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PREFÁCIO 

Este livro é a continuação do livro do autor Cdlctdo, volume I. Segunda Edição. O 
presente volume foi escrito com a mesma ideia fundamental que norteou o primeiro. 
Uma adequada orientação para a técnica ligada a um rigoroso e profundo desenvol­
vimento teórico. Procurou-se fazer chegar ao estudante o espírito da matemática mo­
derna sem exagerar o formalismo. Como no Volume I, incluem-se notas históricas 
para dar ao estudante uma ideia da evolução do pensamento matemático. 

O segundo volume está dividido em três partes, intituladas A ndlise Linear. A ndli.1e 
não Linear e Tópicos Especiais. Os dois últimos capítulos do Volume I repetem-se aqui, 
constituindo os dois primeiros capítulos deste Volume, com a finalidade de que todo 
o material relativo à Álgebra Linear se apresenta de forma completa em cada um 
dos volumes. 

A Parte I contém umã introdução à álgebra linear, incluindo transformações li­
neares, matrizes, determinantes, valores próprios e formas quadráticas. Fazem-se 
algumas aplicações à Análise, em particular ao estudo das equações diferenciais li­
neares. Com a ajuda do cálculo matricial estudam-se os sistemas de equações dife­
renciais. Demonstram-se teoremas de existência e unicidade por intermédio do método 
de Picard das aproximações sucessivas, que também se trata na teoria dos operadores 
de contracção. 

Na Parte 2 estuda-se o cálculo para funções de várias variáveis. O cálculo diferen­
cial é unificado e si!f!plificado com auxílio da álgebra linear. Incluem-se a generali­
zação da regra de derivação de uma função composta para campos vectoriais e esca­
lares e aplicações às equações de derivadas parciais e a problemas de extremos. O 
cálculo integral inclui os integrais de linha, integrais múltiplos, e integrais de super­
fície, com aplicações à Análise v~:ctorial. Aqui a exposição segue mais ou menos a 
linha clássica e não inclui um desenvolvimento formal das formas diferenciais. 

Os tópicos especiais tratados na Parte 3 são Probabilidades e Análise Numérica. A 
parte referente às Probabilidades está dividida em dois capítulos, um que trata o 
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VIII Prefácio 

J~~unto considerando o conjunto fundamental (ou espaço amostra) finito ou infinito 
numerável; o outro em que se consideram conjuntos fundamentais não numeráveis, 
variáveis aleatórias e funções de repartição. Fazem-se algumas aplicações no estudo 
de variáveis aleatórias uni e bidimensionais. 

O último capítulo contém uma introdução à Análise Numérica, dando-se particular 
ênfase ao estudo de diferentes tipos de aproximação polinomial. Aqui, mais uma vez 
se procura a unificação das ideias pela notação e terminologia da álgebra linear. O livro 
termina com o estudo de fórmulas de integração aproximada, tais como a regra de 
Simpson, e com uma discussão da fórmula de somação de Euler. 

Contém este volume matéria suficiente para um curso anual com três ou quatrc 
tempos semanais. Pressupõe a conhecimento do cálculo para funções de uma variável 
tal como se estuda na maior parte dos primeiros anos dos cursos de cálcuio. O autor 
idealizou a matéria exposta para um curso com quatro aulas semanais, duas de expo­
sição por parte do professor e duas para questões postas aos alunos, desenvolvido ao 
longo de dez semanas para cada parte e omitindo as secções assinaladas com um as­
terisco. 

Este segundo volume foi planeado de maneira a poderem omitirse vários capítulos 
em cursos abreviados. Por exemplo, o último capítulo de cada uma das partes pode 
ser omitido, sem que tal origine descontinuidade na exposição. A Parte 1 proporciona 
material para um curso combinado de álgebra linear e equações diferenciais ordiná­
rias. Cada professor pode escolher os tópicos adequados às suas necesstdades e pre­
ferências por consulta do diagrama da página seguinte que coindencia a interdepen­
dência lógica dos capítulos. 

Mais uma vez agradeço com prazer a colaboração de muitos amigos c colegas. Ao 
preparar a segunda edição recebi valiosa ajuda dos Professores Herbert S. Zuckerman 
da Universidade de Washington e Basil Gordon da Universidade da Califórnia, Los 
Angeles, tendo cada um deles sugerido várias modificações. Agradec1 mcnto são tam­
bém devidos ao pessoal da Blaisdell Publishing Company pela sua assistência e coo­
peração. 

Como noutras ocasiões, é para mim uma satisfação especial exprimir a minha gra­
tidão a minha esposa pela sua valiosa e variada colaboração. Em sinal de reconheci· 
mento dedico-lhe gostosamente este livro. 

T. M. A. 
Pasadena, Califórnia 
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ANÁLISE LINEAR 
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ESPAÇOS LINEARES 

U. Introdução 

No desenvolvimento da Matemática encontramos muitos exemplos de objectos 
matemáticos que podem ser adicionados uns aos outros e multiplicados por números 
reais. O primeiro exemplo de tais objectos são os próprios números reais. Outros exem­
plos são as funções reais, os números complexos, as séries infinitas, os vectores num 
espaço n dimensional e as funções vectoriais. Neste capítulo vamos analisar um con­
ceito matemático geral, chamado e.1paço linear, que inclui todos estes exemplos e mui­
tos outros como casos particulares. 

Em resumo, um espaço linear é um conjunto de elementos de natureza qualquer 
no qual se efectuam certas operações (chamadas adição e multiplicação por números). 
Ao definir-se um espaço linear, não é necessário e.1pecijicar a natureza dos elementos 
nem dizer como se realizam entre eles as operações acabadas de referir. Em vez disso, 
exige-se que as operações gozem de certas propriedades que se tomam como axiomas 
do espaço linear. Vamos precisamente, em seguida, fazer uma descrição pormenori­
zada desses axiomas. 

1.2. Definição de espaço linear 

Seja V um conjunto não vazio de objectos, chamados elementos. O conjunto V cha­
ma-se um espaço linear se satisfaz aos dez axiomas que a seguir se enunciam, divididos 
em três grupos. 

Axiomas de fecho. 

AXIOMA I. FECHO A RESPETTO DA ADIÇÃO. A todo o par de elementos x e v de V 
corresponde um único elemento de V, chamado soma de x e y e representado por x + y. 
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AXIOMA 2. FECHO A RESPEITO DA MULTIPLICAÇÃO POR NÚMEROS REAIS. A todo o 
x de V e todo o número real a corresponde um elemento de V, chamado o produto de a por 
x e representado por ax. 

Axiomas para a adição. 

AXIOMA 3. PROPRIEDADE COMUTATIVA. Para todo o x e y de V, tem se X + y = y + x. 

AXIOMA 4. PROPRIEDADE ASSOCIATIVA. Para todo o X, y e z de V, tem-se 
x+ (y+ z)= (x+ y)+ z. 

AXIOMA 5. EXISTENCIA DE ELEMENTO ZERO. Existe um e/emento em V, representado 
pelo símbolo O, tal que 

x + O = x para todo o x de V. 

AXIOMA 6. EXISTf.NCIA DE SIMÉTRICOS. Para todo o x de V, o elemento (- I )x tem a 
propriedade 

x + (-l)x = 0. 

Axiomas para a multiplicação por núme os. 

AXIOMA 7. PROPRIEDADE ASSOCIA TI V A. Para todo o x de V, e todo o par de números 
reais a e b, tem-se 

a(bx) = (ab)x. 

AXIOMA 8. PROPRIEDADE DISTRIBUTIVA PARA A ADIÇÃO EM V. Para todo o par 
x e y de V e todo o real a, tem-se 

a(x + y) = ax + ay. 

AXIOMA 9. PROPRIEDADE DISTRIBUTIVA PARA A ADIÇÃO DE NÚMEROS. Para todo 
o x em V e todo o par de reais a e b tem-se 

(a + b)x = ax + bx. 

AXIOMA 10. EXISTENCIA DE ELEMENTO IDENTIDADE. Para todo X em V, tem-se 
lx= x. 

Os espaços lineares, como foram definidos atrás, são muitas vezes chamados es­
paços lineares reais, para fazer ressaltar o facto de que se multiplicam elementos de V 
por números reais. Se nos Axiomas 2, 7, 8 e 9 substiuimos número real por número 
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complexo, a estrutura resultante chama-se um espaço linear complexo. Por vezes um 
espaço linear chama-se também espaço vectorial linear, ou mais simplesmente espaço 
vectorial; os números usados como multiplicadores clíamam-se escalares. Um espaço 
linear real admite os números reais como escalares, um espaço linear complexo admite 
os números complexos como escalares. Embora se considerem aqui fundamental­
mente exemplos de espaços vectoriais lineares reais, todos os teoremas são verdadei­
ros igualmente para os espaços vectoriais complexos. Quando fazemos uso da expres­
são espaço linear, sem qualquer designação suplementar, deve subentender-se que o 
espaço pode ser real ou complexo. 

1.3. Exemplos de espaços lineares 

Se especificamos 4ual o conjunto V e dizemos como somar os seus elementos e 
como multiplicá-los por números, obtemos um exemplo concreto de um espaço linear. 
O leitor pode facilmente verificar que cada um dos seguintes exemplos satisfaz a todos 
os axiomas para um espaço linear real. 

EXEMPLO I. Seja V= R o conjunto dos números reais, c sejam x + y e ax a adição e 
multiplicação usuais de números reais. 

EXEMPLO 2. Seja V= C o conjunto dos números complexos, e seja x + y a adição 
ordinária de números complexos e ax a multiplicação de números complexos x pelo 
número real a. Embora os elementos de V sejam números complexos, este é um es­
paço linear real porque os escalares são reais. 

EXEMPLO 3. Seja V= Vn o espaço vectorial dos sistemas de n números reais, com a 
adição e a multiplicação por escalares definida da maneira usual em função das com­
ponentes. 

EXEMPLO 4. Seja V o conjunto de todos os vectores em Vn ortogonais a um dado 
vector não nulo N. Se n = 2, este espaço linear é uma recta que passa por O, admintin­
do N como vector normal. Se n = 3, é um plano que passa por O com N como vector 
normal. 

Os exemplos que se seguem dizem-se espaços funcionais. Os elementos de V são fun­
ções reais, com a adição de duas funções f e g definidas na forma usual: 

(f + g)(x) = f(x) + g(x) 

para todo o real x pertencente à intersecção dos domínios de f e g. A multiplicação 
de uma função f por um escalar real a define-se do modo seguinte: af é a função cujo 
valor para cada x no domínio de f e af(x). O elemento zero é a função cujos valores 
são sempre zero. O leitor verificará com facilidade que cada um dos conjuntos se­
guintes é um espaço funcional. 
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EXEMPLO 5. O conjunto de todas as funções definidas num dado intervalo. 

EXEMPLO 6. O conjunto de todos os polinómios. 

EXEMPLO 7. O conjunto de todos os polinómios de grau :;:; n, com n fixo. (Sempre 
que se considera este conjunto subentende-se que o polinómio zero está também in­
cluido). O conjunto de todos os polinómios de grau igual a n não é um espaço linear 
porque os axiomas de fecho não são satisfeitos. Por exemplo, a soma de dois polinó­
mios de grau n não terá necessariamente grau n. 

EXEMPLO 8. O conjunto de todas as funções contínuas num dado intervalo. Se o 
intervalo é [a, bl representamos este espaço linear por C(a, b) . 

EXEMPLO 9. O conjunto de todas as funções deriváveis num dado ponto. 

EXEMPLO 10. O conjunto de todas as funções integráveis num dado intervalo. 

EXEMPLO 11. O conjunto de todas as funções f definidas no ponto l, comf( l) =O. 
O número O é fundamental neste exemplo. Se substituirmos O por um número c não 
nulo, violamos os axiomas de fecho. 

EXEMPLO 12. O conjunto de todas as soluções de uma equação diferencial linear 
homogénea y" + ay' + by = O, com a e b constantes. Aqui mais uma vez o O é essencial. 
O conjunto de soluções de uma equação diferencial não homogénea não satisfaz aos 
axiomas de fecho. 

Estes exemplos e muitos outros mostram bem quanto o conceito de espaço linear 
está estendido à Algebra, Geometria e Análise. Quando se deduz um teorema a partir 
dos axiomas de um espaço linear, obtemos, de uma vez, um resultado válido para 
cada exemplo concreto. Unificando diferentes exemplos desta maneira ganhamos um 
conhecimento mais aprofundado de cada um. Algumas vezes o conhecimento de um 
exemplo particular ajuda-nos a antecipar ou interpretar resultados válidos para outros 
exemplos e põe em evidência relações que de outro modo poderiam passar desper­
cebidas. 

1.4. Consequências elementares dos axiomas 

Os teoremas que se seguem deduzem-se facilmente dos axiomas para um espaço 
linear. 

TEOREMA 1.1. UNICIDADE DO ELEMENTO ZERO. Em qualquer espaço linear existe 
um e um só elemento zero. 

Demonstração. Oaxioma 5 diz-nos que existe pelo menos um elemento zero. Supon­
hamos que existiam dois, por exemplo 0 1 e 0 2 • Tomando x = 0 1 e O= 0 2 no Axioma 
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5, obtemos 0 1 + 0 2 = 0 1 • Analogamente, tomando x = 0 2 e O= 0 1 , encontramos 
0 2 + 0 1 = 0 2 • Mas 0 1 + 0 2 = 0 2 + 0 1 , devido à propriedade comutativa, pelo que 
ol = oz. 

TEOREMA 1.2. UNICIDADE DOS ELEMENTOS SIMÉTRICOS. Em qualquer espaço linear 
todo o elemento admite unicamente um simétrico, isto é, para todo o x existe um e um só y 
tal que x + y = O. 

Demonstração. O Axioma 6 diz-nos que cada x admite pelo menos um simétrico, a 
saber (- l)x. Admitamos agora que x tinha dois simétricos, y1 e y2• Então x + y 1 =O 
e x + y2 = O. Somando Yz a ambos os membros da primeira igualdade e utilizando os 
Axiomas 5, 4 e 3, encontramos 

e 

Y2 + (x + Y1) = (y2 + x) + YI = O + YI = Y1 + O = YI · 

Portanto Y1 = y 2 , pelo que x tem precisamente um simétrico, o elemento ( -l)x. 

Notação. O simétrico de x representa-se por -x. A diferença y- x é definida pela 
soma y + ( -x). 

O teorema seguinte refere um certo número de propriedades que regem os cálculos 
algébricos elementares num espaço linear. 

TEOREMA 1.3. Num dado espaço linear. sejam x e y elementos arbitrários e a e b esca-
lares arbitrários. Então verificam-se as seguintes propriedades: 

(a) Ox =O. 
(b) aO= O. 
(c) (-a)x = -(ax) = a(-x). 
(d) Seax =O, então ou a= Ooux =O. 
(e) Se ax = ay e a ~ O, então x = y. 
(f) Se ax = bx e x ~ O, e mão a = b. 
(g) -(x + y) = (-x) + (-y) = -x- y. 
(h) x + x = 2x, x + x + x = 3x, e em geral I;=l x = nx. 

Vamos demonstrar (a), (b) e (c), deixando as demonstrações das restantes ao cuidado 
do leitor. 

Demonstração de (a). Seja z = Ox. Desejamos provar que z = O. Somando z a si 
próprio e aplicando o Axioma 9, verificamos que 

z + z = Ox + Ox = (O + O)x = Ox = z. 

Adiconamos agora -z a ambos os membros e obtemos z =O. 

7 
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Demonstração de (b). Seja z =aO, adicionemos z a si próprio e utilizemos o Axio­
ma 8. 

Demonstração de (c). z = ( -a)x. Adicionando z a ax e utilizando o Axioma 9, veri­
ficamos que 

z + ax = (-a)x + ax = (-a + a)x = Ox = O, 

pelo que zé o simétrico de ax,::: = -(ax). Analogamente, se adicionamos a( -x) a ax 
e utilizamos o Axioma 8 e a propriedade (b ), encontramos que a(- x) = - (ax). 

1.5. Exercícios 

Nos Exercícios I a 28, dcterm mar se cada um dos conjuntos dados é um espaço hncar real, 
com a adição e a multiplicação por escalares reais definidas da forma usual. Para os ExercíciOs 
em que assim não seja, dizer quais são os axiomas que não se verificam. As funções nos Exer­
cícios I a 17 são reais. Nos Exercícios 3, 4 e 5 cada função tem um domínio contendo O e I. Nos 
Exercícios 7 a 12, o domínio é o conjunto de todos o' números reais. 

I. Todas as funções racionais. 
2. Todas as funções racionais fig, com o grau de/~ que o grau de g(incluindo/ = 0). 
3. Todas as funçõesfcomf(O) =f(l). 
4. Todas as funçõesfcom 2{(0) =f'(l ). 
5. Todas as funçõesfcomf( I)= I + f(O). 
6. Todas as funções em escada def1mdas em escada [0, li. 
7. Todas as funções com f (x)--. O quando x--. + oo. 
8. Todas as funções pares. 
9. Todas as funções ímpares. 

10. Todas as funções limitadas. 
11. Todas as funções crescentes. 
12. Todas as funções periódicas de período 2n:. 
13. Todas as funções/ íntegraveis em [0, I), com fbf(x)dx =O. 
14. Todas as funções! integráveis em [0, I), com J6f(x)dx;; O. 
15. Todas as funções verificando f(x) = f(l -x) para todo o x. 
16. Todos os polinómios de Taylor de grau ~ n para um n dado (incluindo o polinómio zero). 
17. Todas as soluções da equação diferencial linear homogénea de segunda ordemy" + P(x)y' + 

Q(x)y =O, com P e Q funções dadas e contínuas para todo o x. 
18. Todas as sucessões reais limitadas. 
19. Todas as sucessões reais convergentes. 
20. Todas as séries reais convergentes. 
21. Todas as séries reais absolutamente convergentes. 
22. Todos os vectores (x. y, z) de V, com z =O. 
23. Todos os vectores (x, y, z) de V3 com x =O ou y =O. 
24. Todos os vectores (x. y, z) de V, com y = 5x. 
25. Todos os vectores (x. y. z) de V3 com 3x + 4y = I, z = O. 
26. Todos os vectores (x. y, z) de V, que são múltiplos escalares de (I, 2, 3). 
27. Todos os vectores (x. y, z) de V, cujas componentes satisfazem a um sistema de três equações 

lineares de forma: 


