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Abbreviations, Symbols, and Notations

X ~ D implies “X is randomly sampled from distribution D”
Approximately equal to

Proportional to

Defined as: e.g., LHS := RHS implies “LHS is defined as RHS”

If and only if: A < B implies “A is true (false) if and only if B is true
(false)”

For real numbers a, b, c,and d,a 2 b < ¢ 2 d implies “a > bif c > d
anda < bifc <d”

Therefore

Because

Absolute value: for areal number a, |a| is the non-negative value of a, e.g.,
|—3.14| = 3.14 and |2.72| = 2.72 (unchanged when a is non-negative)
Norm: in this book, it denotes a vector’s Euclid distance from the origin;

7
fora vectora = [a; ---a,1, llall = |3 a?
pt

Ceiling function: rounds the argument to the smallest integer but not
smaller than the argument, e.g., [3.14] = 4.

Floor function: rounds the argument to the largest integer but not larger
than the argument, e.g., |3.14] = 3.

Rounding (half away from 0) function: rounds the argument to the nearest
integer, e.g., round(3.4) = 3, round(3.5) = 4, and round(—3.5) = —4

Repeated multiplication: for a series of numbers {a;, as, - - ,an},
6

[1an=as x as x as x ag

n=3

n
Factorial: n! = [[i=nxm—1) xn—2) x---x2x1
i=1
Hadamard product: conducts element-wise product of two matrices of the

.. ap ap a b1 bia b
same size; if A = [ 1 &2 13i| and B = |: 172 13:|, thenA OB =
az| ay ax by1 by b3
[aubn anbin a13b13]
az1byy axbry aryby
Hadamard division: conducts element-wise division of two matrices of

the same size; if A = [011 a12:| and B = |:b11 b12:|, then A © B

az| ax by1 by
_ |:a11/b11 012/b121|

az /ba1 axn /by
Hadamard power: raises each element of a matrix to a power; for a matrix

b b b
ay ap an ab ab, a
A = [ 142 1‘i| and real number b, A = |: e })3], when
a1 ax a3 dyy Ay Ay

b= %, it is particularly referred to as Hadamard root.

For all: Vj € N; implies “for all numbers in the set of natural numbers
Ny ={1,2,---,J},” whichimplies “for all items” in this book; similarly,
Vs € Ny represents for “for all students.”
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€ In or member (element) of: 2 € N implies “2 is a member of natural
numbers”; 0.3 € [0, 1] represents “0.3 is in (the range of) O to 17

\ Set difference or relative complement: if A = {ay, a,, as, a4} and B =
{ay, az}, then A\B = {ay, a3}

arg max X = arg maxf (x) implies X is the value in R that maximizes f

xeR

cl(-) Clip funection or clamp function: cl(x) = x when X, < X < Xyax,
cl(x) = X When x < X, and cl(x) = X0 When x > X,,,c, Where
(Xmins Xmax) = (0, 1) in this book

det(-) Determinant: det(A) denotes the determinant of matrix A

diag(-) Extracts the diagonal elements of a square matrix and vectorizes them:
forA = [“” alz],diag(A) = ["”]

azl axp an

E[-] Expectation: the expectation or the expected value of a random variable
X, denoted E[X], is intuitively the arithmetic mean of a large number of
independently sampled relalizations of X ; the expectation for a discrete
random variable is the probability-weighted sum of all possible outcomes

exp(-) Exponential: for a real number a, exp(a) is the same as e“, where e =
2.71828 - - is Napier’s constant; exp(3) = 2.718% = 20.09

In(-) Natural logarithm: the logarithm with base e = 2.71828 - - - ;Ina = log,a

row(-) Returns the number of rows of the argument (matrix): e.g., row(A4) = 3
when A is a 3 x 2 matrix; returns the number of elements when the
argument is a vector

sgn(-) Signum (or sign) function: returns the argument’s sign, i.e., sgn(x) = 1
ifx > 0,sgn(x) =0ifx =0, and sgn(x) = —1ifx <0

tr(-) Trace: the sum of the argument (a square matrix); when A isa J x J

n
matrix, tr(4) = )" g
j=1

N The set of all natural numbers, {1, 2, 3, - - -}: the set with subscript n (
N,,) represents the set of natural numbers from 1 to n, {1, 2, --- , n}

0 The empty set: the set has no elements, and the size of this set is zero

Notations

1, A vector of size n, in which all elements are 1:13 = [1 1 17

A = {ay} Adjacency matrix, where a; = 1 when an edge of Item j — k

exists; otherwise a; = 0
a; Slope parameter of Item j (IRT)
Q Slope index of Item j (LRA): the lower rank of two adjacent ranks
between which the CRR increases the most in the IRP of Item j
a; CRR difference between Ranks o and o; + 1 (LRA)

Location parameter of Item j (IRT)
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Abbreviations, Symbols, and Notations

Location index of Item j (LRA): the rank whose CRR is the closest
to 0.5

CRR at Rank g; in IRP of Item j (LRA)

Number of latent classes (LCA)

Lower asymptote parameter of Item j (IRT)

Monotonicity index of Item j (LRA): the ratio of adjacent rank pairs
between which CRR decreases to the number of adjacent rank pairs
Cumulative decrease of adjacent rank pairs between which CRR
decreases (LRA)

Upper asymptote parameter of Item j

A diagonal matrix where eigenvalues are arranged in the descending
order

Jj-th largest eigenvalue or j-th diagonal element in A

A matrix in which the j-th row vector is e;, which is the eigenvector
corresponding to §;

PDF of normal distribution with mean p and SD ¢ (variance o2);
fwv(; 0, 1) is the PDF of the standard normal distribution

CDF of normal distribution with mean @ and SD o; Fy(+; 0, 1) is
the CDF of the standard normal distribution

Quantile function or inverse CDF of normal distribution with mean
wand SD o; Fy, 1(-; 0, 1) is the quantile function of the standard
normal distribution

PDF of standard bivariate normal distribution with correlation p
Four-dimensional PSRP array (BINET), where v/ is 1 when Item
Jj is the d-th item in Field f, and Class c is locally dependent at the
field; otherwise y;q.q is 0

Three-dimensional PIRP array (BNM), where yj; is 1 when the
response pattern of Student s for Item j’s parent item(s) is the d-th
pattern; otherwise, vz is 0

Four-dimensional PIRP array (LD-LRA), where Y4 is 1 when the
response pattern of Student s in Rank r for Item j’s parent item(s)
is the d-th pattern; otherwise, yq is 0

Four-dimensional PIRP array (LDB), where vy, is 1 when the
NRS of Student s in Rank r for the items classified in Field f’s
parent field(s) is the d-th pattern; otherwise, v is O

Identity matrix of dimensions n X n

Posterior information matrix of Item j, where A is an item parameter
vector (IRT)

Fisher information matrix of Item j, where A is an item parameter
vector (IRT)

Prior information matrix, where X is an item parameter vector (IRT)
Number of items (test length)

Item parameter vector of Item j (IRT)

Item parameter matrix containing A; in the j-th row (IRT)
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Mc = {my}
My = {m;}
Mo = )
Mg = {mg}
0= [o,-l

P =\

p = {p"}
Pc = {py}
P = {pj}
P = {rx)
Py = {li}
o)

@ = {¢}
My = {re |
e = {7y}
Mpc = {ms}
Mpr = {my}
My = {ma}
M = {7}
M = {m;}
R

R

Class membership matrix, where the (s, ¢)-th element, m,., repre-
sents the membership (probability) that Student s belongs to Class
c (LCA)

Field membership matrix, where mjr represents the membership
(probability) that Item j is classified in Field f* (biclustering)
Group membership matrix, where m,, is 1 if Student s belongs to
Group g; otherwise, my, is 0

Rank membership matrix, where my, represents the membership
(probability) that Student s belongs to Rank » (LRA)

Item odds vector, in which o; is the odds of Item j

CRR vector, in which p; is the CRR of Item j

Item mean vector, in which p;w)

CCRR matrix: an asymmetric matrix (P’C #= Pc) with all diagonal
elements being 1, and the (j, k)-th entry, py|;, is the CRR of the
students passing Item & for Items j

Group reference matrix, where pj, is the CRR of students belonging
to Group g for Item j

JCRR matrix: a symmetric matrix (P, # P;), where the (j, k)-th

element, P> is the JCRR of Items j and &, and the j-th diagonal
element is the CRR of Item j

Item lift matrix: a symmetric matrix (P’L = PL), where [, is the lift
of Itemj — k

IRF of item j with item parameter A; (IRT), also denoted as P;(6)
Incorrect response function of Item j identical to 1 —P(Q; X,) (IRT),
also denoted as Q;(0)

A symmetric matrix ((I>/ = <I>) with diagonal elements 1, where ¢j;
is the ¢ coefficient between Items j and k

Bicluster reference matrix (biclustering), where 7. is the CRR of
Class c students for a Field f item

Class reference matrix (LCA), where m; is the CRR of Class ¢
students for Item j

Local dependence parameter set (BINET), where my; is the PSR of
Class ¢ students for Item j in Field f

Local dependence parameter set (LDB), where 77,y is the CRR for
a Field f item of Rank r students whose PIRP is the d-th pattern
Local dependence parameter set (LD-LRA), where 7, is the CRR
for Item j of Rank r students whose PIRP is the d-th pattern
Parameter set (BNM), where ;4 is the CRR for Item j of students
whose PIRP is the d-th pattern

Rank reference matrix (LRA), where 7, is the CRR of Rank r
students for Item j

Number of latent ranks (LRA)

(Tetrachoric) correlation matrix

is the mean of Item j
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Abbreviations, Symbols, and Notations

Student passage rate vector, where r; is the passage rate of Student
s for test items

Student scoring rate vector, where ) is the scoring rate of Student
s

Item-total correlation vector, where the j-th element, p; ., is the
item-total correlation of u; with ¢

Sample size (number of students)

Student NRS vector, where ¢ is the NRS of Student s

Student total score vector, where ts(w) is the total score of Student s
TRP, which is a column sum vector of class/rank/bicluster reference
matrix and represents the expected NRS on the test

Weighted TRP, representing the expected score on the test
Student true score vector, where Tt is the true score of Student s
Student ability value vector, where 6 is the ability value of Student
s (IRT)

Data matrix, where uy; is the response of Student s to Item j, coded
1 if it is correct, O if incorrect, and “(dot)” if missing (the item is
not presented to the student)

PIRP matrix, where the (s, j)-th entry, urg;, is d when Student s’s
PIRP of Item j is the d-th pattern

Data vector of Item j or the j-th column vector in U

(Vertical) vector of Student s’s data arranged in the s-th row of U
Variance of total scores, or Var[t™]

Variance of true scores, or Var[t]

Error variance, or Var|[e]

Item variance vector, where v; is the variance of Item j

Item weight vector, where w; is the weight of Item j

Missing indicator matrix, where z,; is 1 if Item j is presented to
Student s; otherwise, zy; is 0

Missing indicator vector for Item j or the j-th column vector of Z
(Vertical) vector of Student s’s missing indicators arranged in the
s-th row of Z

Vector of standardized scores of students’ passage rates, where
is the standardized score of Student s’s passage rate

Vector of standardized scores of students’ scoring rates, where ¢
is the standardized score of Student s’s scoring rate



Chapter 1 ®)
Concept of Test Data Engineering Qs

When managing a test, item-writing (or question-making) and scoring (or marking)
are the main segments; however, there is a whole package of design, including tem-
poral planning and spatial layout, item-writing, implementation, scoring, analysis,
evaluation, and feedback. Among them, the term “test data analysis” is an expression
that focuses on the analysis component; however, “test data engineering,” a concept
considered in this book, represents a broader perspective.

Simply put, tests are tools used in society. They are highly public in nature; thus,
it can be said to be public tools. They sometimes affect the future of test takers, most
of whom are children and young people. Thus, they should neither be groundless nor
irresponsible, and adults must properly summarize the information contained in the
test data and provide them back to test takers. In this book, test takers are referred to
as “students.”

The primary information obtained from a test administration is the raw data; i.e.,
students’ responses. If an item is “What is the capital of USA?,” the responses are the
uncoded raw responses of the students, such as “New York,” “Washington, D.C.,”
and “London.” The responses include “missing data” and “nonresponses,” which
are also important information about the students. Secondary information is marked
(coded) data. Except for essay questions,' each test datum is trichotomous: correct,
incorrect, or missing. The correct and incorrect responses are normally coded as 1
and 0, respectively, while the missing datum is denoted by various symbols such as
99, —1, and “.” (dot). In addition, a nonresponse is usually regarded as an incorrect
response and coded as O (see also Table 2.2, p. 16). This book mainly focuses on
analyzing secondary information (post-coded data).

! This book does not deal with essay questions. An essay question is often graded from points of
view. For example, if an essay item has five viewpoints, and each viewpoint is assigned three points,
the scale of the essay item is O to 15.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022 1
K. Shojima, Test Data Engineering, Behaviormetrics: Quantitative Approaches to Human
Behavior 13, https://doi.org/10.1007/978-981-16-9986-3_1
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2 1 Introduction To Applications
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173

Fig. 1.1 Analogy of measurement

Generally, changing the state of something by retouching it is called “processing”;
therefore, changing the primary information (raw data) to secondary information
(coded data) is also considered as a process. In addition, counting the number of
correct responses for each student and calculating the correct response rate for each
item are also processes, and they may be referred to as the “tertiary information
briefing the secondary information” and are often used as the summary and feedback
returned to students and the teacher who administered the test. In other words, a test
administration is considered as a series of processes pertaining to collecting, coding,
scoring, and transforming data.

1.1 Measurement as Projection

Generally, measurement is the action of assigning a numerical value to an object.”
For example, suppose that Mr. Smith’s height is measured and found to be 173 cm
(5'8"), then this can be formulated as

JfscaLe(MR. SMITH) = 173 (cm). (1.1

This indicates that the height scale can be regarded as a function that outputs “173
(cm)” for the input “Mr. Smith.” The function fscapLg can also be considered as a
machine that extracts only his body length (Fig. 1.1, left) but discards all other infor-
mation, such as gender, age, nationality, ethnicity, birthday, address, and hobbies.

2 For a historical background on educational measurement theory, see (Clauser and Bunch, 2022).
This chapter describes the author’s thought.
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Fig. 1.2 Measurement as projection

Equation (1.1) can alternatively be represented as

MR. SMITH % 173 (cm).

The two formulations are different representations conveying the same meaning,

where A +i> B means that A is transformed (or mapped in a technical term) to B
by f. For a more literal sense, it can be read as “Painter f studied Scenery A and
drew Picture B,” or “when A was illuminated from the direction of f, the shadow
(image) of B appeared in the back.” The latter expression is technically referred to
as a projection (Fig. 1.1, right).

AsFig. 1.2 (left) illustrates, illuminating an object from various angles, examining
the shadows (flattened images on the respective walls) of the object, and considering
the original shape of the object is referred to as projection pursuit. In particular,
when the shape of an object is complex and multidimensional, the object cannot
be observed directly; in this case, the original shape can be imagined by inspecting
shadow images cast by light from various directions.

The measurement is considered a projection. “Mr. Smith” is essentially a high-
dimensional input composed of various pieces of information,® Thus, itis necessary to
illuminate (measure) Mr. Smith from various angles to understand him (see Fig. 1.2,
right). When Mr. Smith is illuminated by the projector (from the direction) at “height
meter,” then image “173 cm” is cast on the wall; and if he is illuminated by “weight
scale,” then “76.5 kg” is cast on the wall. Thus, we can depict the true shape of
Mr. Smith by illuminating him with more projectors. A set of measurements (i.e.,
projectors) is referred to as an “assessment.” In a medical assessment, the doctor

3 It contains biological (gender, age, height, weight, eyesight, skin color, grip strength, voice pitch),
socioeconomic (address, educational history, income, number of siblings, marital status), psycho-
logical (agreeableness, conscientiousness, extraversion, neuroticism, openness), and intellectual
(language, mathematics, science, history) characteristics.
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obtains the shadows of Mr. Smith’s health status, an extremely high-dimensional
object, using multiple projectors such as blood tests, urinalysis, radiography, and
echocardiography, and then integrates the shadows and diagnoses the status.

1.2 Testing as Projection

Likewise, a test can likewise be viewed as a function or projection. Suppose Mr.
Smith took a test and scored 73; this situation can be represented as follows:

fTEST(MR- SMITH) =73 (points). (1.2)

This test can also be regarded as a projector illuminating Mr. Smith by casting the
image “73.” If this test is a math test, the number expresses the mathematical ability.
Moreover, some tests may return a grade such as A, B, or C. Note that frgsr only
extracts the object of interest (i.e., mathematical ability) and discards (or neglects)
all other information.

Let us express Eq. (1.2) in finer detail. Because the test consists of some items
(e.g., 100 items), a correct/incorrect (1/0) response pattern for the 100 items is first
output by frgsr, as follows:

100 Items

Sfrest(MR. SMITH) = 11001011011 ---1..

This example shows that Mr. Smith passed 73 items (e.g., Items 1,2, 5,7, 8, ---),
and failed the other 27 items. Then, by inputting the response pattern into function
“number-right score,” fnrs, the function finally returns “73” as follows:

fars (11001011011 - - - 1) = 73 (points).

This fnrs is also regarded as a projector because a different image is cast by a
different projector. For example, if one uses the projector “correct response rate,’
fcrr, the response pattern is transformed into

forg (11001011011 - - - 1) = 0.73.

In addition, suppose he did not respond to 12 of the 100 items. By the projector
“nonresponse rate,” fNrr, the response pattern is processed into

frr (11001011011 --- 1) = 0.12.

Both 0.73 and 0.12 are the shadows (images) cast by the projectors, respectively;
more specifically, frgst is classified in measurement, while fxrs, fcrr, and fnrr
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Fig. 1.3 Projection by measurement and analysis

are grouped in the analysis. Accordingly, the process of administering a test to obtain
student scores includes basically two projections: measurement and analysis.
Accordingly, Eq. (1.2) is decomposed as follows:

Jars (frest(MR. SMITH)) = fnrs (11001011011 --- 1) = 73 (points),

f TEST

MR. SMITH Z% (11001011011 --- 1) £ 73 (points).

These two equations are identical; i.e., they represent the object (i.e., Mr. Smith) that
is first measured as (transformed into, output as, symbolized as, coded to, or induced
to) the binary response pattern through the test, and the pattern is then analyzed as
(processed into, or calculated as) 73.

Usually, a test is performed by some students (Fig. 1.3, left), which is expressed
as follows:

frest(STUDENTS) = DATA, or STUDENTS LT DATA.

In these equations, DATA denotes a data matrix (Sect. 2.1, p. 15), in which Student
s’s response to Item j is placed in the s-th row and j-th column. The figure also
shows that a different aspect (i.e., response pattern) of the students is projected if the
same students took a different test, which can be represented as follows:

fuar(STUDENTS) = DATA,;, or STUDENTS 7% DATA,,,  (1.3)

fl"RENCH

frrencu (STUDENTS) = DATAf, or STUDENTS ———— DATAp.

Furthermore, Fig. 1.3 (right) shows that different images (i.e., shadows) are gen-
erated even for the same data when different analyses are conducted. In the figure,
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the item response theory (IRT; Chap. 4, p. 85) and Bayesian network model (BNM;
Chap. 8, p. 85) are employed. This situation is represented as follows:

fier(DATA) = IRF, or DATA ¥ IRF,

feNm

fenm(DATA) = DAG, or DATA —— DAG.

When data are analyzed by IRT, one of the outputs is the item response function
(IRF; Sect. 4.2, p. 86).* In addition, the BNM yields an output known as directed
acyclic graph (DAG:; Sect. 8.1.8, p. 366).

A single test administration is a single-facet assessment, while a multifacet assess-
ment is used to measure each student via multiple tests. In general, teachers should
inspect each student from multiple angles by employing various evaluation methods.
For instance, for an entrance exam, practical skills, interviews, and activity history
should be included and integrated into paper-and-pencil tests (PPTs) to determine
the treatment (pass or fail) of each applicant. Although each shadow (i.e., image) is
a plane, the original shape of the student, as an essentially high-dimensional being,
can be approximated from multiple planes.

Design Concept

It seems a matter of course that different analyses project different images,
this is because each analysis method was developed based on a unique design
concept. The design concept of a method is its policy, philosophy, or specifi-
cation of the information to be extracted from the data, based on the purpose
of the analysis. It also consists of some detailed assumptions (or constraints).
For example, the typical assumptions used in IRT are unidimensionality
(Sect. 2.8, p. 59) and local independence (Sect. 4.3.1, p. 96). A representa-
tive assumption for BNM is d-separation (Sect. 8.2, p. 369).

Once a statistical analysis is conducted, some outputs are produced; thus, a
large quantity of information can be extracted from the data by the method.
Howeyver, it should be noted that what one method can extract from data is
only a small part of the entire information contained in the data, and a large
part of it is discarded (or neglected), because data contain a vast amount of
information. For example, in IRT, information about the local dependency
structure that generally exists among items is neglected and abandoned under
the assumption of local independence; the local dependency information is
shaped (transformed or processed) into a piece of information as if items are
locally independent, and such artificial results are finally output.

4 Various other results can also be output.
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Fig. 1.4 Artimage morphing

1.3 Artimage Morphing

Measurement and analysis are the processes of retouching the input information and
remakeing it into a different product. Specifically, measurement processes an object
(phenomenon or event) into an image represented by numbers (i.e., data), and anal-
ysis processes the data into images of statistical outputs. In particular, testing, which
is a measurement method, transforms the input “students” into the image “numerical
array” (i.e., binary true/false data); test data analysis then processes the input “binary
data” into images such as “indices,” “figures,” “tables,” “information,” “knowledge,”
and “words (including numbers).” Note that all images obtained through such pro-
cesses are not natural but artificial; thus, they are called artimages Shojima 2007a.

Figure 1.4 depicts artimage morphing, where an artimage is processed into a
differently looking artimage. We obtain information from an object by measuring it
and extracting knowledge from the information by analyzing it. However, we should
also be aware that we are losing (or discarding) a huge amount of information in the
mapping process. If we administer a math test, we obtain information (data) about
math ability for the input “students”; however, this is practically synonymous to
discarding (or neglecting) all information other than math ability. Similarly, if we
analyze the math test data with IRT, we can obtain knowledge such as IRF and ability
parameter; however, we lose all the other information.

As shown in the bottom part of Fig. 1.4, the more advanced the process, the higher
the abstraction level of the information induced from the artimage, which is a merit
of the artimage morphing. Every single object (phenomenon, event, or initial input)
is normally too complex for direct comprehension. Therefore, we must first replace
the input “students” with artimage “data” through testing for increasing levels of
abstraction; however, this array of numbers is still extremely complicated and beyond
direct interpretation. Therefore, we pass “data” through a statistical model to a further

5 Genzo (B in Japanese, which is a compound word of “phenomenon” (BA) and “artificial”

(1),
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increasing level of abstraction by changing it into an understandable artimage (i.e.,
knowledge).

Art

The concept of projection is widely applicable. For example, when an
artist paints a landscape, or when a poet composes a poem about love, this
can be expressed as follows:

fPAINTER

Jfeanter (SCENERY) = PICTURE, or SCENERY ——— PICTURE,

oot (LOVE) = POEM, or LOVE %% POEM.
Ji

The picture or poem is considered to be an artimage processed by the artist
or poet, respectively; however, in these cases, we observe that f is filled with
the experience and emotion of the painter or poet; therefore, it is not only a
process of information abstraction (or impoverishment) but also a process of
information enrichment.

If the attributes of a student are enumerated successively, the number of attributes
can easily exceed a million or billion; thus, each student is a high-dimensional object.
However, of these approximately ten subjects can be measured by tests, such as
languages, math, sciences, and social studies, and each test contains not more than
100 items. Why do we inquire into only 1000 items from the ten subjects of a student
with a billion attributes? The test administrator should be accountable for why and
how the 1000 items were selected, and a higher-stakes test® must be more responsible
for this point.

Furthermore, even though there are many methods for analyzing data, we usually
apply only a few. Why do we select those methods that produce indicators for each
student and evaluate the student using the indicators that could determine the future
of the student? The test administrator should also be accountable for this point.

Though we are given a variety of choices for measuring and analyzing (see
Fig. 1.5), we can only trace a few routes in this tree; thus, we should be able to
explain why we chose this process.

1.4 Test Data Engineer

As seen above, administering a test, obtaining data, and obtaining the results is a
process of retouching an object into an artimage after another, which is generally
expressed as

6 A high-stakes test is a competitive test such that a high scorer on the test will lead an individual
to a high social status (e.g., advanced civil service exam, medical licensing exam, bar exam, and
entrance exams for leading universities).



