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PREFACIO

Este livro € a continuagdo do livro do autor Cdlculo, volume I, Segunda Edicdo. O
presente volume fol escrito com a mesma ideia fundamental que norteou o primeiro.
Uma adequada orientagfio para a técnica ligada a um rigoroso e profundo desenvol-
vimento tedrico. Procurou-se fazer chegar ao estudante o espirito da matematica mo-
derna sem exagerar o formalismo. Como no Volume I, incluem-se notas historicas
para dar ao estudante uma ideia da evoluciio do pensamento matematico.

O segundo volume esta dividido em trés partes, intituladas Andlise Linear. Andlise
ndo Linear e Tdpicos Especiais. Os dois tGltimos capitulos do Volume I repetem-se aqui,
constituindo os dois primeiros capitulos deste Volume, com a finalidade de que todo
o material relativo & Algebra Linear se apresenta de forma completa em cada um
dos volumes.

A Parte 1 contém uma introdugiio a algebra linear, incluindo transformagdes li-
neares, matrizes, determinantes, valores proprios e formas quadraticas. Fazem-se
algumas aplicagdes & Andlise, em particular ao estudo das equagdes diferenciais li-
neares. Com a ajuda do calculo matricial estudam-se os sistemas de equagdes dife-
renciais. Demonstram-se teoremas de existéncia ¢ unicidade por intermédio do método
de Picard das aproximacdes sucessivas, que também se trata na teoria dos operadores
de contracgio.

Na Parte 2 estuda-se o calculo para fungdes de varias varidveis. O cdlculo diferen-
cial ¢ unificado e simplificado com auxilio da dlgebra linear. Incluem-se a generali-
zaclio da regra de derivagdo de uma fung¢io composta para campos vectoriais e esca-
lares e aplicagdes as equacdes de derivadas parciais ¢ a problemas de extremos. O
calculo integral inclui os integrais de linha, integrais multipios, e integrais de super-
ficie, com aplicagdes a Analise vectorial. Aqui a exposi¢do segue mais ou menos a
linha classica ¢ ndo inclui um desenvolvimento formal das formas diferenciais.

Os topicos especials tratados na Parte 3 sdo Probabilidades e Andlise Numérica. A
parte referente as Probabilidades estd dividida em dois capitulos, um que trata o
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assunto considerando o conjunto fundamental (ou espago amostra) finito ou infinito
numeravel; o outro em que se consideram conjuntos fundamentais ndo numeraveis,
variaveis aleatorias e fungdes de reparticio. Fazem-se algumas aplicagdes no estudo
de variaveis aleatorias uni ¢ bidimensionais.

O ultimo capitulo contém uma introdugiio a Analise Numérica, dando-se particular
énfase ao estudo de diferentes tipos de aproximacdo polinomial. Aqui, mais uma vez
se procura a unificaciio das ideias pela notacgo e terminologia da algebra linear. O livro
termina com o estudo de formulas de integraciio aproximada, tais como a regra de
Simpson, e com uma discussdo da formula de somagio de Euler.

Contém este volume matéria suficiente para um curso anual com trés ou quatro
tempos semanais. Pressupd¢ a conhecimento do cdlculo para fun¢des de uma variavel
tal como se estuda na maior parte dos primeiros anos dos cursos de cilculo. O autor
idealizou a matéria exposta para um curso com quatro aulas semanais, duas de expo-
sicdo por parte do professor ¢ duas para questdes postas aos alunos, desenvolvido ao
longo de dez semanas para cada parte e omitindo as sec¢des assinaladas com um as-
terisco.

Este segundo volume foi plancado de maneira a poderem omitirse varios capitulos
em cursos abreviados. Por exemplo, o Gltimo capitulo de cada uma das partes pode
ser omitido, sem que tal origine descontinuidade na exposi¢do. A Parte 1 proporciona
material para um curso combinado de algebra linear e equagdes diferenciais ordina-
rias. Cada professor pode escolher os topicos adequados as suas necessidades ¢ pre-
feréncias por consulta do diagrama da pagina seguinte que coindencia a interdepen-
déncia logica dos capitulos.

Mais uma vez agradec¢o com prazer a colaboragéo de muitos amigos ¢ colegas. Ao
preparar a segunda edi¢io recebi valiosa ajuda dos Professores Herbert S. Zuckerman
da Universidade de Washington e Basil Gordon da Universidade da Califérnia, Los
Angeles, tendo cada um deles sugerido varias modificagdes. Agradecimento sdo tam-
bém devidos ao pessoal da Blaisdell Publishing Company pela sua assisténcia ¢ coo-
peracao.

Como noutras ocasides, é para mim uma satisfacio especial exprimir a minha gra-
tiddo a minha esposa pela sua valiosa ¢ variada colaborac¢io. Em sinal de reconheci-
mento dedico-lhe gostosamente este livro.

T. M. A,
Pasadena, California
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PARTE 1
ANALISE LINEAR






ESPACOS LINEARES

i.1. Introducio

No desenvolvimento da Matematica encontramos muitos exemplos de objectos
matematicos que podem ser adicionados uns aos outros ¢ multiplicados por numeros
reais. O primeiro exemplo de tais objectos sdo os proprios niimeros reais. Qutros exem-
plos sdo as fungdes reais, os numeros complexos, as séries infinitas, os vectores num
espaco n dimensional e as fung¢des vectoriais. Neste capitulo vamos analisar um con-
ceito matematico geral, chamado espago linear, que inclui todos estes exemplos e mui-
tos outros como casos particulares.

Em resumo, um espaco linear ¢ um conjunto de elementos de natureza qualquer
no qual se efectuam certas opera¢des (chamadas adicdo ¢ multiplicacdo por mimeros).
Ao definir-se um espago linear, ndo ¢ necessdrio especificar a natureza dos elementos
nem dizer como se realizam entre eles as operagdes acabadas de referir. Em vez disso,
exige-se que as operagdes gozem de certas propriedades que se tomam como axiomas
do espaco linear. Vamos precisamente, em seguida, fazer uma descrigdo pormenori-
zada desses axiomas.

1.2. Definiciio de espago linear

Seja ¥V um conjunto ndo vazio de objectos, chamados elementos. O conjunto V cha-
ma-se um espaco linear se satisfaz aos dez axiomas que a seguir se enunciam, divididos
em trés grupos.

A xiomas de fecho.

AXIOMA |. FECHO A RESPETTO DA ADICAO. A todo o par de elementos x e vde V
corresponde um unico elemento de V, chamado soma de x e y e representado por x + y.
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AXIOMA 2. FECHO A RESPEITO DA MULTIPLICACAO POR NUMEROS REAIS. A todo o

x de V e todo o numero real a corresponde um elemento de V, chamado o produto de a por
X e representado por ax.

Axiomas para a adi¢do.

AXIOMA 3. PROPRIEDADE COMUTATIVA. Paratodoo xeydeV, temsex + y=y + x.

AXIOMA 4. PROPRIEDADE ASSOCIATIVA. Para todo o x, y e z de V, tem-se
X+ (y+z)=(x+y)+z

AXIOMA 5. EXISTENCIA DE ELEMENTO ZERO. Existe um elemento em V, representado
pelo simbolo O, tal que

x+O=x paratodooxdeV.

AXIOMA 6. EXISTENCIA DE SIMETRICOS. Para todo o x de V, o elemento (— )x tem a
propriedade

x+ (—Dx=0.
Axiomas para a multiplicacdo por nume os.

AXIOMA 7. PROPRIEDADE ASSOCIATIVA. Para todo o x de V, e todo o par de mimeros
reais a e b, tem-se

a(bx) = (ab)x.

AXIOMA 8. PROPRIEDADE DISTRIBUTIVA PARA A ADICAO EM V. Para todo o par
x eydeVetodo o real a, tem-se

a(x +y) =ax + ay.

AXIOMA 9. PROPRIEDADE DISTRIBUTIVA PARA A ADICAO DE NUMEROS. Para todo
o x em Ve todo o par de reais a e b tem-se

(@ + b)x = ax + bx.

AXIOMA 10. EXISTENCIA DE ELEMENTO IDENTIDADE. Para todo x em V, tem-se
Ix=x.

Os espagos lineares, como foram definidos atras, sdo muitas vezes chamados es-
pacos lineares reais, para fazer ressaltar o facto de que se multiplicam elementos de V'
por nlimeros reais. Se nos Axiomas 2, 7, 8 ¢ 9 substiuimos nimero real por numero
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complexo, a estrutura resultante chama-se um espago linear complexo. Por vezes um
espago linear chama-se também espaco vectorial linear, ou mais simplesmente espago
vectorial; os numeros usados como multiplicadores chamam-se escalares. Um espago
linear real admite os nimeros reais como escalares, um espago linear complexo admite
os numeros complexos como escalares. Embora se considerem aqui fundamental-
mente exemplos de espagos vectoriais lineares reais, todos os teoremas sio verdadei-
ros igualmente para os espagos vectoriais complexos. Quando fazemos uso da expres-
sdo espago linear, sem qualquer designacio suplementar, deve subentender-se que o
espago pode ser real ou complexo.

1.3. Exemplos de espacos lineares

Se especificamos qual o conjunto V ¢ dizemos como somar os seus elementos e
como multiplicd-los por niimeros, obtemos um exemplo concreto de um espago linear.
O leitor pode facilmente verificar que cada um dos seguintes exemplos satisfaz a todos
0s axiomas para um espago linear real.

EXEMPLO 1. Seja V' = R o conjunto dos niimeros reais, e sejam x + y e ax a adigdo e
multiplica¢fio usuais de nimeros reais.

EXEMPLO 2. Seja V= C o conjunto dos nimeros compiexos, e seja x + y a adigéio
ordinaria de numeros complexos e ax a multiplica¢do de numeros complexos x pelo
numero real a. Embora os elementos de V' sejam nimeros complexos, este é um es-
paco linear real porque os escalares siio reais.

EXEMPLO 3. Seja V=V, o espaco vectorial dos sistemas de # nimeros reais, com a
adi¢iio e a multiplicagio por escalares definida da maneira usual em fung¢iio das com-
ponentes.

EXEMPLO 4. Seja V o conjunto de todos os vectores em V, ortogonais a um dado
vector ndo nulo V. Se n = 2, este espaco linear é uma recta que passa por O, admintin-
do N como vector normal. Se n = 3, ¢ um plano que passa por O com N como vector
normal.

Os exemplos que se seguem dizem-se espagos funcionais. Os elementos de V sio fun-
¢Oes reais, com a adi¢io de duas fung¢des f e g definidas na forma usual:

(f+ o) =f(x) + g(x)

para todo o real x pertencente a intersec¢do dos dominios de fe g. A multiplicagio
de uma fungdo f por um escalar real a define-se do modo seguinte: af ¢ a fung¢do cujo
valor para cada x no dominio de fe af(x). O elemento zero é a fungiio cujos valores
sio sempre zero. O leitor verificara com facilidade que cada um dos conjuntos se-
guintes ¢ um espago funcional.
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EXEMPLO 5. O conjunto de todas as fun¢des definidas num dado intervalo.
EXEMPLO 6. O conjunto de todos os polindmios.

EXEMPLO 7. O conjunto de todos os polinémios de grau £ n, com n fixo. (Sempre
que se considera este conjunto subentende-se que o polindmio zero estd tambem in-
cluido). O conjunto de todos os polindmios de grau igual a n ndo ¢ um espago linear
porque os axiomas de fecho ndo sdo satisfeitos. Por exemplo, a soma de dois polino-

mios de grau n ndo terd necessariamente grau 1.

EXEMPLO 8. O conjunto de todas as fun¢des continuas num dado intervalo. Se o
intervalo ¢ la, bl representamos este espago linear por C(a, b) .

EXEMPLO 9. O conjunto de todas as fungdes derivdveis num dado ponto.
EXEMPLO 10. O conjunto de todas as fung¢des integraveis num dado intervalo.

EXEMPLO 11. O conjunto de todas as fun¢des f definidas no ponto 1, com f(1) = 0.
O nimero 0 é fundamental neste exemplo. Se substituirmos ¢ por um nimero ¢ néo
nulo, violamos os axiomas de fecho.

EXEMPLO 12. O conjunto de todas as solu¢des de uma equacdo diferencial linear
homogénea y” + ay’+ by = 0, com a ¢ b constantes. Aqui mais uma vez o 0 ¢ essencial.
O conjunto de solugdes de uma equagio diferencial ndo homogénea nio satisfaz aos
axiomas de fecho.

Estes exemplos ¢ muitos outros mostram bem quanto o conceito de espago linear
esta estendido a Algebra, Geometria e Analise. Quando se deduz um teorema a partir
dos axiomas de um espaco linear, obtemos, de uma vez, um resultado valido para
cada exemplo concreto. Unificando diferentes exemplos desta maneira ganhamos um
conhecimento mais aprofundado de cada um. Algumas vezes o conhecimento de um
exemplo particular ajuda-nos a antecipar ou interpretar resultados validos para outros
exemplos e pde em evidéncia relagdes que de outro modo poderiam passar desper-
cebidas.

1.4. Consequéncias elementares dos axiomas

Os teoremas que se seguem deduzem-se facilmente dos axiomas para um espago
linear.

TEOREMA 1.1. UNICIDADE DO ELEMENTO ZERO. Em gualquer espaco linear existe
um e um so elemento zero.

Demonstragdo. Oaxioma S diz-nos que existe pelo menos um elemento zero. Supon-
hamos que existiam dois, por exemplo O, ¢ 0,. Tomando x = O, ¢ O = 0, no Axioma
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5, obtemos O, + 0, = 0,. Analogamente, tomando x = 0, ¢ O = 0,, encontramos
O,+ 0,= 0,. Mas 0, + 0,= 0,+ 0,, devido 4 propriedade comutativa, pelo que
0, =0,

TEOREMA 1.2. UNICIDADE DOS ELEMENTOS SIMETRICOS. Em qualquer espago linear
todo o elemento admite unicamente um simetrico, isto €, para todo o x existe um e um so y
tal que x + y= 0.

Demonstracdo. O Axioma 6 diz-nos que cada x admite pelo menos um simétrico, a
saber (— 1)x. Admitamos agora que x tinha dois simétricos, y, ¢ y,. Entdo x + y, = O
e x + y,= 0. Somando y, a ambos os membros da primeira igualdade e utilizando os

Axiomas 5, 4 € 3, encontramos
Yo+ x+y) =y, + 0 =y,,
Vet +y) =0+ 0+ n=0+y=y+0=y,.

Portanto y1=y,, pelo que x tem precisamente um simétrico, o elemento (— 1)x.

Notagdo. O simétrico de x representa-se por —x. A diferenga y — x ¢ definida pela
somay + (—x).

O teorema seguinte refere um certo numero de propriedades que regem os calculos
algébricos elementares num espago linear.

TEOREMA 1.3. Num dado espaco linear. sejam x e y elementos arbitrdrios e a e b esca-
lares arbitrdrios. Entdo verificam-se as seguintes propriedades:

(a) 0x = 0.

(b) a0 = 0.

©) (—a)x = —(ax) = a(—x).

(d) Seax = 0, emtdioou a=0oux=0.

(e)Seax=ay ca#0,entdox=y.

(fySeax =bxe x# O, entdo a=b.

@ —&x+=>Fx)+(=p)=—x—y.

(h) x+x=2x,x+x+x=273x, eemgeral 2", x = nx.

Vamos demonstrar (a), (b) e (¢), deixando as demonstragdes das restantes ao cuidado
do leitor.

Demonstracdo de (a). Seja z = 0x. Desejamos provar que z= 0. Somando z a si
proprio ¢ aplicando o Axioma 9, verificamos que

z4+z=0x+0x=04+0x=0x=1z.

Adiconamos agora —z a ambos os membros ¢ obtemos z = 0.
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Demonstracdo de (b). Seja z =aQ, adicionemos z a si proprio e utilizemos o Axio-
ma 8.

Demonstracdo de (¢). z= (—a)x. Adicionando z a ax e utilizando o Axioma 9, veri-
ficamos que

z4+ax=(—a)x+ax=(—a+a)x=0x=0,

pelo que z € o simétrico de ax, z= —(ax). Analogamente, se adicionamos a(~x) a ax
¢ utilizamos o Axioma 8 e a propriedade (b), encontramos que a(—x) = —(ax).

1.5. Exercicios

Nos Exercicios | a 28, determinar se cada um dos conjuntos dados ¢ um espaco linear real,
com a adi¢do e a multiplicac¢do por escalares reais definidas da forma usual. Para os Exercicios
em que assim ndo scja, dizer quais sdo os axiomas que ndo se verificam. As fun¢des nos Exer-
cicios 1 a 17 sdo reais. Nos Exercicios 3, 4 e 5 cada fungiio tem um dominio contendo O e 1. Nos
Exercicios 7 a 12, o dominio ¢ o conjunto de todos os nimeros reais.

. Todas as fun¢des racionais,
. Todas as fung¢des racionais f/g, com o grau de /< que o grau de g(incluindo f = 0).
. Todas as fun¢des fcom f(0) = f(1).
. Todas as fung¢des fcom 2f(0) =f'(1).
. Todas as fungdes fcom f(1) = 1 + f(0).
. Todas as fun¢des em escada defimdas em escada [0, 1.
. Todas as fung¢des com f(x) —» 0 quando x - + co.
. Todas as fung¢des pares.
. Todas as fungdes impares.
10. Todas as fungdes limitadas.
11. Todas as fungdes crescentes.
12. Todas as fungdes periddicas de periodo 27.
13. Todas as fungdes [ integraveis em [0, 1], com ﬁ’)f(x)dx =0.
14. Todas as fun¢des fintegraveis em [0, 1}, com f},f(x)a’x = 0.
15. Todas as fungdes verificando f(x) =/ (1 —x) para todo o x.
16. Todos os polindmios de Taylor de grau £ n para um »n dado (incluindo o polinémio zero).
17. Todas as solugdes da equagdo diferencial linear homogénea de segunda ordem y”+ P(x)y’'+
O(x)y =0, com P e Q fungdes dadas e continuas para todo o x.
18. Todas as sucessdes reais limitadas.
19. Todas as sucessdes reais convergentes.
20. Todas as séries reais convergentes.
21. Todas as séries reais absolutamente convergentes.
22. Todos os vectores (x, y, z) de V, com z =0.
23. Todos os vectores (x, y, z) de ¥V, com x =0ou y =0.
24. Todos os vectores (X, y, z) de V, com y = 5x.
25. Todos os vectores (x, y, z)de V, com 3x +4y =1,z =0.
Y,
Y,

NeolEe N Ne S R N S

26. Todos os vectores (x, y, z) de V, que sdo muiltiplos escalares de (1, 2, 3).
27. Todos os vectores (x, y, z) de V; cujas componentes satisfazem a um sistema de trés equagdes
lineares de forma:

apx + agay + az =0, anx + daypy + aypz =0, ayx + agy + agpz = 0.



