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Introduction

Rigid body dynamics is one of the oldest and most challenging subjects in
classical mechanics. It was initiated by Leonhard Euler, who formulated the equations
of motion for a general (asymmetric) torque-free body and obtained the first inte-
grable, in quadratures, case known after his name. With the efforts of D’ Alembert,
Poinsot, Lagrange and Poisson, the equations of motion of a body about a fixed
point under the action of forces were written in their present form known as the
Euler—Poisson equations: a system of six first-order differential equations for which
three integrals are known. Lagrange found the second integrable case, the case of a
heavy axi-symmetric body, usually named as Lagrange’s top. In both cases of Euler
and Lagrange, an integral of motion followed from general principles of mechanics,
constancy of the angular momentum in the first and due to the cyclic angle of rotation
about the axis of symmetry in the second. An important moment was that in both
cases, the equations of motion were solved to the end and the solution expressed
through elliptic functions, invented by Jacobi, and certain integrals involving them.

The search for integrable cases continued, but, although the problem attracted the
attention of several eminent mathematicians, the search did not lead to any other
cases. A whole century later, Sofia Kowalevski found a new integrable case of the
heavy rigid body. That was not in virtue of a physical conservation principle, but
using a purely mathematical condition: all solutions of the equations of motion
should have only poles as their singularities as functions of time in the complex
t-plane. This property is satisfied by the solutions in the two known integrable cases
of Euler and Lagrange, being expressible in terms of elliptic functions of time. Having
isolated three cases of this type, two cases of Euler and Lagrange and a new third
one, Kowalevski tried and found the complementary integral in the third case. That
integral turned out to be the first instance ever of a polynomial integral of degree
four in the dynamical variables in a dynamical problem. Kowalevski also reduced the
problem to quadratures and expressed all the dynamical variables in terms of hyper-
elliptic functions of time, which are far more complicated than elliptic functions, but
share with them the property of having only poles as singular points in the complex
plane.
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viii Introduction

From this point on, instead of searching for new integrable cases, researchers
directed their efforts to find methods to prove non-integrability, non-existence of a
fourth integral of motion, in addition to the elementary three general ones, which
is algebraic (Liouville, Husson and Burgatti) or even single-valued (Poincaré). This
trend reached its perfection after the KAM (Kolmogorov—Arnold—-Mozer) theory
for integrable Hamiltonian systems was established. In the last few decades, new
concepts were applied to rigid body dynamics in the works of several authors, among
which those of Kozlov and Ziglin play a distinguished role.

The last quarter of the nineteenth century was a golden era for rigid body
dynamics. More complicated problems including certain generalizations of the clas-
sical problem were investigated. The integrable case of the motion of a body carrying
a symmetric rotor (the gyrostat) was found by Joukovsky and Volterra. Brun found
integrals of motion for the motion of a body acted upon by asymmetric Newtonian
force of attraction. The equations of motion of a body in a liquid were constructed
by Kirchhoff and integrable cases of that problem are associated with the names of
Clebsch, Steklov and Lyapunov. The same period is also characterized by the appear-
ance of several cases of exact particular solutions of the classical problem, which
were obtained by Staude, Hess, Goryachev, Chaplygin, Kowalewsky, Bobylev and
Steklov. Those cases constitute more than half of the exact solutions of the classical
problem, known to us to date.

The next half-century or so has elapsed without significant advancements in prob-
lems of rigid body dynamics as concerns integrable cases. The second half of the
twentieth century, on the other hand, witnessed a renaissance of the subject. Interest
has grown in integrable problems in general and, in particular, in those of rigid body
dynamics. Several important results were obtained, including new exact solutions of
the classical problem and the problem of motion of a heavy gyrostat. New problems
emerged and underwent intensive investigation. One of them was that of motion of a
body acted upon by more general conservative potential and gyroscopic forces. The
last four chapters of this book present mostly innovations brought into the subject in
the past few decades, in which the author had some substantial contributions.

The idea of writing this book emerged more than a decade ago. It was delayed so
long due to the social and political upheaval that arose in Egypt at the time and had a
direct impact on every aspect of life. The original motivation was two-fold, first and
foremost, there was a need for a new survey on the subject of rigid body dynamics.
The core of such a survey should be classification and a complete up-to-date account
of all the known but scattered in the literature integrable cases and particular solutions
of the diverse problems treated within this subject.

Only in integrable cases can one study the motion in the whole phase space and
draw conclusions about the behaviour of the mechanical system over an infinite
interval of time. It will be evident as we go through the book that integrable cases are
a rarity in problems of rigid body dynamics, and in some problems, there are even
proofs that no more integrable cases are there to be found in the future. This situation
ensures the high importance of every integrable case and justifies that each one is
recorded under the name of its discoverer. Also of great importance are particular
exact solutions, obtained only under certain conditions on the initial state of motion
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of the body. Those constitute the only window through which one can visualize or
study a little fragment of the solution in non-integrable problems over an infinite
time interval.

Direct methods already used in the construction of new integrable problems since
the late nineteenth century have been exhausted and are no longer capable of iden-
tifying integrable cases in more complicated problems. Completely new ways of
thinking were required to establish new methods and to make substantial advance-
ments in the subject. One of those ways was writing equations of motion in the form
of the Lax pairs and using advanced tools of algebraic geometry. In this way, many
integrable systems were constructed in the dynamics of particles and some in rigid
body dynamics. Later, those methods helped to construct the formal exact solution
of some problems. An example is the integrable case of motion of a body acted upon
by two skew uniform fields, which generalizes Kowalevski’s case of a single field
due to Reyman and Semenov-Tian-Shansky. Two integrable versions of this problem
were known when the problem admits a linear integral, but using the above method
made it possible to obtain the case, with a quadratic integral, unifying those versions.
The solution of the complexified equations was also pointed out in terms of Theta
functions.

Another method of finding integrable problems in rigid body dynamics was an
inverse one. The author of the present book developed a method for the construction of
integrable generalized natural systems of two degrees of freedom, which admit inte-
grals of motion in the form of polynomial in the velocities with coefficients depending
on the position. This method led to the appearance of vast families of such systems,
living on two-dimensional Riemannian manifolds. Designating special values for the
parameters, it was possible to construct integrable cases on some known manifolds.
In this way, a comparatively large collection of general and conditional integrable
problems in rigid body dynamics was constructed over the past decades. Examples
are the case of a gyrostat, which generalizes the classical case of Kowalevski, and a
large set of conditional cases. Every one of the integrable cases poses new mathe-
matical challenges: to investigate qualitative properties using integrals of motion, to
achieve separation of variables and study topological properties of integral manifolds
in the phase space. Another possible task is the construction of explicit time solution
of the equations of motion, usually by inverting quadratures in case of separation of
variables or by using Lax pair representation of a certain type.

Moreover, the application of certain transformations to known integrable cases
with cyclic coordinates has led to the construction of much more general inte-
grable cases. This produced new general integrable cases depending on several extra
parameters and added physical effects to all the integrable cases known earlier.

Thus, the state of the subject has radically changed since the time of the well-
known monographs of Leimanis and Magnus. In 2005, Borisov and Mamaev
published their book “Rigid Body Dynamics” and an English translation appeared
in 2017. This marvellous book lays emphasis on mathematical structures and gener-
alizations of integrable cases to higher dimensions. Several important topics are
not covered in it. Moreover, reading this book requires professional mathematical
knowledge.
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The second motivation for writing the book was to showcase some novel methods
developed by the author that have led to substantial results and completely new collec-
tion of integrable cases in rigid body dynamics. Although almost all these cases have
definite physical interpretation, they have not been given due attention. In the mean
time, as we essentially use the Lagrangian approach, against a currently prevailing
trend that the Hamiltonian (or Poisson bracket) approach is the one that should be
followed in all problems of mechanics whenever it is applicable. We had to explain
why we intentionally use the Lagrangian formalism to present some features of
mechanical systems that are vividly seen in that formalism, while disguised in the
Hamiltonian formalism. Our standpoint is that the use of this or that approach is not
an arguable issue. None of them can be said to be absolutely better than the other.
Each approach must be applied, with no prejudice, to problems for which it is most
suited. The problem of classifying and tabulating integrable cases of motion of a
rigid body subject to potential and gyroscopic forces, which occupies most of the
book, is an example. Those cases are time-irreversible, i.e. equations of motion are
not invariant under the change of sign of the time variable. As will be established
later in the book, every such case is completely determined by two (scalar and vector)
functions V and p. The scalar is the potential and the vector uniquely determines
the moment exerted by gyroscopic forces. The pair (V, n) uniquely characterizes
the physics of the problem and its equations of motion and thus can be used as a
basis for the classification and tabulation of integrable cases. On the other hand, in
inverse methods used to construct integrable systems, gauge terms that arise as a part
of the solution of partial and ordinary differential equations enter in the definition
of momenta. The Hamiltonian function and the Hamiltonian equations of motion
depend on those terms and obscure the necessary terms that determine potential
and gyroscopic forces acting on the body together with the physics of the problem.
Hamiltonian equations of motion of an irreversible mechanical system can be written
in an infinite number of equivalent forms. In fact, to determine whether two Hamil-
tonians are equivalent, one has to do some steps that are equivalent to finding the
equations of motion in the Lagrangian form. Concrete examples are given in the last
chapters of the book, beginning with Chap. 10. Nevertheless, in Chaps. 10 and 12,
after classification of integrable cases on the Lagrangian basis, to conform with the
reference character of the book, we also give Hamiltonians and complementary inte-
grals in terms of momenta for all integrable cases. These cases involve gyroscopic
moments, which depend on the position in a complicated manner. For such systems,
the Lagrangian approach is not just an awkward presentation, but it faithfully and
uniquely presents the physics of the problem under consideration. On the other hand,
a system of Hamiltonian equations of motion can represent a whole class of physi-
cally different mechanical systems on that level of complication. Nevertheless, the
whole integrability theory is most easily and clearly in terms of the Hamiltonian
approach.

In the plan of this book, it soon became clear that the original motivation to include
all new changes in the field of rigid body dynamics to produce something similar to
Routh’s tractate of the late nineteenth century is too ambitious and rather impractical.
The changes in the subject in the preceding half-century are far more extensive, to
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be included in one volume. A narrower line had to be set as an aim for the book. We
have, thus, made the decision to make a survey of known integrable cases in various
problems in the dynamics of a rigid body moving about a fixed point under given
forces, including certain problems of motion of a body with no fixed point, but which
reduce, after some transformation or reduction, to the first type of problems (with a
fixed point). Examples of such problems are the problem of motion of a body in a
liquid and that of motion of a satellite in a circular orbit about a spherical planet.

Thus, no place was left for some important problems. The problem of motion of
a rigid body subject to a non-holonomic constraint, rolling on a plane or a surface,
is an example. Other examples are the motion of a gyroscope in gimbals, problems
involving motion of a system of connected bodies in a general state of motion and
the motion of a body with a cavity, completely filled with a liquid in a state of
vortex flow. The last problem is described by Poincaré—Joukovsky’s equations of
motion. We have also excluded a large set of existing solutions, which are not in
finite exact form, like asymptotic solutions and series solutions or perturbations of
exact solutions in power series of a small parameter. On the other hand, problems of
rigid body dynamics in which integrability is not a principal issue are not considered.
An example is the controlled rotational motion of the rigid body.

Even in the main course of the problem considered in the book, we had to make
some definite selections of the material to be included. In the first place, we intended
to make a complete up-to-date account of all known integrable cases in the subject. A
considerable part of such content is scattered in the literature and would be presented
in the form of a book for the first time. The information about integrable cases should
contain conditions for their existence, full historical context of their discovery or
development from former cases and sufficiently detailed forms of the first integrals
in each case. This covers all general integrable cases, i.e. cases integrable in the
whole phase space (for arbitrary initial conditions) as well as conditional integrable
cases, i.e. integrable on a fixed level of the relevant linear integral of the motion
(the areas integral). In most elementary cases, we tried to illuminate as much as
possible the process of obtaining the explicit solution of the equations of motion.
By this, we mean the expression of all the physical phase variables in terms of
time. As will be seen in most of the integrable problems considered in this book,
the separation of variables, inverting quadratures and constructing explicit solutions
have turned into a separate art and in their majority still represent open mathematical
challenges. Even in solved cases, a frequently met drawback is that some explicit
solutions are expressed using complex functions of time, a situation that obstructs
their use in numerical calculations or simulation. For this reason, greater importance
is devoted to the construction of some particular solutions expressible in terms of
elliptic, trigonometric or simpler functions of time. Apart from the integrable cases,
complete, and somewhat detailed, account of all the twelve known exact particular
solutions of the classical problem of motion of a heavy rigid body is given. But this
could not be pursued in other higher problems of the hierarchy. That could simply
double the size of the book and also the time to compile the existing information.
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The book is divided into two parts:

The first part, the elementary part, grew mainly as a course on rigid body dynamics
delivered over years to undergraduate mathematics students of the Faculty of Science
and it can be used for this purpose. This part includes Chaps. 1-7, covering the mate-
rial necessary for a mathematics or physics student to get acquainted with the subject
of rigid body dynamics, its main problems, techniques and historical development. A
few sections of Chap. 8 can be selected to augment that content with some examples
of a particular solution in rigid body dynamics.

We begin in Chap. 1 with a study of the characteristics of mass distributions: the
centre of mass and the inertia matrix. Even in this classical material, some innovative
element was introduced. A new theorem is given, determining natural bounds on the
location of the centre of mass of a body with given moments of inertia. Chapter 2 is
devoted to different ways of the description of finite rotations, infinitesimal rotations
and the angular velocity vector. Introduced here are Euler’s angles, the rotation matrix
and quaternions for describing the orientation of the body.

Chapter 3 includes a brief study of the classical problem of motion of a rigid body
about a fixed point under the action of its own weight. Different forms of the equations
of motion and their integrals are derived in different reference frames fixed in the
body and moving with it. Equations of motion are obtained in Lagrangian, Routhian
and Hamiltonian forms.

In Chap. 4, the three general integrable cases of the classical problem known after
the names of Euler, Lagrange and Kowalevski are presented in some detail. Explicit
time solution of the equations of motion is given in terms of elliptic functions of time
for Euler’s case of a torque-free body. The solution of Lagrange’s case is reduced to
an elliptic quadrature, which may be used to express it in elliptic functions as well.
However, we relied, following Poisson, on the use of integrals of motion to establish
certain qualitative aspects of the motion, without referring to explicit time solution.
Kowalevski’s case is formally reduced to hyper-elliptic quadratures. Some degenerate
cases are solved in elliptic or simpler functions in Appendix B. The conditional case
of integrability bearing the names of Goryachev and Chaplygin is also presented with
its separation of variables belonging to Chaplygin. Degenerations of hyper-elliptic
quadratures are presented in some detail in Appendix C.

Chapter 5 is devoted to the study of the problem of motion of a heavy gyrostat. In
its simplest form, the gyrostat is a rigid body in which a symmetric rotor is placed
with its axis fixed in the carrier body by cylindrical smooth joint(s) and given a
constant angular speed with respect to the main body. The gyrostatic effects are
in wide use in several problems of science and technology. Equations of motion
were formulated in the last decades of the nineteenth century. An integrable case is
readily recognized, which is a trivial generalization of Lagrange’s case, when the
main body is axially symmetric and the rotor is aligned along its axis of symmetry.
The second case generalizes Euler’s case in the classical problem by adding a rotor
in an arbitrary direction fixed in the body. This case was found by Joukovsky and
shortly later by Volterra. The third general integrable case, Yehia’s case, was found as
a generalization of Kowalevski’s case in the classical problem by adding a gyrostatic
momentum. The conditional case of Goryachev and Chaplygin that was generalized
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to the gyrostat by Sretensky is also presented. The chapter concludes with some
applications of the gyrostat dynamics to stabilize certain motions.

In Chap. 6, the problem of motion of a gyrostat about a fixed point while acted upon
by the force of a Newtonian centre of attraction is presented. Especially interesting
is the case when the attraction centre is far from the fixed point. This case is treated
in some detail, for it has several applications in certain problems in astronomy and
physics. Two integrable cases are known. They generalize Euler’s and Lagrange’s
cases. In this chapter, we also present what is called Brun’s problem, which is equiva-
lent to a special version of the former problem. A quite interesting property is proved
that Brun’s potential is the only one that admits an integral of motion, quadratic in
the velocities.

Chapter 7 contains a brief account of the problem of motion of a body having no
fixed point. Equations of motion will be useful in certain topics later to be exposed in
this book. A quite interesting example, the motion of a top on a smooth plane (called
Poisson’s top), is considered at least for its educational importance.

The second part of the book contains mostly new research material that was not
compiled before in book form.

The original course included a few examples of particular solutions of the equa-
tions of motion. In the final plan of the book, I found it necessary to make separate
Chap. 8 collecting the basic information and results about all the twelve known exact
particular solutions of the equations of motion in the classical problem. This infor-
mation, which accumulated in the period from the 1890s to 1970s, to the date the last
case was found, has never been presented in a source in the English language. Just a
few cases are pointed out in Leimanis’ book [256], not all of them are correct. The
same situation applies to Magnus’ monograph [270]. Borisov and Mamaev mention
only half of these cases, with somewhat detailed analysis of the earlier results of
Staude, Hess, Bobylev, Steklov and Grioli. In our presentation, some new features
were added. In most cases of a particular solution, we show the curve drawn during
the motion by the apex of the vertical unit vector y on the unit sphere fixed in the
body. This graph gives a full idea on how the body moves relative to the vertical
through the fixed point, i.e. up to a rotation about it.

Exact particular solutions of the gyrostat problem are considered only in one brief
section of Chap. 8. Those solutions were intensively studied almost exclusively by
the school of Mechanics in Donetsk. All those cases are listed with the essential
information on each case. Those are nine cases generalizing their counterparts of the
classical problem and four new cases with no classical analogs. For each case, we
provided necessary information and references that would help the interested reader
to track every case in original works.

In Chap. 9, we consider the analogy between the motion of a rigid body about
a fixed point and the problem of motion of a particle on a smooth ellipsoid. This
analogy, noted first by Minkowski, furnishes several easy ways for the reduction of
the order of equations of motion, using the known integrals of motion. The climax in
this direction is the maximal reduction to a single differential equation of the second
order named as the “orbital equation”. This equation settles once for all the question
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of maximal reduction of order raised in rigid body dynamics the since 1890s and
discussed by a long list of authors.

Chapter 10 is devoted to the problem of motion of a body by inertia in an ideal
incompressible fluid extending to infinity in all directions. This problem originally
belongs to the field of hydrodynamics, which is described by boundary-value prob-
lems on partial differential equations. Nevertheless, the efforts of several authors led
to the result that the pressure of the fluid on the body can be completely avoided,
leaving us with a mechanical system of six degrees of freedom. Equations of motion
of that system were given by Kirchhoff and Clebsch for a simply connected body
and by Lamb for a multi-connected (perforated) body.

Also in this chapter, a new form of the equations of motion and a transformation
have changed the way of presentation so deeply, gave a new insight into the problem
and revealed its inherent relation to other physical problems that were treated before
as completely separate from each other. An analogy has been established between
this problem and a special form of the problem of motion about a fixed point of a
heavy and magnetized body, which carries immovable in it electric charges under
the action of an axi-symmetric combination of gravitational, electric, magnetic and
Lorentz forces. This opened the way to study systematically, for the first time, the
motion of a heavy, magnetized and electrically charged body or gyrostat. The full
list of known integrable cases, seven general and two conditional, valid for the two
equivalent problems, is given in a unified form. For each case, we give relevant
historical information and essential contributions to its study. For completeness, we
also provide the Hamiltonian and the complementary integral for every integrable
case in the tables, beginning from Chap. 10, where gyroscopic forces will play a more
prominent role and Hamiltonians found by inverse methods are usually obscured by
gauge terms.

The analogy just described above of the problem of motion of a body in a liquid
and the alternative problem has placed the last problem on the top of a hierarchy
of the problems considered in all previous chapters and paved the way to create a
higher and richer level of that hierarchy that was never treated before. It may have
been considered as hopelessly complicated to yield significant results.

In Chap. 11, the use of the Lagrangian approach and certain peculiarities of the
equations of motion has pushed the whole subject beyond its common limits. Equa-
tions of motion are given in their historical context. They formally generalize the
new alternative form of equations of motion of a body in a liquid and go much further
from the physical point of view. Transformations are given, which generate new inte-
grable cases of the most complicated nature from the ones in the lower hierarchies,
by adding more parameters into their structures.

In Chap. 12, unprecedented and quite complicated integrable cases involving
large numbers of parameters were constructed in an exotic, but effortless, way. In
fact, we have used certain tricky properties of the Lagrangian formalism to add extra
parameters of physical significance to the structures of the known general integrable
cases of a body in a liquid. The number of those additional parameters depends on
the structure of the potential part of the Lagrangian of the integrable problem. The
new cases are the only known examples in our days of integrable cases of motion of
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arigid body acted upon by potential and gyroscopic forces of the most complicated
structure. The variety of those cases may shed some light on some of the most
intractable problems of mechanics concerning the motion of natural and artificial
bodies in extreme conditions when the fields applied to the body have comparable
effects and none of them can be treated as negligible.

In this chapter, we also introduce a new type of generalization of each general
case of integrability of motion of a body in a liquid a conditional integrable case
involving an arbitrary function. This type of generalization is valid on a fixed level
of the cyclic (areas) integral.

It was argued by some authors that those two types of generalization are trivial
and lose their value if the problem under consideration is written in Hamiltonian
formalism. We use the Hamiltonian formalism to show that this view of the subject
is not factual.

In Chap. 13, we give a full list of the known up-to-date conditional integrable cases
of the problem of motion of a rigid body. The tables for those cases are given here in
their last and most general form, with no regard to their physical interpretation. Cases
in those tables are ordered according to the degree of the complementary integral as a
function of the components of the angular velocity of the body. Some of them acquire
a physical meaning only for certain values of the parameters present in them. Other
ones do not seem presently to have physical meaning at all, mostly because their
potentials involve singular terms of certain types, not usually attainable by natural
fields. The 22 cases known at present of this class were obtained mainly in the works
of the author and some with his coworkers. Most of those cases have resulted as
special cases of certain generalized natural multi-parameter integrable systems that
were constructed by the author over the last few decades. Some of those cases have
even stimulated research to find new ways for the separation of variables and other
mathematical topics.

Chapter 14 is devoted to a systematic presentation of the present status of the
problem of motion of a rigid body about a fixed point under the action of an asym-
metric combination of potential and gyroscopic forces (crossed fields). Equations
of motion are derived in the Euler—Poisson variables. Known integrable cases are
collected and classified. First presented are integrable cases of a body acted upon
by two and three skew uniform fields, then cases with a potential that is quadratic
in the direction cosines. Apart from some special cases, in both types of problems,
the mechanical system has strictly three degrees of freedom, i.e. does not admit
a cyclic integral. In the last two sections of this chapter, we present two classes of
problems admitting a cyclic coordinate. The problem of motion of a (physically) axi-
symmetric body under the action of asymmetric forces admits the Eulerian proper
rotation angle as a cyclic coordinate. The symmetry leading to a cyclic integral in
the second problem is not about a fixed axis, neither in space nor in the body. It may
be interpreted as axial symmetry in the quaternion space. The cyclic coordinate is
the sum (or difference) of the two Eulerian angles of precession and proper rotation.
For the last two classes, the method described in Chap. 11 and applied in Chap. 12
gives some exotic generalizations of the well-known cases.
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Exercises constitute an essential component of the book. A large number of them
provide some supplemental information to the main text or introduce in a brief way
additional topics of special interest that could not be presented in more detail.

The elementary part of the present book should be easily readable by anyone who
has completed courses on calculus, differential equations and analytical dynamics.
Some parts require some knowledge of elliptic integrals and Jacobi’s elliptic func-
tions. The advanced part provides mostly new material but it is written in the most
elementary way. It will be tractable for readers of different mathematical back-
grounds: students, Mathematicians, Physicists and Engineers. I hope that it will stim-
ulate research in the field. Many of the new cases may be investigated for explicit
solution either by separation of variables or by the use of Lax pairs. Topological
classification and qualitative properties of motion can be studied for every case, for
which separation of variables is achieved. Many cases are waiting for appropriate
concrete physical interpretation.

This book is intended to be a reference book for integrable cases and exact solu-
tions. I have taken possible care of checking the large number of formulas involved,
mostly by using computer packages of symbolic computation.

Throughout the book, I used the usual notations for mathematical terms and
operations. Vectors and matrices are denoted by bold symbols, and scalar and vector
products by dot and cross, respectively. We have found it much easier and more
consistent to use for multiplication of a vector v by a matrix M the usual matrix form
vM, instead of the mostly used operator form Myv. The first produces vectors in the
usual row form and brings some advantage in avoiding the need in many sources to
switch between row and column forms of vectors.

During work on this book, I enjoyed generous help from many friends, to whom
I express my sincere gratitude. A conversation with David Gao at a conference
in Poland was encouraging and inspiring. Michael and Irina Kharlamov and Pavel
Ryabov provided me with some old papers in Russian. Gennady Gorr secured for
me issues of MTT and longtime chats discussing many details of the subject. Our
long-years friendship was in no way affected by our differences on some of the
content of books coauthored by him. Alexey Borisov made some publications of RCD
available to me, in addition to his books coauthored by Ivan Mamaey, including their
marvellous book on rigid body dynamics (2005) and its recent English translation
(2017). On the other hand, Ahmed Ghaleb has read extensive parts of the manuscript
and made many suggestions to improve the English text. Adel Elmandouh and Ashraf
Hussein helped me by checking some mathematical calculations and resolving some
issues concerning LaTeX editing of the manuscript. Hani Yehia and Ashraf Hussein
helped me to improve the quality of some graphics.

Mansoura, Egypt Hamad Yehia
March 2021 hyehia@mans.edu.eg
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Chapter 1 ®)
Distribution of Mass g

In the study of the dynamics of a rigid body, we deal in a natural way with certain
quantities which are determined by the distribution of mass in that body. In this
chapter, we introduce those quantities and study their properties and the relations
between them.

1.1 The Moment of Mass—The Centre of Mass

A rigid body is defined as a finite distribution of mass in which the relative positions
of all its mass elements do not change with time, regardless of the position of the
body in space and the external forces exerted on it. We do not assume any conditions
on the structure or shape of the body, which may be composed of invariable rigidly
connected parts that can comprise in any way discrete point masses and continuous
line, surface or volume distributions of mass. The term “element of mass” we use
below should be interpreted in each case accordingly.

1.1.1 Moments of a Mass Distribution

The moment of mass of a given rigid body is a vector defined by the integral

a’:/rdm, (1.1)

where dm is an infinitesimal mass element, r is the position vector of that element
and the integral is taken over all mass elements of the body. In a given system of
axes Oxyz, the components are
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4 1 Distribution of Mass

(/xdm,/ydm,/zdm), (1.2)

Those are the first moments of the mass distribution with respect to the given coor-
dinate system.
Generally, moments of arbitrary degree n for a mass distribution are also defined

o(ny,ny,n3) = /x”‘y”%”»*dm, (1.3)

where ny, ny, n3 are non-negative integers and n = n; + n, + n3 . In dynamics of
rigid bodies, zeroth-, first- and second-degree moments (n = 0, 1, 2) appear naturally
in the equations of motion. Higher moments are also met when the potential of a
rigid body is calculated in certain models of gravitational potential in the field of
attraction of other bodies. The simplest case is that of approximating the potential of
the body in the Newtonian field of a far centre of attraction. We shall return to this
point later with more detail.

1.1.2 Centre of Mass
Let M be the total mass of the body

M = / dm. 1.4)
Obviously, M is positive and finite. The vector

ro=o0/M = (%/xdm, %fydm, %/zdm) (1.5)

defines a unique point in the body, called the centre of mass. This point has the
fundamental property that the resultant of forces exerted on the body by an arbitrary
uniform gravity field always passes through it. However, this property can be lost for
any non-uniform gravitational field.

1.2 Second Moments and Inertia Matrix of a Mass
Distribution

In the course of our study of rigid body dynamics, we deal with two related matrices
(in fact, tensors):
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1.2.1 Second Moments Matrix of Mass Distribution

3

Define the symmetric matrix I = (I;, D=t

i zfrirjdm, ii=1.3 (1.6)

where r; stands for the i-th component of the position vector r =(x, y, z) of the mass
element dm of the body, i.e.

[x*dm [xydm [ xzdm

I=| [xydm [y*dm [ yzdm |. (1.7)
[ xzdm [ yzdm [ z*dm

Diagonal elements [ x*dm, [ y>*dm and [ z2dm are called moments of inertia of
the body with respect to the planes yz, zx and xy, respectively.

1.2.2 Inertia Matrix of Mass Distribution

In most dynamical considerations, we more frequently meet the inertia matrix
defined as B B
I=¢tr@)d -1, (1.8)

where 6 is the unit matrix. This makes

JO*+2Ddm  — [xydm  — [xzdm
I=(I;;); ,_, = — [xydm [ +xHdm — [yzdm . (1.9)
— [ xzdm — [yzdm  [(x* + yHdm

The diagonal elements of the inertia matrix 11, I» and I33 are called moments of
inertia of the mass distribution with respect to the axes x, y, z, respectively, while
the off-diagonal ones are termed the products of inertia with respect to the three
coordinate planes. As the mass element is always positive, the moments of inertia
are non-negative. Moreover, a moment of inertia of a body about an axis vanishes
only if the body mass is distributed (continuously or discretely) on that axis.
Note that
tr() = 2tr(D), (1.10)

so that the inverse of the relation (1.8) can be written as

I= %tr(l)é—l. (1.11)
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1.3 Properties of the Inertia Matrix

1.3.1 The Triangle Inequalities

Although the moments of inertia are always positive, not every three positive quan-
tities can represent moments of inertia of some body about three perpendicular axes.
In fact, moments of inertia of a body satisfy the inequalities

I+ 1n— 13 2 0,In+ 13— 111 20,111 + 133 — I > 0. (1.12)

The equality holds only for plane mass distributions. Those inequalities suggest that
the three moments of inertia about three perpendicular axes can be represented by
lengths of three sides of a triangle. We shall return to this point with more detail later
in this chapter.

To prove those inequalities, we notice from (1.7) that the diagonal elements of I
are non-negative, for being quadratic moments of mass with respect to the coordinate
planes. The three inequalities follow from the relation (1.11). Equality holds only
for bodies whose mass is distributed in one of the coordinate planes.

1.3.2 Theorem of Parallel Axes

Let I be the inertia matrix of a given body of total mass M with respect to some
Cartesian frame Oxyz with origin O at the centre of mass of the body. We shall

calculate the inertia matrix I’ with respect to another Cartesian frame O’x’y’z’ parallel

to the first, so that O’ has relative to O the position vector r; = (x1, y2, z1). The first
of those elements is

I, = /(y’2 +2%)dm
= f[(y — )’ + @ —z)’ldm
= /(y2 +z2%)dm + (y12 + z%)/dm -2y / ydm — 2z, /zdm.
Since [ ydm = [ zdm = 0, we get

Iy =1, + M7 +27). (1.13)



