. 8.5:	Unterwasserseitige Ansicht des linken Wehrfeldes	390
Abb. 8.6:	Dauerlinie des Mains am Standort Eddersheim/Pegel Raunheim	391
Abb. 8.7:	Anordnung der einzelnen Turbinen und Wehrfelder Eddersheim	392
Abb. 8.8:	Dauerlinie Eddersheim mit Einsatzbereich Turbinenbetrieb	393
Abb. 8.9:	Mögliche Abstiegskorridore an der WKA Eddersheim	394
Abb. 8.10:	Ganglinie Eddersheim 2008 mit Abstiegszeiten für Lachssmolts und Aale	395
Abb. 8.11:	Ganglinie Eddersheim 2009	395
Abb. 8.12:	Ganglinie Eddersheim 2010	396
Abb. 8.13:	Oberwasserseitige Ansicht der WKA Griesheim	401
Abb. 8.14:	Unterwasserseitige Ansicht der Wehranlage Griesheim	402
Abb. 8.15:	Dauerlinie des Mains am Pegel Osthafen	403
Abb. 8.16:	Verlaufskurve der monatlichen Durchschnittswerte für die Wassertemperatur [°C] im hessischen Untermain	406
Abb. 8.17:	Verlaufskurve der halbstündlichen Messungen der Wassertemperatur [°C] im hessischen Untermain	407
Abb. 8.18:	Verlaufskurve der monatlichen Durchschnittswerte für den Sauerstoffgehalt [mg/l] im hessischen Untermain	408
Abb. 8.19:	Verlaufskurve der monatlichen Durchschnittswerte für den pH-Wert im hessischen Untermain	409
Abb. 8.20:	Verlaufskurve der monatlichen Durchschnittswerte für die Leitfähigkeit [µS/cm] im hessischen Untermain	410

Abb. 9.1:	Lageplan Alternative 1, Schrägrechen mit horizontalen Stäben, Bypass am Wehr, beispielhaft am Standort Eddersheim	418
Abb. 9.2:	Längsschnitt Alternative 1, Schrägrechen mit horizontalen Stäben, Bypass am Wehr, beispielhaft am Standort Eddersheim	420
Abb. 9.3:	Lageplan Alternative 2, Schrägrechen mit horizontalen Stäben, Bypass am Ufer, beispielhaft am Standort Eddersheim	424
Abb. 9.4:	Lageplan Alternative 3, Flachrechen mit vertikalen Stäben, beispielhaft am Standort Eddersheim	426
Abb. 9.5:	Detail Alternative 3, Flachrechen mit vertikalen Stäben	427
Abb. 9.6:	Rechen (10 mm) mit Grobrechen und Bypassöffnungen an der WKA Willstätt	429
Abb. 9.7:	Längsschnitt Alternative 3, Flachrechen mit vertikalen Stäben, beispielhaft am Standort Eddersheim	430
Abb. 9.8:	Wertzahlmatrix für die Auswahl der Vorzugsalternative	437
Abb. 10.1:	Funktionsprinzip der Radiotelemetrie und der akustischen Telemetrie	476
Abb. 10.2:	Akustischer Sender L-AMT 5.1 (Hintergrund ist ein mm- Raster)	477
Abb. 10.3:	Geöffnetes Hydrophon	478
Abb. 10.4:	Absenken eines Hydrophons an einem Ausleger	479
Abb. 10.5:	Zwei Diamantbojen an ihren jeweiligen Ankergewichten	480
Abb. 10.6:	Positionierung der Hydrophone an der Staustufe Offenbach	481
Abb. 10.7:	Setzen des Schnittes bei einem Blankaal, durch den der Sender in die Bauchhöhle eingeführt wird	482
Abb. 10.8:	Mit chirurgischer Heftung verschlossene Wunde nach Implantation des Senders	482
Abb. 10.9:	Bewegungsmuster eines Aals im Oberwasser der Staustufe Kesselstadt	484
Abb. 10.10:	HDX-Transponder der Größen11,9 x 2 mm, 23 x 3,9 und 32 x 3,9 mm	486
Abb. 10.11:	Funktionsprinzip der HDX-Technologie	487
Abb. 10.12:	6,0 m hohe und 1,3 m breite Rahmenantenne aus Kunststoff	488

Abb. 10.13:	Als Seilantenne konstruierte "schwimm durch"-Antenne in einem naturnahen Fischweg
Abb. 10.14:	Auf der Sohle eines Mutterbettes verlegte "schwimm drüber"-Antenne in Strickleiterbauweise
Abb. 10.15:	Subkutane Injektion eines 12 mm langen PIT-Tags dorsolateral hinter dem Kopf eines Aals
Abb. 10.16:	Transpondierung eines kleinschuppigen Salmoniden mit einem 23 mm langen PIT-Tag
Abb. 10.17:	Schema der mit HDX-Antennen überwachten Wanderkorridore am Auer Kotten
Abb. 10.18:	Rekonstruktion des Bewegungsmusters einer Barbe im Unterwasser und in den beiden Fischaufstiegsanlagen am Wehr Geesthacht an der Elbe
Abb. 10.19:	Sonarkörper des DIDSON™ 300 495
Abb. 10.20:	DIDSON [™] -Aufnahme verschiedener Fische einer Länge zwischen 5 und 45 cm im Identification Mode
Abb. 10.21:	Längsschnitt durch den Einlauf, das Spiralgehäuse und eine der Kaplan-Turbinen des Wasserkraftwerks Eddersheim
Abb. 10.22:	Schwimmponton zur Aufnahme der im Hamen gefangenen Fische
Abb. 10.23:	Schokker an der Mittelweser in Ruhestellung, mit angehobenen Unterbäumen (Ansicht in Fließrichtung) 507
Abb. 10.24:	Schokker an der Mittelweser (Seitenansicht) 508
Abb. 10.25:	An einem Fisch befestigter HI-Z Turb´n-Tag in komprimiertem (links) und gefülltem (rechts) Zustand,
Abb 10.000	Schemausch
ADD. 10.20:	Beispiele auserer venetzungen bei Gustern
ADD. 10.27:	Hamatome bei einem Stint
Abb. 10.28:	Rotungen an Korperfläche und Flossen bei einem Zander 514
Abb. 10.29:	Phasen einer Sektion, am Beispiel eines Güsters
Abb. 10.30:	Typische Angelverletzung an der Oberlippe eines Döbels 517
Abb. 10.31:	Kratzer einer Bachforelle nach vergeblichen Zugriffsversuchen eines Kormorans
Abb. 10.32:	Tiefe Fleischwunden nach Graureiher-Angriff 518
Abb. 10.33:	Schwere Verletzungen an der Flanke eines Döbels 518

Abb. 10.34:	Schuppenverluste in Form der Struktur des Fangnetzes	
	bei einem Lachssmolt	519

Tabellenverzeichnis

Tab. 3.1:	Alter und Gesamtlänge juveniler Wanderstadien anadromer Arten41
Tab. 3.2:	Anhand markierter Fische ermittelte Wanderdistanzen potamodromer Arten60
Tab. 3.3:	Jahresrhythmik juveniler Wanderstadien anadromer Arten70
Tab. 3.4:	Endgeschwindigkeit in der Abhängigkeit von Fischlänge und Höhe der zurückgelegten Strecke im freien Fall79
Tab. 3.5:	Grenzwerte für das Mortalitätsrisiko bei der Passage von Wehren80
Tab. 3.6:	Durchfluss, Drehzahl, und Mortalitätsrate bei den Untersuchungen zur Turbinenmortalität mit Regenbogenforellen
Tab. 3.7:	Letale Druckwellen für verschiedene Fischarten110
Tab. 3.8:	Ermittlung der Gesamtüberlebensrate abwandernder Blankaale für das fiktive Beispiel von Anderer et al. (2008)127
Tab. 4.1:	Formeln zur Berechnung der Körperdicke D _{Fisch} und Körperhöhe H _{Fisch} in Abhängigkeit von der Gesamtlänge L _{Fisch}
Tab. 4.2:	Passierbarkeit von Rechen in Abhängigkeit von Länge und Eintwicklungstadium198
Tab. 4.3:	Passierbarkeit von Rechen in Abhängigkeit von der Fischlänge sowie die zugehörige kritische Schwimmgeschwindigkeit217
Tab. 4.4:	Abwanderquoten von Lachssmolts und Blankaalen über Fischaufstiegsanlagen291
Tab. 4.5:	Zeiträume, Standorte, Methoden und Resultate von Monitoringuntersuchungen zum aalschonenden Betrieb von Wasserkraftanlagen
Tab. 4.6:	Fangmengen, Zahl der Transporte und Kosten für Fang und Transport von Aalen im Maingebiet (STMELF 2013)328
Tab. 6.1:	Derzeitige Anwendungsgrenzen von mechanischen Barrieren
Tab. 6.2:	Wissensdefizite mit Angabe von Untersuchungsmethoden, -dauer, -zeitraum und Relevanz

Tab. 7.1:	Untersuchte Konfigurationen für Projektierung und Vorbemessung des Rechensystems für ein Schweizer Kraftwerk an der Limmat ($Q_A = 80 \text{ m}^3/\text{s}$)	382
Tab. 8.1:	Anlagendaten der Wasserkraftanlage Eddersheim	390
Tab. 8.2:	Fischfaunistische Referenz für den hessischen Untermain sowie Gildenzugehörigkeit der Arten	398
Tab. 8.3:	Anlagendaten der WKA Griesheim	402
Tab. 9.1:	Abmessungen von mechanischen Barrieren	413
Tab. 9.2:	Baukostenannahme für Alternative 1	423
Tab. 9.3:	Baukostenannahme für Alternative 2	426
Tab. 9.4:	Baukostenannahme für Alternative 3	431
Tab. 10.1:	Übersicht über die zur Beantwortung der einzelnen biologischen Fragestellungen geeigneten Methoden	451

Abkürzungsverzeichnis

A	durchflossene Fläche
ATV	Abwassertechnische Vereinigung e. V.
ATV-DVWK	Abwassertechnische Vereinigung - Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (bis 2004)
BAFF	Bio-Acoustic Fish Fence
BAW	Bundesanstalt für Wasserbau
BfG	Bundesanstalt für Gewässerkunde
BinSchStrO	Binnenschifffahrtsstraßen-Ordnung
BMWi	Bundesministerium für Wirtschaft und Energie
D	Dekompressionsrate
D_{Fisch}	maximale Dicke des Fischkörpers
d_{max}	maximaler Durchmesser (hier: Kreisfläche des Turbinen- querschnitts)
d _{min}	minimaler Durchmesser (hier: Kreisfläche der innenliegenden Narbe)
$d_{M,L}$	lichte Weite der Maschen oder Durchmesser der Löcher un- durchlässiger mechanischer Barrieren
DN	Nennweite, innerer Durchmesser eines Rohres
d _R	lichte Weite der Rechenstäbe
d _{St}	lichter Stababstand undurchlässiger mechanischer Barrieren
DWA	Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (seit 2004)
ECI	"Elektro Chemische Industrie"-Komplex
FAA	Fischaufstiegsanlage
FELASA	Federation of European Laboratory Animal Science
FFH	Fauna-Flora-Habitat
FGE	Flussgebietseinheit
FSR	"FischSchonRechen"
GFK	glasfaserverstärkter Kunststoff
GSK	Gewässerstrukturgüte
H_{Fisch}	maximale Höhe des Fischkörpers

HFischG	Hessisches Fischereigesetz
HFO	Hessische Fischereiverordnung
HLNUG	Hessisches Landesamt für Naturschutz, Umwelt und Geolo- gie
h _{v,re}	bernoulli'sche Verlusthöhe; Fallhöhenverlust
IEC	Internationale elektrotechnische Kommission
IGB	Leibniz-Institut für Gewässerökologie und Binnenfischerei
IKSMS	Internationale Kommission zum Schutz der Mosel und der Saar
K _{dick}	relative Dicke des Fischkörpers in Relation zur Gesamtlänge
Khoch	relative Höhe des Fischkörpers in Relation zur Gesamtlänge
L; I	Fischkörperlänge
LFULG	Landesamt für Umwelt, Landwirtschaft und Geologie (Sachsen)
I _{max}	maximale Fischkörperlänge
М	Gesamtmortalitätsrate
M _{gesamt}	prognostizierte Mortalität
$M_{\text{Kollision}}$	Wahrscheinlichkeit, infolge einer Kollision in der Turbine zu sterben
MNQ	mittlerer Niedrigwasserabfluss
MQ	mittlerer Abfluss
M _{Spalten}	Wahrscheinlichkeit, durch das Einklemmen in einem Spalt getötet zu werden
MUNLV	Ministerium für Umwelt, Natur, Landwirtschaft und Verbrau- cherschutz des Landes Nordrhein-Westfalen
Ν	Anzahl der Laufradschaufeln
n	Drehzahl; Anzahl der Standorte/ Messungen
р	Gesamtüberlebensrate
p _{gesamt_T}	prognostizierte Mortalität
p _{Klemm}	Wahrscheinlichkeit, in einen Spalt zu geraten
p_{Klemm_T}	Wahrscheinlichkeit, beim Einklemmen in den Spalt letal ver- letzt zu werden
p _{Koll}	Kollisionswahrscheinlichkeit
p _{Koll_T}	Wahrscheinlichkeit, bei Kollision den Tod zu erleiden
28	

P ₁	Adaptionsdruck (im Oberwasser)
P ₂	minimaler Druck hinter den Laufradschaufeln
q	Überlebensrate am Einzelstandort
Q	Durchfluss
Q _A	Ausbaudurchfluss einer Wasserkraftanlage
RP	Regierungspräsidium
SPA	Sound Projector Array
STMELF	Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten
t	Zeit; Dauer; Dicke der Vorderkante einer Laufradschaufel
T _{Ausdauer}	Ausdauer (Zeit, die ein Fisch eine bestimmte Schwimmge- schwindigkeit aufrechterhalten kann)
TierSchG	Tierschutzgesetz
U	Umdrehungen
UBA	Umweltbundesamt
VA	Anströmgeschwindigkeit
Vabsol	Eintrittsgeschwindigkeit
V _{Dauer}	Dauerschwimmgeschwindigkeit
V _{dis}	Geschwindigkeit mit der sich der Fisch entlang der Barriere bewegt
Vgesteigert	gesteigerte Schwimmgeschwindigkeit
Vkritisch	kritische Schwimmgeschwindigkeit
VLH	Very-Low-Head (Turbine)
V _{mittel}	Durchschnittsgeschwindigkeit, hier: Rinnendurchfluss pro senkrecht durchlossene Rinnenquerschnittsfläche
V _N	theoretische Normalgeschwindigkeit
V _{relativ}	Relativgeschwindigkeit des Fisches
V _{Sprint}	Sprintgeschwindigkeit
V _T	theoretische Tangentialgeschwindigkeit
V _{Tr}	Transportgeschwindigkeit des Fisches über dem Grund
VüberGrund	absolute Geschwindigkeit des Fisches
WHG	Wasserhaushaltsgesetz
WKA	Wasserkraftanlage