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Abstract

Increasing grain legume production, particularly for chickpea, will provide
essential “plant-based dietary protein” and other micronutrients under the chang-
ing global climate. Drought and terminal heat stress limit plant growth and
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negatively affect various phenological events, causing severe yield losses.
Among various strategies for improving stress tolerance, the judicious utilization
of available genetic variation in the chickpea gene pool could minimize the
adverse effects of drought and heat stress, sustaining chickpea yields. In addition,
advancements in chickpea genomic resources, from molecular markers, namely,
SSR, SNP, and INDELs and tools for association genetics, RNA-seq, to the
availability of chickpea genome sequences and efforts of global chickpea germ-
plasm resequencing allow us to identify loci and haplotypes contributing to
drought and heat tolerance across the whole genome. Thus, molecular markers
have enabled the successful transfer of drought-tolerant traits to elite chickpea
cultivars using marker-assisted and haplotype-based breeding approaches. Like-
wise, the role of drought- and heat-responsive proteins and metabolites could
significantly improve our understanding of the molecular mechanisms of drought
and heat tolerance in chickpea via proteomics and metabolomics. Moreover,
emerging novel breeding technologies (e.g., genomic selection, speed breeding,
and genome editing) could enhance the necessary genetic gain to feed the
increasing global population under an abruptly changing global climate.

Keywords

Chickpea · Drought · Heat · Molecular marker · |Genetic variability

1.1 Introduction

Chickpea is a highly nutritious grain legume crop that contributes to global food
security, providing essential amino acids and micronutrients to the global human
population (Jukanti et al. 2012). Chickpea ameliorates soil nitrogen content by fixing
atmospheric N2 through symbiotically efficient rhizobacteria (Graham and Vance
2003), enriching soil nitrogen for subsequent crops in the rotation (Marques et al.
2020a). Global climate change and shifting production practices frequently expose
chickpea to terminal drought and heat stress, causing severe yield losses (Jha et al.
2014a). Efficient utilization of chickpea germplasm resources, including landraces,
wild relatives, and improved breeding lines, could sustain chickpea yields under
drought and heat stress. Despite the genetic complexity of drought and heat tolerance
mechanisms, various genomic resources—including draft genome sequences,
resequencing panels, and segregating populations—have been developed in the
last decade to elucidate the genetic determinants governing drought and heat toler-
ance (Thudi et al. 2014; Jha et al. 2018a, 2021a; Paul et al. 2018b; Jain et al. 2013;
Varshney et al. 2013a, 2019). Furthermore, molecular markers have enabled the
successful transfer of drought-tolerant traits to elite chickpea cultivars using a
marker-assisted breeding approach (Roorkiwal et al. 2020). Thus, haplotype-based
breeding could introduce desired allelic combinations to improve drought and heat
stress tolerance in chickpea. Functional genomics could be used to pinpoint drought
and heat-tolerant candidate gene(s) and their putative functions. Likewise,
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proteomics and metabolomics could greatly improve our current knowledge on
various proteins and metabolites produced in response to drought and heat stress
(Khan et al. 2019a, b). The knowledge to be gained from these approaches can be
quickly harnessed due to the power of novel breeding technologies including
genomic selection, haplotype-based breeding, speed breeding, and genome editing
(Meuwissen et al. 2001; Hickey et al. 2019; Samineni et al. 2019; Bohra et al. 2020;
Badhan et al. 2021). These approaches combined with knowledge on the genetic
basis of stress tolerance traits should improve crop breeding to help meet the
challenge of feeding the growing global population under climate change.

1.2 Impacts and Anomalies Associated with Drought Stress
in Chickpea

Drought stress alone causes up to 50% yield losses in chickpea (Varshney et al.
2014). Chickpea frequently faces terminal drought stress as it is mostly grown under
rainfed conditions in semiarid and arid regions (Gaur et al. 2012). Drought stress can
occur at any stage of the plant growth cycle, with terminal drought the most common
across the major production areas in South Asia, East Africa, and Mediterranean
climates. Key physiological and biochemical, and developmental processes—pho-
tosynthesis, RuBisCo activity, carbohydrate synthesis, TCA cycle, respiration, and
root growth—are seriously affected under drought stress, restricting plant growth
(Yordanov et al. 2003; Parry et al. 2002; Guo et al. 2018). Drought stress during
germination and vegetative growth decreases stomatal conductance, chlorophyll
synthesis, plant vigor, and biomass accumulation (Krishnamurthy et al. 2013a, b;
Purushothaman et al. 2015, 2016; Pang et al. 2017b). Drought stress during repro-
ductive growth significantly affects anther formation, pollen formation, pollen
fertility, pollen tube germination, and fertilization (Leport et al. 1999), resulting in
improper pod formation, seed development, and seed filling, and ultimately signifi-
cant yield losses. Moreover, drought stress affects nitrogen fixation by decreasing
nitrogenase activity due to reduced expression of the nifK gene (Serraj et al.1999;
Nasr Esfahani et al. 2014).

1.3 Impact of Heat Stress on the Reproductive Process
in Chickpea

Rising global temperatures are challenging chickpea growth and development pro-
cesses, leading to profound yield losses of at least 10–15%, or 53–330 kg/ha (Kalra
et al. 2008; Upadhyaya et al. 2011; Kaushal et al. 2013; Jha et al. 2014b, 2017). Heat
stress affects plant growth processes during vegetative, reproductive, and maturity
phases (Devasirvatham et al. 2015; Bhandari et al. 2020). Heat stress hastens plant
phenological events, decreasing biomass accumulation and grain filling, and ulti-
mately causing yield losses (Kaushal et al. 2013). The reproductive stage is the most
vulnerable to heat stress (Jagadish et al. 2021) because it severely impairs all

1 Improving Chickpea Genetic Gain Under Rising Drought and Heat Stress. . . 3



reproductive processes (Devasirvatham et al. 2013; Jha et al. 2017). Increased
atmospheric temperatures beyond normal during anthesis affect anther formation,
the pollination process, including pollen germination and pollen tube formation,
fertilization, and pod formation (Kaushal et al. 2013; Devasirvatham et al. 2013,
2015; Bhandari et al. 2020). Consequently, heat exposure inhibits proper seed
development, resulting in shriveled seed and thus severe yield losses
(Devasirvatham et al. 2013, 2015). Furthermore, nodule development and biological
nitrogen fixation processes are impeded under heat stress, negatively impacting plant
growth.

1.4 Genetic Resources for Drought and Heat Stress Tolerance

Harnessing genetic variability from various wild gene pools, landraces, and
improved breeding lines could be the most eco-friendly and economic approach
for developing abiotic stress tolerance, including drought and heat stress tolerance.

Several promising chickpea genotypes conferring drought tolerance have been
identified based on various phenological, physiological and yield-related traits
(Kumar and Rao 1996; Krishnamurthy et al. 2003; Shah et al. 2020). Drought stress
can be mitigated by hastening plant phenological processes before the onset of
terminal drought stress. The advantage of early phenology to tackle drought stress
can be harnessed by transferring this trait into high-yielding yet drought-sensitive
elite chickpea genotypes, for example, ICC96029, ICC96030, ICCV2, ACC316, and
ACC317 (Kumar and Rao 1996; Kumar and Abbo 2001; Krishnamurthy et al. 2003;
Canci and Toker 2009a) (see Table 1.1). However, early phenology can come with a
yield penalty. Root system architecture—an important parameter manifesting plas-
ticity under various environmental stresses, including drought—could be harnessed
to develop drought tolerance in plants. Numerous studies have identified chickpea
genotypes harboring improved root traits under drought stress. For example, ICC495
and ICC8261, with high root biomass and rooting depth (Krishnamurthy et al. 2003;
Kashiwagi et al. 2008) have been judiciously used in chickpea breeding programs
to develop drought-tolerant genotypes (Varshney et al. 2014). Targeting root traits
for improving drought tolerance, Khandal et al. (2020) recently manipulated
cytokinin levels to increase lateral root development and root biomass, attributing
to drought tolerance in chickpea. Several promising chickpea lines exhibit
improved photosynthesis, stomatal conductance, chlorophyll fluorescence, and
other physiological traits under water stress (Toker et al. 2007; Makonya et al.
2020; Shah et al. 2020).

Several biochemicals, including various sugars, osmolytes, antioxidants, and
other biochemicals, are produced in response to drought stress. Based on these
parameters, MCC 544, MCC 696 and MCC 693 (Mafekheri et al. 2010), ILC482
(Mafakheri et al. 2011), Bakhar-2011 (Farooq et al. 2018), and D0091-10, K010-10,
and D0085-10 (Shah et al. 2020) have been identified as potentially stress tolerant
and useful as parents for crosses. In terms of yield and yield-related traits, ICC
14778, ICCV 10 (Ramamoorthy et al. 2016), ICC8950 (Awasthi et al. 2013),

4 U. CJha et al.
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FLIP03-145C, ILC 3182, and ILC 588 (Hamwieh and Imtiaz 2015), ICC 7571
(Kashiwagi et al. 2013), Neelam (Pang et al. 2017a), and CH55/099 (Arif et al.
2021) were identified as promising genotypes conferring drought tolerance; these
genotypes could be used as donors for transferring yield and yield-related traits into
elite yet drought-sensitive chickpea cultivars.

Heat stress is emerging as a serious abiotic stress in chickpea, especially during
the reproductive stage (Jha et al. 2014a). Several chickpea genotypes have been
identified that exhibit heat tolerance based on various parameters (Gaur et al. 2012;
Jha et al. 2018b; Bhandari et al. 2020). Heat-tolerant lines can be selected based on
yield parameters using various selection indices (e.g., heat tolerance index, tolerance
index, heat susceptibility index) by growing genotypes under timely and late-sown
conditions. Using this screening method, several potential heat-tolerant chickpea
lines (e.g., RVG 203, RSG 888, JAKI 9218, GNG 469, IPC 06-11) have been
reported (Jha et al. 2018b). Likewise, ICCV92944, RVG203, JAKI9218, ICC1356,
and JG130 showed improved yield performance under heat stress (Gaur et al. 2012;
Jha et al. 2015, 2018b, c). Within Ethiopian germplasm, DZ-Cr-0034 was identified
as heat tolerant in multisite trials in Ethiopia and India (Getahun et al. 2021).
Assessing yield and yield-related traits of breeding lines at multiple locations will
provide further impetus for selecting heat-tolerant lines under a range of target
environments. In this context, JAKI 9218 showed promising results under heat stress
(Jha et al. 2019b).

Earliness is an important heat escape mechanism. ACC316, ACC317 (Canci and
Toker 2009a), and ICCV92944 (Gaur et al. 2012) were identified for their earliness
to escape heat stress. Likewise, ILC482, Annegiri, ICCV10, ICC8950, and
ICC14778 were identified as promising genotypes in terms of various physiological
traits contributing to heat tolerance (Srinivasan et al. 1996; Zaman-Allah et al.
2011a, b; Awasthi et al. 2014). Screening for pollen and pollen-related traits under
heat stress at the reproductive phase could be important for selecting heat-tolerant
chickpea lines. Based on these traits, ICCV92944, ICC15614, ICC1205, and
ICC07110 were identified as heat-tolerant in both the field and a growth chamber
(Kaushal et al. 2013; Awasthi et al. 2014; Devasirvatham et al. 2015; Bhandari et al.
2020) (see Table 1.1). Significant genetic variation for various phenological,
morphophysiological, and yield-related traits was found in the
ICC15614 � ICC4567, and DCP92-3 � ICCV92944 mapping populations under
heat stress (Paul et al. 2018a; Jha et al. 2021a, b).

1.5 CropWild Relatives (CWRs): A Hidden Reservoir of Drought
and Heat Tolerance in Chickpea

Judicious exploitation of CWRs in crop breeding programs could broaden the
genetic base of improved breeding lines for sustaining grain yield and plant adapta-
tion under challenging environments (Coyne et al. 2020; von Wettberg et al. 2018).
Likewise, various CWR accessions of chickpea are being incorporated into breeding
programs for developing abiotic stress tolerance, including drought and heat

8 U. CJha et al.



tolerance. An evaluation of various chickpea CWRs—C. anatolicum,
C. microphyllum, C. montbretti, C. oxydon, and C. songaricum—under water stress
revealed their potential for conferring drought tolerance (Toker et al. 2007). Simi-
larly, an assessment of various annual Cicer species for drought and heat stress
tolerance identified better adaptation of four C. reticulatum accessions and one
C. pinnatifidum accession under drought and heat stress (Canci and Toker 2009b);
these Cicer species could be used to introgress “adaptive traits” contributing to
drought and heat stress tolerance into elite chickpea cultivars. To date, only
C. reticulatum and some C. echinospermum are compatible with cultivated chickpea
(e.g., Kahraman et al. 2017). However, with an increased understanding of the nature
of genome organization in the genus (Varshney et al. 2021), it may be feasible to
cross more distantly related Cicer species, such as C. pinnatifidum.

Recent studies harnessing new collections of C. reticulatum and
C. echinospermum from southeastern Turkey (von Wettberg et al. 2018; Coyne
et al. 2020) have identified new sources of drought and heat tolerance (e.g., Talip
et al. 2018; von Wettberg et al. 2018; Marques et al. 2020b; Getahun et al. 2021).
Initial analyses of these collections identified multiple populations from lower
elevation, more exposed sites with greater drought tolerance (e.g., von Wettberg
et al. 2018). Some higher elevation sites showed greater cold tolerance (Mir et al.
2021), but interestingly, a lower elevation, low water availability site was among the
most cold-tolerant parents. This suggests that wild populations may exhibit interest-
ing patterns of cross-tolerance among abiotic and biotic stresses (von Wettberg et al.
2014).

To harness variation beyond C. reticulatum and C. echinospermum, which have
far narrower environmental distributions than other Cicer species (Coyne et al.
2020), it makes sense to continue looking at other wild taxa. Recently, Toker et al.
(2021) reported C. turcicum as a species exhibiting better reproductive function
under heat stress. Ongoing work is assessing the potential to cross this species with
cultivated chickpea (Toker, pers. comm). Besides CWRs, “adaptive loci” of
landraces conferring plant phenotypic plasticity and adaptation under various hostile
environments could be harnessed to develop climate-resilient genotypes. Consider-
ing this, Varshney et al. (2019) identified ICC 14778 and ICC 15618 as two chickpea
genotypes possessing gene(s) that contribute to chickpea adaptation in hot
environments.

1.6 Genomic Resources for Drought and Heat Tolerance

During the last decade, unprecedented advances in developing chickpea genomics
resources have enabled the mapping of various breeding importance traits, including
drought and heat stress (Thudi et al. 2014; Jha 2018; Jha et al. 2020).

Understanding the genetic basis of traits has improved with the advent of SSR
markers. Several drought-related traits QTLs were identified on different linkage
groups by employing SSR markers (Rehman et al. 2011; Varshney et al. 2014;
Hamwieh et al. 2013). Comprehensive phenotyping of various drought-relevant

1 Improving Chickpea Genetic Gain Under Rising Drought and Heat Stress. . . 9



traits in two biparental mapping populations evaluated at multiple locations
underpinned a QTL hotspot on CaLG04 (Varshney et al. 2014). Subsequently, the
availability of SNP markers developed through genotyping-by-sequencing (GBS)
technology-enabled partitioning of this QTL hotspot into QTL-hotspot_a (harboring
15 genes) and QTL-hotspot_b (harboring11 genes) (Kale et al. 2015). Furthermore,
Jaganathan et al. (2015) refined this QTL-hotspot genomic region to 14 cM, harbor-
ing several novel SNPs in the ICC1882 � ICC4958 mapping population using GBS
technology. To identify drought tolerance QTLs, Sivasakthi et al. (2018) elucidated
13 M-QTLs related to plant vigor (rather than drought tolerance per se) on LG4
coinciding with the QTL hotspot and one M-QTL contributing to stomatal conduc-
tance on LG3 under drought stress. The availability of the chickpea genome
sequence assisted in pinpointing the candidate gene(s) underlying these drought
stress QTLs (Jaganathan et al. 2015; Kale et al. 2015; Srivastava et al. 2016).

Jha et al.(2019a) shed light on the genetic control of heat tolerance in chickpea
using a diallel analysis based on phenological and yield parameters assessed under
heat stress. The authors reported the presence of both additive and nonadditive gene
action controlling heat tolerance. Thus, the availability of molecular markers, espe-
cially SSRs and SNPs, further improves our understanding of the genetics of heat
tolerance (Thudi et al. 2014; Jha et al. 2019c, 2021a, b).

Assaying the F2-derived DCP92-3� ICCV92944 mapping population using SSR
markers identified one QTL controlling primary branch number and one QTL linked
to chlorophyll content under heat stress (Jha et al. 2019c). Paul et al. (2018b) mapped
yield-related QTLs (pod number per plant, seed number per plant, biomass, and
percentage pod set) on CaLG05 and CaLG06 chromosomes under heat stress by
genotyping the ICC15614 � ICC4567 mapping population using GBS technology.
Likewise, deploying the GBS-derived 788 SNP markers in the DCP92-
3 � ICCV92944 mapping population identified 37 major QTLs related to various
physiological and yield-related traits evaluated under heat stress (Jha et al. 2021b)
(see Table 1.2). The authors also elucidated 28 candidate genes related to HSPs
underlying the identified QTLs. Moreover, a large set of global germplasm offers
great opportunity to capture significant marker-trait associations for heat-tolerant
traits across the whole genome using genome-wide association mapping (Thudi et al.
2014; Varshney et al. 2019). Based on this approach, several MTAs for various
phenological, physiological, and yield-related traits evaluated under heat stress have
been uncovered in chickpea (Thudi et al. 2014; Jha et al. 2017, 2018a, 2021a;
Varshney et al. 2019).

Using 81 SSR markers assayed in 71 chickpea genotypes, several significant
MTAs related to physiological traits, namely, membrane stability index and chloro-
phyll content were identified under heat stress (Jha et al. 2018a). Likewise, GWAS
performed on a set of 182 chickpea germplasm using 120 SSR markers elucidated a
plethora of significant MTAs for various phenological, physiological, and yield and
yield-related traits phenotyped under heat stress (Jha et al. 2021a) (see Table 1.2).
Apart from this, various root traits contributing to higher water use efficiency and the
QTL hotspot from ICC4958 to elite chickpea cultivars, such as JG11, ICCV10,
RSG888, Pusa 372, Pusa 362, and JAKI9218, have been transferred using
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marker-assisted backcrossing approach to improve drought tolerance in chickpea
(Varshney et al. 2013b; Roorkiwal et al. 2020; Bharadwaj et al. 2020).

1.7 Functional Genomics Approach for Uncovering Candidate
Genes for Drought and Heat Tolerance

In the last decade, advances in functional genomics approaches, especially RNA-seq
and earlier related technologies, have been used to identify several candidate gene
(s) and their relevant function contributing to drought and heat stress in chickpea
(Badhan et al. 2018; Mahdavi Mashaki et al. 2018). Earlier work using microarray
technology identified several thousand genes expressed in response to drought stress
(Mantri et al. 2007; Varshney et al. 2009). Varshney et al. (2009) reported 20,162
ESTs responding to drought stress. Likewise, Deokar et al. (2011) obtained 3062
unigenes responding to drought stress in a suppression subtraction hybridization
study. Subsequently, high throughput RNA-seq technology assisted in unveiling a
plethora of transcription factors (TFs), including WRKY, NAC, MYB,
AP2-EREBP, and bHLH, controlling drought stress tolerance (Badhan et al. 2018;
Mahdavi Mashaki et al. 2018; Kumar et al. 2019). Myriad of DEGs has been
investigated using RNA-seq studies in chickpea to explore the role of various
differentially expressed genes (DEGs) in response to drought stress (Kumar et al.
2019; Bhaskarla et al. 2020; Sagar et al. 2021). Recently, the roles of phospholipases
D genes (Sagar et al. 2021) and oxylipin biosynthesis genes (Bhaskarla et al. 2020)
contributing to drought stress response were elucidated in a functional genomic
study (see Table 1.3). Agarwal et al. (2016) uncovered five HSP 90 genes
contributing to heat stress tolerance based on the results of an RNA-seq study on
reproductive tissues treated with heat stress. Thus, transcriptomic studies have
facilitated the deciphering of candidate gene(s) and complex network of gene
(s) and their functional role in attributing plant adaptation to drought and heat stress
in chickpea.

1.8 Proteome and Metabolome Dynamics for Resolving
Drought and Heat Tolerance in Chickpea

Proteomics could enhance our understanding of drought stress tolerance by
providing insight into the proteins produced in response to drought stress
(Parankusam et al. 2017). Drought-responsive participatory proteins obtained
under drought stress include cellular proteins involved in glycolysis, protein synthe-
sis, TCA cycle, signal transduction, protecting cells from reactive oxygen species
(ROS)-related damage, heat shock proteins, and cellular osmotic adjustment (Gupta
et al. 2020; Vessal et al. 2020). Vessal et al. (2020) reported the participatory activity
of RuBisCo, ATP synthase, carbonic anhydrase, L-ascorbate peroxidase, auxin-
binding protein contributing to drought stress tolerance in chickpea. Similarly, a
comparative proteomics analysis revealed 75 proteins—related to oxidative stress
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Table 1.3 List of differentially expressed gene(s) under drought and heat stress identified by
functional genomic approaches

Stress Tissue used
Transcriptomic
technique used

Differentially expressed gene
(s) with putative function References

Drought Leaves and
flowers

Repression of aquaporin-like
membrane channel protein;
inhibition of auxin-repressed
proteins

Mantri
et al.
(2007)

Roots SuperSAGE 7532 unitags and 880 unitags
involved in ROS scavenging
activity under water stress

Molina
et al.
(2008)

Roots ESTs 20,162 ESTs, dehydrin DHN3,
late embryogenesis abundant
(LEA) genes coexpressed under
drought stress

Varshney
et al.
(2009)

Shoots and
roots

Suppression
subtractive
hybridization

3062 unigenes; upregulation of
myoinositol-1-phosphate
synthase (MIPS) and pyrroline-
5-carboxylate synthetase (P5CS)
genes helps in drought stress
tolerance; regulation of Myb,
ERF-2, NAC, bZIP, HD-ZP, etc.
could participate in drought
tolerance

Deokar
et al.
(2011)

Roots ESTs 44,639 tentative unique
sequences involved in regulating
various stress-responsive TFs
and HSPs under drought stress

Hiremath
et al.
(2011)

Roots RNA-seq 4053 and 1330 regulate TFs
(bHLH, AP2-EREBP and MYB
HB, WRKY and NAC) under
water stress

Garg et al.
(2016)

Roots and
shoots

RNA-seq – Srivastava
et al.
(2016)

Leaves from
shoots at
apical
meristem
stage

RNA-seq 1562 genes, 2592 genes related
to controlling expression of
MYB-related protein, ethylene
response under water stress

Badhan
et al.
(2018)

Roots and
shoots

RNA-seq 261and 169 genes, TFs (bHLH,
leucine-rich repeat), aldo/ keto
reductase, potassium channel,
chlorophyll A-B binding protein,
inositol polyphosphate-related
phosphatase

Mahdavi
Mashaki
et al.
(2018)

– RNA-seq 1624 genes including regulation
of mannitol dehydrogenase,
serine hydroxymethyl-
transferase 4-like, cytochrome
P450 81E8-like and galactinol-

Kumar
et al.
(2019)

(continued)
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tolerance, HSPs, cellular metabolism, ROS metabolism—involved in drought stress
tolerance in chickpea (Gupta et al. 2020).

A comparative proteomics analysis revealed that proline and sucrose
biosynthesis-related proteins, glutamine synthetase, and cytosolic fructose-
bisphosphate aldolase were involved in drought stress tolerance in C. reticulatum
than C. arietinum (Cevik et al. 2019). A proteomics analysis of reproductive tissue
identified 154 proteins differentially expressed in two contrasting heat-tolerant
genotypes under heat stress; the actively participating proteins included acetyl-
CoA carboxylase, pyrroline-5-carboxylate synthase (P5CS), ribulose-1,5-
bisphosphate carboxylase/oxygenase (RuBisCO), phenylalanine ammonia-lyase
(PAL) 2, ATP synthase, glycosyltransferase, sucrose synthase, and late embryogen-
esis abundant (LEA) proteins (Parankusam et al. 2017). Further study is needed to
decipher the role of various proteins related to drought- and heat-sensing and signal
transduction pathways contributing to drought and heat tolerance in chickpea.

Likewise, metabolomics profiling could be harnessed to obtain insights into the
various metabolites generated in response to drought and heat stress, allowing plants
to survive under these stresses (Khan et al. 2019a, b). Metabolomic analysis of two

Table 1.3 (continued)

Stress Tissue used
Transcriptomic
technique used

Differentially expressed gene
(s) with putative function References

sucrose galactosyltransferase-
like, AP2- EREBP, bHLH, bZIP,
C3H, MYB, NAC, WRKY TFs
under water-scarce environment

Roots RNA-seq Upregulation of stress-
responsive transcription factors,
kinases, ROS signaling and
scavenging, transporters, root
nodulation, and oxylipin
biosynthesis genes

Bhaskarla
et al.
(2020)

Roots qRT-PCR Ca_06899, Ca_18090,
Ca_22941, Ca_04337,
Ca_04069, Ca_04233,
Ca_12660, Ca_16379,
Ca_16946, and Ca_21186

Singh et al.
(2016)

Leaves
Seedling

RNA-seq
SqRT-PCR

Genes involved in
phenylpropanoid biosynthesis
pathway were upregulated in
tolerant genotype
WRKY, DREB2A, and CarNAC3
genes

Moenga
et al.
(2020)
Borhani
et al.
(2020)

– qRT-PCR Phospholipases D genes
differentially expressed in
response to drought stress

Sagar et al.
(2021)

Heat Flowers,
shoots, roots

RNA-seq Five HSP 90 genes Agarwal
et al.
(2016)
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contrasting chickpea genotypes under water stress revealed the accumulation of
various metabolites (e.g., choline, phenylalanine, gamma-aminobutyric acid, ala-
nine, phenylalanine, tyrosine, glucosamine, guanine, and aspartic acid) attributed to
drought stress adaptation (Khan et al. 2019a). Khan et al. (2019b) reported the
accumulation of various metabolites (proline, L-arginine, L-histidine, L-isoleucine,
and tryptophan) in the leaves of chickpea genotypes treated with plant growth-
promoting rhizobacteria (PGPR) and various plant growth regulators (PGRs)
under drought stress. The PGPR- and PGR-treated plants also had enhanced ribofla-
vin accumulation, L-asparagine, aspartate, and glycerol in leaves. The same research
group also witnessed the increased accumulation of malonate, 5-oxo-L-proline, and
trans-cinnamate in genotypes treated with PGPR and PGR, which was attributed to
drought tolerance (Khan et al. 2019c). Hence, these drought- and heat-responsive
metabolites allow chickpea to maintain growth and development and ultimately
survive in drought- and heat-stress environments.

1.9 Emerging Modern Breeding Tools for Accelerating Genetic
Gain in Chickpea

Traditional breeding approaches have significantly improved chickpea yield but
these approaches alone will not meet the rising demand for chickpea due to the
growing human population (Langridge and Fleury 2011). The augmentation of
several novel breeding tools, such as genomic selection, could predict the genetic
merit/phenotypic performance/breeding value of various untested progenies devel-
oped in crossing programs using various prediction/statistical models, thus reducing
the breeding cycle and assisting in the selection of superior progenies with improved
genetic gain (Meuwissen et al. 2001). Such an approach has been used to predict
genetic gain in chickpea under drought stress (Li et al. 2018). Speed breeding/rapid
generation has been recently introduced to grow three to four crop generations per
year in chickpea, thus allowing faster development of new cultivars (Hickey et al.
2019; Samineni et al. 2020). Likewise, genome editing tools could be used to
manipulate nucleotide sequences (addition/deletion) at targeted locations without
the intervention of transgene (Nasti and Voytas 2021). This technology has been
used to develop drought-tolerant chickpea by editing 4-coumarate ligase (4CL) and
Reveille 7 (RVE7) genes attributed to water stress tolerance (Badhan et al. 2021). In
addition, the multiparent advanced generation intercross (MAGIC) population
scheme was developed at ICRISAT, India, to broaden the genetic base by capturing
high allelic diversity and increasing resilience to various abiotic stresses, including
drought and heat stress. Potential diverse founder parents, including ICC 4958, JG
130, ICCV 10, JAKI 9218, JG 130, JG 16, ICCV 97105, and ICCV 00108 were
included in the crossing programme for this scheme (Samineni et al. 2017). The
recombinant inbred lines from these parents could map drought- and heat-tolerant
QTLs with higher resolution and improve chickpea genetic gain under harsh
environments. A similar hybrid-nested association mapping and backcross intro-
gression approach has been used to harness variation in recent crop wild relative
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collections (von Wettberg et al. 2018), crossing a diverse panel of wild parents into
elite cultivated lines.

1.10 Scope of High Throughput Phenotyping for Capturing
the Precise Phenotypic Response of Drought and Heat
Stress in Plants

As drought and heat stress are governed by multiple gene(s)/QTLs and greatly
influenced by G � E � M interactions, measuring their accurate response remains
challenging (Hein et al. 2021; Smith et al. 2021). The evolution of various
phenomics facilities in the last decade has dramatically advanced our understanding,
measuring the drought and heat stress response both spatially and temporally.
Advances in nondestructive methods, including sensor-based technologies, image-
based platforms, unmanned aerial vehicles, and drone-based technologies, have
assisted in measuring drought and heat stress responses at a large scale under target
environments in the field (Houle et al. 2010; Fiorani and Schurr 2013; Furbank and
Tester 2011; Großkinsky et al. 2015; Hein et al. 2021). Among image-based
techniques, Red–Green–Blue images can measure plant area and color, time of
day of flowering, yield, and yield parameters (Sadeghi-Tehran et al. 2017; Xiong
et al. 2017). Likewise, infrared is used to assess plant temperature, and SPAD
meters, hyperspectral radiometers, and field spectroradiometers are used to assess
photosynthesis efficiency (Peng et al. 2017). Moreover, emerging deep learning and
machine learning approaches could be used to measure drought and heat stress
responses to develop better drought- and heat-tolerant chickpea lines.

1.11 Conclusion and Future Perspective

With global climate change, frequent episodes of drought and heat stress are
becoming a major concern, exacerbating chickpea yield losses. A thorough screen-
ing of chickpea germplasm is urgently needed in the target environment to increase
chickpea resilience to drought and heat stress. As drought and heat stress sometimes
occur concurrently, the selection of traits conferring combined drought tolerance
should be targeted and transferred into elite chickpea lines for increased resilience to
drought and heat tolerance. Concomitantly, studies should focus on pre-breeding
activities and exploration of landraces with inherent drought and heat tolerance
capability (Rani et al. 2020). Marker-assisted breeding schemes allow us to transfer
the genomic regions conferring drought and heat tolerance into elite chickpea
cultivars, thus improving the genetic gain of elite chickpea cultivars (Roorkiwal
et al. 2020).

Efforts to resequence global chickpea germplasm and a pangenomics approach
could underpin the novel causal variants attributing drought and heat tolerance in
chickpea (Varshney et al. 2021). Likewise, genomic selection will assist in
predicting superior progenies conferring drought and heat tolerance based on the
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prediction model and thus reduce breeding cycles. In parallel, MAGIC and NAM
populations are being developed to increase resilience and broaden the genetic base.
In addition, rapid generation advancement and genome editing technology could be
used to design a more climate-resilient chickpea to sustain global food security.
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