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Preface

It is a great pleasure to publish Systems Research I and II: Essays in Honor
of Yasuhiko Takahara, to commemorate the 50th anniversary of Dr. Yasuhiko
Takahara’s research and education activities, who has been active at the world level
in the field of systems research. We compile representative research of researchers
and practitioners scented by Dr. Takahara from Japan and abroad who pay homage
and gratitude to him into two volumes.

Dr. Takahara completed his research with Dr. M. Mesarovic at Case Western
Reserve University. He brought up the results of General Systems Theory (GST),
especially Mathematical General Systems Theory (MGST), from the United States
to Japan to be appointed to Tokyo Institute of Technology in 1972. In Japan, it was a
time the term “system engineering” began to attract interest in gradually establishing
the system as a unique field and capturing the essence of what is recognized as a
system.

We, editors-in-chief, who fortunately shared that era, still remember the shock
we had when we first learned GST, especially MGST. MGST attempts to transpar-
ently understand the properties of systems such as interdependency and emergent
property, by discussing the logic related to systems in a set-theoretic framework to
formulate causal systems and hierarchical systems.

A wide range of books used as textbooks at the seminars in Takahara laboratory
remind us of such good old days. They not only have worked as the soils supporting
our research since then but also certainly reflect some part of the background
of knowledge at that time. They include:Universal Algebra (George Graetzer);
Algebra (Saunders MacLane and Garrett Birkoff); Introduction to Topology and
Modern Analysis (George F. Simmons); Topology (James Dugundji); Abstract and
Concrete Categories: The Joy of Cats (Jiri Adámek, Horst Herrlich, and George E.
Strecker); Model Theory (C.C. Chang, H. Jerome Keisler), BeginningModel Theory
(Jane Bridge); Model-Based Systems Engineering (A. Wayne Wymore); Theories
of Abstract Automata (Michael A. Arbib); The Specification of Complex Systems
(B. Cohen et al.); The Structure of Scientific Theories (Frederick Suppe (Editor)),
Goedel, Escher, Bach (Douglas R. Hofstadter); Forever Undecided (Raymond
Smullyan); Introduction to Systems Philosophy (Ervin Laszlo), Living Systems
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vi Preface

(James Grier Miller); Facets of Systems Science (George J. Klir), Systems Thinking
Systems Practice (Peter Checkland); Heuristics (Judea Pearl); Multifaceted Mod-
elling and Discrete Event Simulation (Bernard P. Zeigler).

Over the 50 years since then, Dr. Takahara has developed the concept and theory
of general systems centered on formal system research. By projecting mathematical
general systems theory from meta-theory to the real world, he has powerfully
promoted diverse but coherent systems research with a strong desire and intention to
construct knowledge not only in theory (episteme) but also in engineering (techne)
and practice (phronesis). They include systems modeling, information systems,
decision support systems, and systems thinking. The results and findings there are
now having a great impact on improving our socio-economic situations, which
are becoming more and more complex, by providing the basis of ideas for the
sophistication of business models and creation of new services by networks and
ICT.

At the same time, Dr. Takahara has promoted educational activities with these
studies and research as a nursery to give a great influence on many researchers
and practitioners, not limited to students who received his direct scent. It triggers
intellectual excitement and acts as a device to encourage their diversified but
coherent systems study.

The Takahara School of GST is outstanding in its interdisciplinary and transdis-
ciplinary approach. As you can see in the table of contents of the book, it ranges
from highly abstract mathematics to practical applications of social science. It is
very fortunate in systems research history that the Takahara school has created such
a wide range of content in a deep dialogue using “system” as the common concept.

Some 20 authors gathered here have established their position by developing
systems concepts in theory, models, methodologies, and applications in various
ways, keeping in their mind the works by Dr. Takahara and co-authored with
Mesarovic. Their activities include:

– Research to develop the strong intellectual desire for generality tackled by
mathematical general systems theory into knowledge to connect different levels
and approaches to the same object for solving actual problems. They are eager to
catch the spirit that GST aimed at in the early days.

– Enterprise by which MGST and system engineering are practically fused by
examining the basic concept of the system to develop knowledge applicable to
hot topics these days.

– Development of what we call translational approach that connects theory and
practice in a cyclic way, which follows the process of analyzing mechanisms,
solving in an evidence-based way, and intervening in a problematic situation.

– Exploration of new disciplines such as Decision Systems Science and Service
Systems Science by accommodating “hard” systems theory with “soft” systems
thinking.

– Promotion of a formal approach in the field of Information Systems, for
example, to identify isomorphisms between different recommendation systems
and decision schemes known in social choice theory, and to the Enterprise
Ontology in Design and Engineering Methodology for Organization.
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Since the articles contributed by the twenty authors have a wide range of issues,
we decided to structure them based on topics and approaches and publish them as
a two-volume set. The first volume consists of 11 chapters divided into two parts
dealing with the field of Systems Theory and Modeling.

Finally, we would like to express deep thanks to you Yutaka Hirachi of Springer
Japan and Selvakumar Rajendran, and other staff of SPi Global. Without their
patience and understanding, this volume could not be published.

Kawasaki, Japan Kyoichi Kijima
Tokyo, Japan Junichi Iijima
Tokyo, Japan Ryo Sato
Tokyo, Japan Hiroshi Deguchi
Yokohama, Japan Bumpei Nakano
December 2021
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Chapter 1
Mesarovic-Takahara Time Systems
Under the Effect of Feedback Mechanism

Jeffrey Yi-Lin Forrest, Zhen Li, Yohannes Haile, and Liang Xu

Abstract This chapter focuses on the study of Mesarovic-Takahara (MT) time
systems and demonstrates how various properties of such systems are feedback
invariant. In particular, after a brief introduction of the concepts of MT time systems
and feedback systems, this work shows how these concepts play an important
role in establishing the relationship between manufacturing and further industrial
transformations. With such practical importance of feedback systems established,
this presentation turns its focus to the theoretical study of various feedback invariant
properties of MT systems. As an application, the concept of feedback systems is
employed to explore when and how government economic policies can become
effective in terms of assisting with and stimulating economic growth.

Keywords Attractor · Chaos · Consumer surplus · Economic system ·
Government policy · Market demand · Stationary system · Time-invariable
realization
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1.1 Introduction

At this special moment of honoring one of the great thinkers of our time, the
first coauthor of this chapter likes to express his sincere and heartfelt appreciation
to Professor Yasuhiko Takahara. It is Professor Takahara’s publication of various
important monographs and papers that majorly shaped this coauthor’s entire
professional career since the mid-1980s. As a tribute to Professor Takahara, this
chapter continues the scholarly works started by him in the field of systems research.

To achieve this research objective, this chapter investigates various classes of
Mesarovic-Takahara (MT) time systems, such as those that are strongly stationary
or precausal or causal, and various important properties, such as time-invariable
realization, chaos, and attractors. The focus is on the effect of the feedback
mechanism on these particular systems and properties. Other than continuing the
tradition of Professor Takahara’s works in the language of set theory, this chapter
employs recent developments in the research of economics to illustrate how some of
the derived set-theoretic results can be beneficially applied to enrich our knowledge
on

• How races between market exchange and manufacturing can be purposefully
employed for a nation to kick-start and maintain a self-sustaining momentum
of growth.

• Under what conditions government economic policies can be effective in terms
of economic development.

The rest of this chapter is organized as follows: Sect. 1.2 introduces the basic
concepts needed for the work and demonstrates how feedback systems function
in real life. Section 1.3 features the main properties of MT time systems, such as
strong stationality, (pre-)causality, time-invariant realization, chaos, and attractors.
Following this theoretical study, Section 1.4 demonstrates how some of the basic
concepts and established conclusions of MT time systems can be practically
employed to study when government economic policies become effective. Section
1.5 concludes this presentation.

1.2 Basic Concepts

This section presents the basic terms needed for the rest of this research. After
introducing the fundamental terminologies in the first subsection, such as the
concepts of input-output systems and MT time systems, the second subsection
illustrates the practical importance of feedback systems by examining how such
a systemic structure appears naturally within a growing economy.
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1.2.1 The Underlying Concepts

Let X and Y be two sets. Then the following binary relation S

∅ �= S ⊂ X × Y

is known as an input-output system (Mesarovic & Takahara, 1975) with X being
the input space and Y the output space of S, respectively. It is evident that most
economic entities in the business world are input-output systems, because various
inputs are needed for these entities to survive and particular outcomes are offered to
the marketplace (Forrest, 2010; Porter, 1985).

Let the positive half of the real number line, written as T = [0,+∞), be the time
axis, and A and B be two linear spaces over the same field A. Define sets AT and BT

as follows:

AT = {f : f is a mapping T → A} and BT = {f : f is a mapping T → B} .

As conventionally known, these sets AT and BT become linear spaces over A if
the following operations are introduced. For any elements f, g ∈ AT (respectively,
∈BT ), and any scalarα ∈ A,

(f + g) (t) = f (t)+ g(t) and (αf ) (t) = α· f (t), for each t ∈ T .

Each input-output system S defined on AT and BT , or symbolically, S⊂ AT × BT ,
is referred to as an Mesarovic-Takahara (MT) time system (Mesarovic & Takahara,
1989).

Let A be a field, A and B linear spaces over A, and S an input-output system
satisfying that.

1. ∅ �= S ⊂ A × B
2. s ∈ S and s

′ ∈ S imply s + s
′ ∈ S

3. s ∈ S and α ∈ A imply α • s ∈ S

where+ and · are addition and scalar multiplication in A × B, respectively, defined
as follows: For any (x1, y1), (x2, y2) ∈ A × B and any α ∈ A,

(x1, y1)+ (x2, y2) = (x1 + x2, y1 + y2) and α (x1, y1) =
(
αx1, αy1

)
,

then S is then known as a linear system (Forrest, 2010).
Let S ⊂ A × B be a linear system and Sf : B→ A a linear function or known as a

functional system. Then the feedback system S
′
of S by Sf is defined (Forrest, 2010)

as follows: for any (x, y) ∈ A × B

(x, y) ∈ S′ ↔ (∃z ∈ A) ((x + z, y) ∈ S and (y, z) ∈ Sf) . (1.1)
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Fig. 1.1 The structure of a feedback system

System S is known as an original system; and Sf as a feedback component system.
Let

S = {S ⊂ A× B : S is a linear system} ,

Sf = {Sf : B → A : Sf is a linear functional system} ,

and

S ′ = {
S′ ⊂ A× B : S′ is a subset

}
.

Then a feedback transformation F : S × Sf → S ′ is defined by Eq. (1.1), and
known as the feedback transformation over the linear spaces A and B (Forrest, 2010;
Lin & Ma, 1990; Saito, 1986). Figure 1.1 shows the geometric meaning of the
concept of feedback systems, where the output y is jointly affected by the input
x and the feedback loop F(S, Sf).

Scholars from different disciplines have employed the concept of feedback to
develop important insights and conclusions (Bayliss, 1966; Deng, 1985; Forrest et
al., 2018a, b; Henig, 1983; Milsum, 1966; Negoita, 1992; Saito, 1986, 1987; Saito
& Mesarovic, 1985; Takahara & Asahi, 1985; Wonham, 1979; Wu, 1981; Zadeh,
1965). The definition of general feedback systems is first introduced by Saito and
Mesarovic (1985). For relevant theoretical studies, see Lin and Ma (1990).

1.2.2 How the Feedback Mechanism Functions
in an Economy: An Example

To demonstrate the practical importance of the concept of feedback systems, this
subsection shows how the feedback mechanism, as introduced above, organically
associates market exchange and manufacturing for a nation that desires to kick-
start and maintain its self-sustaining momentum of growth. By self-sustained
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momentum of growth, it means a self-sustained societal development that penetrates
all economic, social, and political aspects of the society. As a result of such
societal development, advanced technologies appear and alter how people live and
how government operates. Meanwhile, a population explosion follows the societal
development, while the methods of production and service are revolutionized
(Heaton, 2017; Wen, 2016).

Beyond confirming what consumers really want in life and satisfying market
demands, market exchanges dictate the level of competitive supplies and neces-
sitates needed innovations through demonstrating consumer demands (Forrest et
al., 2017). The level of competitive supplies and the quality of innovations are
determined by sufficient market depth (or purchasing power). They in turn directly
further the development of technologies due to intensified competitions. On the
other hand, for a nation to develop its needed market depth, it mobilizes a
portion of the available labor force, freed from producing life necessities, into the
manufacturing of luxurious goods. As a result of the relocation of labor, citizens
have much more incomes than before, which raises their purchasing powers. That
helps deepen the product market. That is, market competition encourages the
development of new technologies and helps industries advance to higher levels. At
the same time, these developments simultaneously expand various markets, be they
financial, product, or labor, with greater varieties of products. For more discussions
along this line, see Forrest (2010).

This discussion naturally reveals how a feedback mechanism plays its role in
a nation’s economic development. In particular, let us visualize the input x as a
particular government policy and y the corresponding economic output produced by
adopting the policy. It is intuitive to see that although the output y is a consequence
of the policy x, it represents the combined effect of the policy and the market
reaction, denoted by Sf(S(x)), to the policy. In reality, of course, the situation can
take one of two possible scenarios—the economy is a relatively closed system
from the outside world or an open system. For the former case, this discussion
does not involve any externalities and related costs, while for the latter case, the
market reaction Sf(S(x)) includes all those from domestic and foreign markets and
the environment.

Speaking differently, the previous paragraph indicates that the race between
market exchange and manufacturing production is indeed a feedback system, within
which market demands excite manufacturers to produce more and better products
and entrepreneurs to introduce new and novel offers. Such a feedback mechanism
forces firms to satisfy the increasing need of production by hiring additional
employees with rising salaries. The race simultaneously reinforces the market depth
and the demand of the market. Such mechanism underlying the working of the
described feedback system is figuratively shown in Fig. 1.2.

One good example that illustrates the abstract discussion above is the phenomena
of industrial revolutions that occurred one after another in the recent history from
around the world (Forrest et al. 2018a, b; Rostow, 1960; Wen, 2016). In each
of these occasions, it was the intensifying race between market exchanges and
manufacturing productions that brought forward with the desired self-sustaining
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Fig. 1.2 The feedback race between market exchange and manufacturing

momentum of economic growth. However, contrary to this example of positive
confirmation, the third industrial revolution in the United States did not really help
the US economy enjoy rising salaries even though the economy nearly reached
its full employment in February 2020. The reason behind the appearance of this
counter-intuitive situation is that within the ongoing economic globalization, the US
economy represents merely a local one, while what is discussed above expresses
what holds true within the entire economic system that entertains an intensifying
race between market exchanges and manufacturing productions. More specifically,
instead of the US economy, it is those foreign economies involved in relevant cross-
national productions that enjoy the fruitful benefits of the third industrial revolution
that originated in the USA.

1.3 Properties of MT Time Systems

This section presents results on how the feedback transformation affects various
properties of linear time systems, such as strong stationality, (pre-)causality, time-
invariable realization, chaos, and attractors.

1.3.1 Linear Time Systems That Are Strongly Stationary

In this section, all symbols and their relevant assumed conditions are maintained as
given previously. Then, the following result implies that the feedback transformation
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F : S × Sf → S ′, given in Eq. (1.1), is well defined on the class of all MT time
systems.

Theorem 1.1 If S ⊂ A × B is a linear system and Sf : B→ A a linear functional
system, then the feedback system F(S,Sf) ⊂ A × B is also a linear system.

Proof For arbitrarily chosen (x1, y1), (x2, y2) ∈ F(S, Sf) and α ∈ A, Eq. (1.1) implies
that there are z1, z2 ∈ A satisfying

l (x1 + z1, y1) ∈ S and (y1, z1) ∈ Sf and (x2 + z2, y2) ∈ S and (y2, z2) ∈ Sf.

(1.2)

Because both S and Sf are linear systems, Eq. (1.2) implies

(
αx1 + αz1, αy1

) ∈ S and
(
αy1, αz1

) ∈ Sf,

from which we have α(x1, y1) = (αx1,αy1) ∈ F(S,Sf).
Additionally, because of the linearity of S and Sf, Eq. (1.2) implies

((x1 + x2)+ (z1 + z2) , (y1 + y2)) ∈ S and ((y1 + y2) , (z1 + z2)) ∈ Sf.

Hence, we have (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) ∈ F(S,Sf).
By combining what are established above, we conclude that the feedback system

F(S,Sf) is a linear system over A × B. QED

For two arbitrary time moments t, t
′ ∈ T, satisfying t < t′, we denote the following

intervals abbreviately

T t =
[

0, t) , Tt = [ t,+∞) , Ttt ′ =
[
t, t ′

)
, T

t = 
0, t� , T tt ′ =
[
t, t ′

]
.

Accordingly, the restrictions of any x ∈AT with respect to these intervals of time
are respectively denoted by

xt = x
∣
∣
∣T t , xt = x |Tt , xtt ′ = x |Ttt ′ , xt = x

∣
∣
∣T
t
, xtt ′ = x

∣
∣T tt ′ .

More generally, for sets and vectors similar notations will be utilized. For
instance, for (x, y) ∈ AT × BT , we denote

(x, y)t = (
xt , yt

)
, (x, y)t = (xt , yt ) , etc.
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A subset S ⊂X × Y ⊂AT × BT is called a linear time system (Lin, 1989; Lin &
Ma, 1987; Ma & Lin, 1992) if S is a linear subspace of X × Y. Let the domain of S
be written as D(S), known as the input space of S. It is defined as follows:

D(S) = {x ∈ X : ∃y ∈ Y � (x, y) ∈ S} .

Without loss of generality, assume that D(S)= X and R(S)= Y, where R(S) is the
range of S, known as the output space of S, defined by

R(S) = {y ∈ Y : ∃x ∈ X � (x, y) ∈ S} .

For any x, x
′ ∈ X and any t ∈ T, assume that xt ◦ x ′t ∈ D(S), where xt ◦ x ′t is the

concatenation of xt and x ′t , which is defined as follows: for s ∈T,

xt ◦ x ′t (s) =
{
x(s), if s < t
x ′(s), if s ≥ t .

For a given real number τ , let στ be the shift operator defined on X as follows:
for any x ∈ X, στ (x) ∈ X satisfying that

στ (x) (ξ) = x (ξ − τ ) , ∀ξ ∈ Tτ .

Figure 1.3a–c show the geometric meaning of the concept of the shift operator
στ respectively for the cases when τ = 0, τ > 0, and τ < 0. In Fig. 1.3b, c the dotted
A ×T planes indicate the locations of the A ×T plane before the shift operation στ

is applied. In other words, if τ > 0, the shift operator στ moves the graph of time
function x τ units to the right; if τ < 0, the shift operator στ emphasizes on the
portion of the graph of x on the right of the vertical line t = τ

When a linear time system S ⊂ X × Y satisfies

∀t ∈ T
(
σ−t

(
S |Tt

)
= S

)
,

then S is said to be strongly stationary (Lin, 1989; Lin & Ma, 1987; Ma & Lin,
1992).

Theorem 1.2 Assume that S ⊂ X × Y is a linear time system and Sf : Y → X a
strongly stationary linear functional time system. Then a sufficient and necessary
condition for the feedback system F(S,Sf) to be strongly stationary is that system S
is strongly stationary.

Proof (⇒). For the proof of this necessity, the feedback system F(S,Sf) is assumed
to be strongly stationary. Then the following holds true:

S = {(x + Sf(y), y) : (x, y) ∈ F (S, Sf)} .
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(a) (b) 

(c) 

Fig. 1.3 How the shift operator σ τ affects the graph of x. (a) The original x in plane T×A. (b)
After the shift σ τ is applied if τ > 0. (c) After the shift σ τ is applied if τ < 0

To complete the proof of this part, we only need to show that

∀ (x, y) ∈ S∀t ∈ T (
σ−t ((x, y) |Tt ) ∈ S

)
.

To demonstrate this end, let (x, y) ∈ S and t ∈ T. Then, we have

σ−t ((x, y) |Tt ) = σ−t ((x − Sf(y)+ Sf(y), y) |Tt )
= (
σ−t ( (x − Sf(y))|Tt )+ σ−t (Sf(y)|Tt ) , σ−t (y |Tt )

)
.

Because the systems F(S,Sf) and Sf are assumed to be strongly stationary, we
have

(
σ−t ( (x − Sf(y))| Tt ) , σ−t (y |Tt )

) ∈ F (S, Sf) ,

and

(
σ−t (y |Tt ) , σ−t (Sf(y)|Tt )

) ∈ Sf. (1.3)
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Let x
′ = σ−t((x − Sf(y))|Tt) and y

′ = σ−t(y|Tt). Then, Eq. (1.3) indicates that
Sf(y

′
) = σ−t(Sf(y)|Tt). That is, we have

σ−t ( (x, y)| Tt ) =
(
x ′ + Sf

(
y ′

)
, y ′

)
, (1.4)

where (x
′
, y
′
) ∈ F(S, Sf). So, Eq. (1.4) implies that σ−t((x, y)|Tt) ∈ S.

(⇐). This part of the sufficiency proof follows from the fact that for a linear
functional system S : X → Y, F(S,Sf ) is injective, for each arbitrarily Sf ∈ Sf, if,
and only if S is injective (Theorem 10.3 of Forrest, 2010) and the necessity part of
this proof. QED

1.3.2 Linear Time Systems That Are Precausal or Causal

If a linear time system S ⊂ X × Y satisfies

(∀t ∈ T ) (∀x ∈ X)
(
xt = 0

t → R(S)

∣
∣
∣T
t = S(0)

∣
∣
∣T
t
)
,

then S is referred to as a precausal system (Lin, 1989; Lin & Ma, 1987; Ma & Lin,
1992), where for x ∈ X, S(x) = {y ∈ Y : (x. y) ∈ S}.
Theorem 1.3 A sufficient and necessary condition for a linear time system

S ⊂X × Y to be precausal is that (∀t ∈ T ) (∀x, y ∈ X)
(
xt = yt → S(x)

∣
∣
∣T
t

= S(y)
∣∣
∣
∣∣
∣T
t
)
.

Proof (⇒). For this necessity part of the proof, S is assumed to be precausal. Hence,
for any x, y ∈ X, we have

(x − y)t = 0
t → S (x − y)

∣
∣
∣T
t = S(0)

∣
∣
∣
∣
∣
∣T
t
.

This expression means that

xt = yt → S(x)

∣
∣
∣T
t = S(y)

∣
∣
∣
∣
∣
∣T
t
,

because the condition (x − y)t = 0
t

is equivalent to that of xt − yt = 0
t
. So, we

have

xt = yt and S (x − y)
∣
∣∣T
t = S(0)

∣
∣∣
∣
∣∣T
t → S(x)

∣
∣∣T
t − S(y)

∣
∣∣
∣
∣∣T
t = S(0)

∣
∣∣
∣
∣∣T
t
.
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Therefore, we have S(x)
∣
∣
∣T
t = S(y)

∣
∣
∣T
t + S(0)

∣
∣
∣T
t = S(y)

∣
∣
∣T
t
.

(⇐) For this part of the sufficiency proof, assumed is

(∀t ∈ T ) (∀x, y ∈ X)
(
xt = yt → S(x)

∣
∣∣T
t = S(y)

∣
∣∣
∣
∣∣T
t
)
.

This assumption implies

(∀t ∈ T ) (∀x ∈ X)
(
xt = 0

t → S(x)

∣
∣
∣T
t = S(0)

∣
∣
∣T
t
)
.QED

Theorem 1.4 Assume that both S : X → Y and Sf : Y → X: Y are time
systems that are linear functional causal. Then a sufficient and necessary con-
dition for the feedback system F(S,Sf) to be causal is that the time system
S ◦ Sf ◦ F(S,Sf) : D(F(S,Sf))→ Y is causal.

Proof The necessity condition follows from the fact that for any given causal
functional time systems, their composition is also causal.

(⇐). For the proof of the sufficiency condition, we assume that S ◦ Sf ◦ F(S,Sf)
is a causal system. Hence, we have

∀t ∈ T ∀x ∈ D (F (S, Sf))
(
xt = 0

t → S ◦ Sf ◦ F (S, Sf) (x)

∣
∣∣T
t = 0

t
)
.

If we let y = F(S,Sf)(x), we need to show that yt = 0
t
. To this end, Eq. (1.1)

implies

S (x + Sf(y)) = y.

Therefore, we have S(x) + S ◦ Sf(y) = y, where

S(x)

∣
∣
∣T
t = 0

t
and S ◦ Sf(y)

∣
∣
∣T
t = S ◦ Sf ◦ F (S, Sf) (x)

∣
∣
∣T
t = 0

t
.

Thus, we know

yt = [S(x)+ S ◦ Sf(y)]
∣
∣
∣T
t = S(x)

∣
∣
∣T
t + S ◦ Sf(y)

∣
∣
∣T
t = 0

t + 0
t = 0

t
.

This end means that F(S,Sf) is a causal system. QED
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1.3.3 Time-Invariable Realization

Assume that S : X→ Y is a linear functional time system. If the system S satisfies

∀t ∈ T ∀x ∈ X
(
λtS

(
0t ◦ σ t (x)

)
= S(x), (1.5)

then it is referred to as time invariably realizable, where the relation λt is defined by
λt(•) = σ t(•|Tt).
Theorem 1.5 Assume that S : X → Y is a linear functional time system. Then a
sufficient and necessary condition for S to be time invariably realizable is that

∀t ∈ T ∀x ∈ X (
S

(
0t ◦ σ t (x)) |Tt = σ tS(x)

)
. (1.6)

Proof (⇒) For this part of necessity argument, the assumption that S is time
invariably realizable implies that the system S satisfies Eq. (1.5). Next, we show
that Eq. (1.6) can be derivable from Eq. (1.5). To achieve this end, we have

∀t ∈ T ∀x ∈ X, λtS
(
0t ◦ σ t (x)) = λt (y) = σ−t

(
y

∣
∣
∣T
t
)
= S(x), (1.7)

where=S(0t ◦ σ t(x). Therefore, we obtain

σ t ◦ σ−t
(
y

∣
∣
∣T
t
)
= y |Tt = S

(
0t ◦ σ t (x)) |Tt = σ tS(x).

(⇐) For this part of sufficiency argument, assume for any t ∈ T and any x ∈ X
system S satisfies the condition in Eq. (1.6). Then, we have

σ−t S
(
0t ◦ σ t (x)) ∣

∣T t = σ−t σ tS(x) = S(x). (1.8)

Comparing Eqs. (1.5) and (1.8) leads to the conclusion that the given linear
functional time system S : X→ Y is time invariably realizable. QED

Theorem 1.6 Assume that linear functional time systems S : X→ Y and Sf : Y→ X
are time invariably realizable. Then a sufficient and necessity condition for the
feedback system F(S,Sf) to be time invariably realizable is that

∀t ∈ T x ∈ D (F (S, Sf)) � S ◦ Sf ◦ F (S, Sf)
(
0t ◦ σ t (x)) |Tt = σ tS ◦ Sf ◦ F (S, Sf) (x),

(1.9)

Speaking differently, the fact that the feedback system F(S,Sf) is time invariably
realizable is equivalent to that S ◦ Sf ◦ F(S,Sf) is time invariably realizable.
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Proof (⇐) For the part of sufficiency argument, the assumption that S ◦ Sf ◦ F(S,Sf)
is time invariably realizable implies that for any t ∈ T and any x ∈ D(F(S,Sf)), Eq.
(1.9) is true. Hence, Theorem 1.5 implies that Eq. (1.6) is true. So, we have

S
(
0t ◦ σ t (x)) |Tt + S ◦ Sf

(
F (S, Sf)

(
0t ◦ σ t (x)) |Tt

)

= σ tS(x)+ σ tS ◦ Sf ◦ F (S, Sf) (x),

which means

S
[
0t ◦ σ t (x)+ Sf

(
F (S, Sf)

(
0t ◦ σ t (x)))]∣∣ Tt = σ tS (x + Sf ◦ F (S, Sf) (x)) .

This end is equivalent to

F (S, Sf)
(
0t ◦ σ t (x)) |Tt = σ tF (S, Sf) (x).

Hence, Theorem 1.5 implies that F(S,Sf) is time invariably realizable.
(⇒) For this part of the necessity argument, F(S,Sf) is assumed to be time

invariably realizable. So, Theorem 1.5 implies that

∀t ∈ T ∀x ∈ D (F (S, Sf)) F (S, Sf)
(
0t ◦ σ t (x)) |Tt = σ tF (S, Sf) (x). (1.10)

By letting F(S,Sf)(0t ◦ σ t(x))= y and F(S, Sf)(x) = y
′
, Eq. (1.10) implies

S
(
0t ◦ σt (x)+ Sf(y)

) |Tt = σ tS
(
x + Sf

(
y ′

))
,

and

S
(
0t ◦ σ t (x)) |Tt + S ◦ Sf(y) |Tt = σ tS(x)+ σ tS ◦ Sf

(
y ′

)
. (1.11)

Both the time-invariable realizability of S and Theorem 1.5 indicate that Eq.
(1.11) can be restated as follows:

S ◦ Sf(y) |Tt = σ tS
(
Sf

(
y ′

))
. (1.12)

Because Eq. (1.12) is the same as Eq. (1.9), we complete the proof. QED

1.3.4 Chaos and Attractor Under the Effect of Feedback
Mechanism

Let S be an input-output system, satisfying ∅ �= S⊂ X × Y. Define Z = X ∪ Y. Then
S is a binary relation on Z and a subset D ⊂ Z, satisfying D2 ∩ S = ∅, is said to
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(a) (b) 

Fig. 1.4 The geometry of an attractor. (a) D is an attractor of S, and S(x) contains at least one
element for each x in Z – D. (b) D is an attractor of S, and S : Z→ Z is a function

Fig. 1.5 D is a strange attractor of the system S.

be a chaos of S (Forrest, 2010; Zhu & Wu, 1987). Intuitively, D is seen as a chaos
because system S has no control over the elements in D.

A subset D⊂ Z is known as an attractor of S (Forrest, 2010; Zhu & Wu, 1987) if
for each x ∈ Z − D, S(x) ∩ D �= ∅. Figure 1.4a, b show the geometry of the concept
of attractors. When S is not a function, Fig. 1.4a shows that the graph of S outside
the vertical bar D× Z overlaps the horizontal bar Z × D. When S is a function, Fig.
1.4b shows that the graph of S outside the vertical bar D × Z must be contained in
the horizontal region Z × D.

A subset D ⊂ Z is said to be a strange attractor of system S (Forrest, 2010; Zhu
& Wu, 1987), if D is both a chaos and an attractor of S. Figure 1.5 shows the case
when a subset D of Z is a strange attractor of an input-output system S, where the
square D × D is the only portion of the band Z × D over which the graph of S does
not touch.

Theorem 1.7 As long as S ⊂ X × X is a linear system, there must be a linear
feedback component system Sf : X→ X so that the following are equivalent:

• A subset D⊂X is a chaos, or an attractor, or a strange attractor of system S; and.
• The subset D is a chaos, or an attractor, or a strange attractor of F(S, Sf),

correspondingly.
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Proof Evidently, no matter how a linear system S ⊂ X × X is defined, the desired
learn feedback component system Sf : X→ X can be defined as follows:

Sf(x) = 0x, ∀x ∈ X.

To finish the proof, we only need to check that S = F(S,Sf). QED

Theorem 1.8 Let S ⊂ X × X be a linear system, Sf : X → X a functional linear
system and D ⊂ X, satisfying

(X −D)± Sf(D) ⊂ X −D. (1.13)

Then D is a chaos of S if and only if D is a chaos of the feedback system F(S, Sf).

Proof (⇒) For this part of the necessity argument, suppose that D⊂ X is a chaos of
S while not a chaos of the feedback system F(S, Sf). Then for (x, y) ∈ D2 ∩ F(S, Sf),
the following holds true:

(x + Sf(y), y) ∈ S.

So, we have

x ′ = x + Sf(y) /∈ D and x = x ′ − Sf(y).

This end contradicts Eq. (1.13), which implies that D must be a chaos of F(S, Sf).
(⇐) For this part of the sufficiency argument, the assumption that D ⊂ X

is a chaos of F(S, Sf) but not a chaos of S implies that if (x, y) ∈ D2 ∩ S,
(x − Sf(y), y) ∈ F(S,Sf) holds true. That implies that x

′ = x − Sf(y) �∈ D. This
last equation is equivalent to x = x

′ + Sf(y), which is contradictory to Eq. (1.13).
Therefore, we can conclude that D must be a chaos of S. QED

Theorem 1.9 Let S ⊂ X × X be a linear system and Sf : X→ X a functional linear
system, satisfying the following two conditions:

X −D ⊂ {x − Sf(y) : (x, y) ∈ S ∩ ((X −D)×D)} , (1.14)

and

X −D ⊂ {x + Sf(y) : (x, y) ∈ F (S, Sf) ∩ ((X −D)×D)} . (1.15)

Then, a sufficient and necessary condition for D ⊂ X to be an attractor of S is
that D is an attractor of the feedback system F(S,Sf).


